Merge branch 'dev' of gitlab.com:ligolang/ligo into rinderknecht-dev

This commit is contained in:
Christian Rinderknecht 2020-01-29 16:49:42 +01:00
commit a6bf16cbe2
59 changed files with 995 additions and 657 deletions

View File

@ -5,63 +5,132 @@ title: Entrypoints, Contracts
## Entrypoints ## Entrypoints
Each LIGO smart contract is essentially a single function, that has the following *(pseudo)* type signature: Each LIGO smart contract is essentially a single main function, referring to the following types:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
``` ```pascaligo group=a
(const parameter: my_type, const store: my_store_type): (list(operation), my_store_type) type parameter_t is unit
type storage_t is unit
type return_t is (list(operation) * storage_t)
``` ```
<!--CameLIGO--> <!--CameLIGO-->
``` ```cameligo group=a
(parameter, store: my_type * my_store_type) : operation list * my_store_type type parameter_t = unit
type storage_t = unit
type return_t = (operation list * storage_t)
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->
```reasonligo group=a
type parameter_t = unit;
type storage_t = unit;
type return_t = (list(operation) , storage_t);
``` ```
(parameter_store: (my_type, my_store_type)) : (list(operation), my_store_type)
```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
This means that every smart contract needs at least one entrypoint function, here's an example: Each main function receives two arguments:
- `parameter` - this is the parameter received in the invocation operation
- `storage` - this is the current (real) on-chain storage value
Storage can only be modified by running the smart contract entrypoint, which is responsible for returning a pair holding a list of operations, and a new storage.
Here is an example of a smart contract main function:
> 💡 The contract below literally does *nothing* > 💡 The contract below literally does *nothing*
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=a ```pascaligo group=a
type parameter is unit; function main(const parameter: parameter_t; const store: storage_t): return_t is
type store is unit; ((nil : list(operation)), store)
function main(const parameter: parameter; const store: store): (list(operation) * store) is
block { skip } with ((nil : list(operation)), store)
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo group=a ```cameligo group=a
type parameter = unit let main (parameter, store: parameter_t * storage_t) : return_t =
type store = unit
let main (parameter, store: parameter * store) : operation list * store =
(([]: operation list), store) (([]: operation list), store)
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->
```reasonligo group=a ```reasonligo group=a
type parameter = unit; let main = ((parameter, store): (parameter_t, storage_t)) : return_t => {
type store = unit;
let main = ((parameter, store): (parameter, store)) : (list(operation), store) => {
(([]: list(operation)), store); (([]: list(operation)), store);
}; };
``` ```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
Each entrypoint function receives two arguments