Modifying pascaligo.ml to become ligodity.ml [BROKEN].

This commit is contained in:
Christian Rinderknecht 2019-05-14 15:57:25 +02:00 committed by Georges Dupéron
parent 7de4a1802a
commit bb5dadca55

613
src/simplify/ligodity.ml Normal file
View File

@ -0,0 +1,613 @@
open Trace
open Ast_simplified
module Raw = Parser.Ligodity.AST
module SMap = Map.String
open Combinators
let nseq_to_list (hd, tl) = hd :: tl
let npseq_to_list (hd, tl) = hd :: (List.map snd tl)
let npseq_to_nelist (hd, tl) = hd, (List.map snd tl)
let pseq_to_list = function
| None -> []
| Some lst -> npseq_to_list lst
let get_value : 'a Raw.reg -> 'a = fun x -> x.value
let type_constants = Operators.Simplify.type_constants
let constants = Operators.Simplify.constants
let rec simpl_type_expression (t:Raw.type_expr) : type_expression result =
match t with
| TPar x -> simpl_type_expression x.value.inside
| TAlias v -> (
match List.assoc_opt v.value type_constants with
| Some 0 ->
ok @@ T_constant (v.value, [])
| Some _ ->
simple_fail "type constructor with wrong number of args"
| None ->
ok @@ T_variable v.value
)
| TFun x -> (
let%bind (a , b) =
let (a , _ , b) = x.value in
bind_map_pair simpl_type_expression (a , b) in
ok @@ T_function (a , b)
)
| TApp x ->
let (name, tuple) = x.value in
let lst = npseq_to_list tuple.value.inside in
let%bind _ = match List.assoc_opt name.value type_constants with
| Some n when n = List.length lst -> ok ()
| Some _ -> simple_fail "type constructor with wrong number of args"
| None -> simple_fail "unrecognized type constants" in
let%bind lst' = bind_list @@ List.map simpl_type_expression lst in
ok @@ T_constant (name.value, lst')
| TProd p ->
let%bind tpl = simpl_list_type_expression
@@ npseq_to_list p.value in
ok tpl
| TRecord r ->
let aux = fun (x, y) -> let%bind y = simpl_type_expression y in ok (x, y) in
let%bind lst = bind_list
@@ List.map aux
@@ List.map (fun (x:Raw.field_decl Raw.reg) -> (x.value.field_name.value, x.value.field_type))
@@ pseq_to_list r.value.elements in
let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in
ok @@ T_record m
| TSum s ->
let aux (v:Raw.variant Raw.reg) =
let args =
match v.value.args with
None -> []
| Some (_, cartesian) ->
npseq_to_list cartesian.value in
let%bind te = simpl_list_type_expression
@@ args in
ok (v.value.constr.value, te)
in
let%bind lst = bind_list
@@ List.map aux
@@ npseq_to_list s.value in
let m = List.fold_left (fun m (x, y) -> SMap.add x y m) SMap.empty lst in
ok @@ T_sum m
and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result =
match lst with
| [] -> assert false
| [hd] -> simpl_type_expression hd
| lst ->
let%bind lst = bind_list @@ List.map simpl_type_expression lst in
ok @@ T_tuple lst
let rec simpl_expression :
?te_annot:_ -> Raw.expr -> ae result = fun ?te_annot t ->
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
let simpl_projection = fun (p:Raw.projection) ->
let var =
let name = p.struct_name.value in
make_e_a @@ E_variable name in
let path = p.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> Access_record property.value
| Component index ->
let index = index.value.inside in
Access_tuple (Z.to_int (snd index.value))
in
List.map aux @@ npseq_to_list path in
return @@ E_accessor (var, path')
in
let open Raw in
match t with
| Raw.EAnnot a -> (
let (expr , type_expr) = a.value in
match te_annot with
| None -> (
let%bind te_annot = simpl_type_expression type_expr in
let%bind expr' = simpl_expression ~te_annot expr in
ok expr'
)
| Some _ -> simple_fail "no double annotation"
)
| EVar c -> (
let c' = c.value in
match List.assoc_opt c' constants with
| None -> return @@ E_variable c.value
| Some 0 -> return @@ E_constant (c' , [])
| Some n -> (
let error =
let title () = "non nullary constant without parameters" in
let content () = Format.asprintf "%s (%d)" c' n in
error title content in
fail error
)
)
| ECall (x : (Raw.expr * Raw.expr list) Region.reg) -> (
let (f, args) = x.value in
let%bind f' = simpl_expression f in
let%bind args' = bind_map_list simpl_expression args in
match List.assoc_opt f constants with
| None ->
let%bind arg = simpl_tuple_expression args' in
return @@ E_application (make_e_a @@ E_variable f, arg)
| Some arity ->
let%bind _arity =
trace (simple_error "wrong arity for constants") @@
Assert.assert_equal_int arity (List.length args') in
let%bind lst = bind_map_list simpl_expression args' in
return @@ E_constant (f, lst)
)
| EPar x -> simpl_expression ?te_annot x.value.inside
| EUnit _ -> return @@ E_literal Literal_unit
| EBytes x -> return @@ E_literal (Literal_bytes (Bytes.of_string @@ fst x.value))
| ETuple tpl ->
let (Raw.TupleInj tpl') = tpl in
simpl_tuple_expression ?te_annot
@@ npseq_to_list tpl'.value.inside
| ERecord r ->
let%bind fields = bind_list
@@ List.map (fun ((k : _ Raw.reg), v) -> let%bind v = simpl_expression v in ok (k.value, v))
@@ List.map (fun (x:Raw.field_assign Raw.reg) -> (x.value.field_name, x.value.field_expr))
@@ pseq_to_list r.value.elements in
let aux prev (k, v) = SMap.add k v prev in
return @@ E_record (List.fold_left aux SMap.empty fields)
| EProj p' -> (
let p = p'.value in
simpl_projection p
)
| EConstr c ->
let (c, args) = c.value in
let args =
match args with
None -> []
| Some arg -> [arg] in
let%bind arg =
simpl_tuple_expression @@ args in
return @@ E_constructor (c.value, arg)
| EArith (Add c) ->
simpl_binop ?te_annot "ADD" c.value
| EArith (Sub c) ->
simpl_binop ?te_annot "SUB" c.value
| EArith (Mult c) ->
simpl_binop ?te_annot "TIMES" c.value
| EArith (Div c) ->
simpl_binop ?te_annot "DIV" c.value
| EArith (Mod c) ->
simpl_binop ?te_annot "MOD" c.value
| EArith (Int n) ->
let n = Z.to_int @@ snd @@ n.value in
return @@ E_literal (Literal_int n)
| EArith (Nat n) ->
let n = Z.to_int @@ snd @@ n.value in
return @@ E_literal (Literal_nat n)
| EArith (Mtz n) ->
let n = Z.to_int @@ snd @@ n.value in
return @@ E_literal (Literal_tez n)
| EArith _ -> simple_fail "arith: not supported yet"
| EString (String s) ->
let s' =
let s = s.value in
String.(sub s 1 ((length s) - 2))
in
return @@ E_literal (Literal_string s')
| EString _ -> simple_fail "string: not supported yet"
| ELogic l -> simpl_logic_expression ?te_annot l
| EList l -> simpl_list_expression ?te_annot l
| ECase c ->
let%bind e = simpl_expression c.value.expr in
let%bind lst =
let aux (x : Raw.expr Raw.case_clause) =
let%bind expr = simpl_expression x.rhs in
ok (x.pattern, expr) in
bind_list
@@ List.map aux
@@ List.map get_value
@@ npseq_to_list c.value.cases.value in
let%bind cases = simpl_cases lst in
return @@ E_matching (e, cases)
| _ -> failwith "TOTO"
and simpl_logic_expression ?te_annot (t:Raw.logic_expr) : annotated_expression result =
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
match t with
| BoolExpr (False _) ->
return @@ E_literal (Literal_bool false)
| BoolExpr (True _) ->
return @@ E_literal (Literal_bool true)
| BoolExpr (Or b) ->
simpl_binop ?te_annot "OR" b.value
| BoolExpr (And b) ->
simpl_binop ?te_annot "AND" b.value
| BoolExpr (Not b) ->
simpl_unop ?te_annot "NOT" b.value
| CompExpr (Lt c) ->
simpl_binop ?te_annot "LT" c.value
| CompExpr (Gt c) ->
simpl_binop ?te_annot "GT" c.value
| CompExpr (Leq c) ->
simpl_binop ?te_annot "LE" c.value
| CompExpr (Geq c) ->
simpl_binop ?te_annot "GE" c.value
| CompExpr (Equal c) ->
simpl_binop ?te_annot "EQ" c.value
| CompExpr (Neq c) ->
simpl_binop ?te_annot "NEQ" c.value
and simpl_list_expression ?te_annot (t:Raw.list_expr) : annotated_expression result =
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
match t with
| Cons c ->
simpl_binop ?te_annot "CONS" c.value
| List lst ->
let%bind lst' =
bind_map_list simpl_expression @@
pseq_to_list lst.value.elements in
return @@ E_list lst'
| Nil _ ->
return @@ E_list []
and simpl_binop ?te_annot (name:string) (t:_ Raw.bin_op) : annotated_expression result =
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
let%bind a = simpl_expression t.arg1 in
let%bind b = simpl_expression t.arg2 in
return @@ E_constant (name, [a;b])
and simpl_unop ?te_annot (name:string) (t:_ Raw.un_op) : annotated_expression result =
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
let%bind a = simpl_expression t.arg in
return @@ E_constant (name, [a])
and simpl_tuple_expression ?te_annot (lst:Raw.expr list) : annotated_expression result =
let return x = ok @@ make_e_a ?type_annotation:te_annot x in
match lst with
| [] -> return @@ E_literal Literal_unit
| [hd] -> simpl_expression ?te_annot hd
| lst ->
let%bind lst = bind_list @@ List.map simpl_expression lst in
return @@ E_tuple lst
and simpl_local_declaration (t:Raw.local_decl) : (instruction * named_expression) result =
match t with
| LocalData d -> simpl_data_declaration d
| LocalLam l -> simpl_lambda_declaration l
and simpl_lambda_declaration : Raw.lambda_decl -> (instruction * named_expression) result =
fun l ->
match l with
| FunDecl f ->
let%bind e = simpl_fun_declaration (f.value) in
ok (I_assignment e, e)
| ProcDecl _ -> simple_fail "no local procedure yet"
| EntryDecl _ -> simple_fail "no local entry-point yet"
and simpl_data_declaration (t:Raw.data_decl) : (instruction * named_expression) result =
let return x = ok (I_assignment x, x) in
match t with
| LocalVar x ->
let x = x.value in
let name = x.name.value in
let%bind t = simpl_type_expression x.var_type in
let%bind annotated_expression = simpl_expression ~te_annot:t x.init in
return {name;annotated_expression}
| LocalConst x ->
let x = x.value in
let name = x.name.value in
let%bind t = simpl_type_expression x.const_type in
let%bind annotated_expression = simpl_expression ~te_annot:t x.init in
return {name;annotated_expression}
and simpl_param : Raw.param_decl -> named_type_expression result = fun t ->
match t with
| ParamConst c ->
let c = c.value in
let type_name = c.var.value in
let%bind type_expression = simpl_type_expression c.param_type in
ok { type_name ; type_expression }
| ParamVar v ->
let c = v.value in
let type_name = c.var.value in
let%bind type_expression = simpl_type_expression c.param_type in
ok { type_name ; type_expression }
and simpl_fun_declaration : Raw.fun_decl -> named_expression result = fun x ->
let open! Raw in
let {name;param;ret_type;local_decls;block;return} : fun_decl = x in
(match npseq_to_list param.value.inside with
| [] -> simple_fail "function without parameters are not allowed"
| [a] -> (
let%bind input = simpl_param a in
let name = name.value in
let binder = input.type_name in
let input_type = input.type_expression in
let%bind local_declarations =
let%bind tmp = bind_list
@@ List.map simpl_local_declaration local_decls in
ok (List.map fst tmp) in
let%bind instructions = bind_list
@@ List.map simpl_statement
@@ npseq_to_list block.value.statements in
let%bind result = simpl_expression return in
let%bind output_type = simpl_type_expression ret_type in
let body = local_declarations @ instructions in
let expression = E_lambda {binder ; input_type ; output_type ; result ; body } in
let type_annotation = Some (T_function (input_type, output_type)) in
ok {name;annotated_expression = {expression;type_annotation}}
)
| lst -> (
let arguments_name = "arguments" in
let%bind params = bind_map_list simpl_param lst in
let input =
let aux = fun x -> x.type_expression in
let type_expression = T_tuple (List.map aux params) in
{ type_name = arguments_name ; type_expression } in
let binder = input.type_name in
let input_type = input.type_expression in
let tpl_declarations =
let aux = fun i (x:named_type_expression) ->
let ass = I_assignment {
name = x.type_name ;
annotated_expression = {
expression = E_accessor ({
expression = E_variable arguments_name ;
type_annotation = Some input.type_expression ;
} , [ Access_tuple i ] ) ;
type_annotation = Some (x.type_expression) ;
}
} in
ass
in
List.mapi aux params in
let%bind local_declarations =
let%bind typed = bind_map_list simpl_local_declaration local_decls in
ok (List.map fst typed)
in
let%bind output_type = simpl_type_expression ret_type in
let%bind instructions = bind_list
@@ List.map simpl_statement
@@ npseq_to_list block.value.statements in
let body = tpl_declarations @ local_declarations @ instructions in
let%bind result = simpl_expression return in
let expression = E_lambda {binder ; input_type ; output_type ; result ; body } in
let type_annotation = Some (T_function (input_type, output_type)) in
ok {name = name.value;annotated_expression = {expression;type_annotation}}
)
)
and simpl_declaration : Raw.declaration -> declaration Location.wrap result = fun t ->
let open! Raw in
let loc : 'a . 'a Raw.reg -> _ -> _ = fun x v -> Location.wrap ~loc:(File x.region) v in
match t with
| TypeDecl x ->
let {name;type_expr} : Raw.type_decl = x.value in
let%bind type_expression = simpl_type_expression type_expr in
ok @@ loc x @@ Declaration_type {type_name=name.value;type_expression}
| ConstDecl x ->
let simpl_const_decl = fun {name;const_type;init} ->
let%bind expression = simpl_expression init in
let%bind t = simpl_type_expression const_type in
let type_annotation = Some t in
ok @@ Declaration_constant {name=name.value;annotated_expression={expression with type_annotation}}
in
bind_map_location simpl_const_decl (Location.lift_region x)
| LambdaDecl (FunDecl x) ->
let aux f x =
let%bind x' = f x in
ok @@ Declaration_constant x' in
bind_map_location (aux simpl_fun_declaration) (Location.lift_region x)
| LambdaDecl (ProcDecl _) -> simple_fail "no proc declaration yet"
| LambdaDecl (EntryDecl _)-> simple_fail "no entry point yet"
and simpl_statement : Raw.statement -> instruction result = fun s ->
match s with
| Instr i -> simpl_instruction i
| Data d -> let%bind (i, _) = simpl_data_declaration d in ok i
and simpl_single_instruction : Raw.single_instr -> instruction result = fun t ->
match t with
| ProcCall _ -> simple_fail "no proc call"
| Fail e ->
let%bind expr = simpl_expression e.value.fail_expr in
ok @@ I_do (untyped_expression @@ E_failwith expr)
| Skip _ -> ok @@ I_skip
| Loop (While l) ->
let l = l.value in
let%bind cond = simpl_expression l.cond in
let%bind body = simpl_block l.block.value in
ok @@ I_loop (cond, body)
| Loop (For _) ->
simple_fail "no for yet"
| Cond c ->
let c = c.value in
let%bind expr = simpl_expression c.test in
let%bind match_true = match c.ifso with
| ClauseInstr i -> simpl_instruction_block i
| ClauseBlock b -> simpl_statements @@ fst b.value.inside in
let%bind match_false = match c.ifnot with
| ClauseInstr i -> simpl_instruction_block i
| ClauseBlock b -> simpl_statements @@ fst b.value.inside in
ok @@ I_matching (expr, (Match_bool {match_true; match_false}))
| Assign a -> (
let a = a.value in
let%bind value_expr = match a.rhs with
| Expr e -> simpl_expression e
| NoneExpr _ -> simple_fail "no none assignments yet"
in
match a.lhs with
| Path path -> (
let (name , path') = simpl_path path in
match List.rev_uncons_opt path' with
| None -> (
ok @@ I_assignment {name ; annotated_expression = value_expr}
)
| Some (hds , last) -> (
match last with
| Access_record property -> ok @@ I_record_patch (name , hds , [(property , value_expr)])
| Access_tuple index -> ok @@ I_tuple_patch (name , hds , [(index , value_expr)])
| _ -> simple_fail "no map assignment in this weird case yet"
)
)
| MapPath v -> (
let v' = v.value in
let%bind name = match v'.path with
| Name name -> ok name
| _ -> simple_fail "no complex map assignments yet" in
let%bind key_expr = simpl_expression v'.index.value.inside in
let old_expr = make_e_a @@ E_variable name.value in
let expr' = make_e_a @@ E_constant ("MAP_UPDATE", [key_expr ; value_expr ; old_expr]) in
ok @@ I_assignment {name = name.value ; annotated_expression = expr'}
)
)
| CaseInstr c ->
let c = c.value in
let%bind expr = simpl_expression c.expr in
let%bind cases =
let aux (x : Raw.instruction Raw.case_clause Raw.reg) =
let%bind i = simpl_instruction_block x.value.rhs in
ok (x.value.pattern, i) in
bind_list
@@ List.map aux
@@ npseq_to_list c.cases.value in
let%bind m = simpl_cases cases in
ok @@ I_matching (expr, m)
| RecordPatch r -> (
let r = r.value in
let (name , access_path) = simpl_path r.path in
let%bind inj = bind_list
@@ List.map (fun (x:Raw.field_assign) -> let%bind e = simpl_expression x.field_expr in ok (x.field_name.value, e))
@@ List.map (fun (x:_ Raw.reg) -> x.value)
@@ pseq_to_list r.record_inj.value.elements in
ok @@ I_record_patch (name, access_path, inj)
)
| MapPatch _ -> simple_fail "no map patch yet"
| SetPatch _ -> simple_fail "no set patch yet"
| MapRemove r ->
let v = r.value in
let key = v.key in
let%bind map = match v.map with
| Name v -> ok v.value
| _ -> simple_fail "no complex map remove yet" in
let%bind key' = simpl_expression key in
let expr = E_constant ("MAP_REMOVE", [key' ; make_e_a (E_variable map)]) in
ok @@ I_assignment {name = map ; annotated_expression = make_e_a expr}
| SetRemove _ -> simple_fail "no set remove yet"
and simpl_path : Raw.path -> string * Ast_simplified.access_path = fun p ->
match p with
| Raw.Name v -> (v.value , [])
| Raw.Path p -> (
let p' = p.value in
let var = p'.struct_name.value in
let path = p'.field_path in
let path' =
let aux (s:Raw.selection) =
match s with
| FieldName property -> Access_record property.value
| Component index -> Access_tuple (Z.to_int (snd index.value))
in
List.map aux @@ npseq_to_list path in
(var , path')
)
and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t ->
let open Raw in
let get_var (t:Raw.pattern) = match t with
| PVar v -> ok v.value
| _ ->
let error =
let title () = "not a var" in
let content () = Format.asprintf "%a" (PP_helpers.printer Raw.print_pattern) t in
error title content
in
fail error
in
let get_tuple (t:Raw.pattern) = match t with
| PCons v -> npseq_to_list v.value
| PTuple v -> npseq_to_list v.value.inside
| x -> [ x ]
in
let get_single (t:Raw.pattern) =
let t' = get_tuple t in
let%bind () =
trace_strong (simple_error "not single") @@
Assert.assert_list_size t' 1 in
ok (List.hd t') in
let get_constr (t:Raw.pattern) = match t with
| PConstr v ->
let%bind var = get_single (snd v.value).value >>? get_var in
ok ((fst v.value).value , var)
| _ -> simple_fail "not a constr"
in
let%bind patterns =
let aux (x , y) =
let xs = get_tuple x in
trace_strong (simple_error "no tuple in patterns yet") @@
Assert.assert_list_size xs 1 >>? fun () ->
ok (List.hd xs , y)
in
bind_map_list aux t in
match patterns with
| [(PFalse _ , f) ; (PTrue _ , t)]
| [(PTrue _ , t) ; (PFalse _ , f)] -> ok @@ Match_bool {match_true = t ; match_false = f}
| [(PSome v , some) ; (PNone _ , none)]
| [(PNone _ , none) ; (PSome v , some)] -> (
let (_, v) = v.value in
let%bind v = match v.value.inside with
| PVar v -> ok v.value
| _ -> simple_fail "complex none patterns not supported yet" in
ok @@ Match_option {match_none = none ; match_some = (v, some) }
)
| [(PCons c , cons) ; (PList (PNil _) , nil)]
| [(PList (PNil _) , nil) ; (PCons c, cons)] ->
let%bind (a, b) =
match c.value with
| a, [(_, b)] ->
let%bind a = get_var a in
let%bind b = get_var b in
ok (a, b)
| _ -> simple_fail "complex list patterns not supported yet"
in
ok @@ Match_list {match_cons = (a, b, cons) ; match_nil = nil}
| lst ->
trace (simple_error "weird patterns not supported yet") @@
let%bind constrs =
let aux (x , y) =
let error =
let title () = "Pattern" in
let content () =
Format.asprintf "Pattern : %a" (PP_helpers.printer Raw.print_pattern) x in
error title content in
let%bind x' =
trace error @@
get_constr x in
ok (x' , y) in
bind_map_list aux lst in
ok @@ Match_variant constrs
and simpl_instruction_block : Raw.instruction -> block result = fun t ->
match t with
| Single s -> let%bind i = simpl_single_instruction s in ok [ i ]
| Block b -> simpl_block b.value
and simpl_instruction : Raw.instruction -> instruction result = fun t ->
let main_error =
let title () = "simplifiying instruction" in
let content () = Format.asprintf "%a" PP_helpers.(printer Raw.print_instruction) t in
error title content in
trace main_error @@
match t with
| Single s -> simpl_single_instruction s
| Block _ -> simple_fail "no block instruction yet"
and simpl_statements : Raw.statements -> block result = fun ss ->
let lst = npseq_to_list ss in
bind_map_list simpl_statement lst
and simpl_block : Raw.block -> block result = fun t ->
simpl_statements t.statements
let simpl_program : Raw.ast -> program result = fun t ->
bind_list @@ List.map simpl_declaration @@ nseq_to_list t.decl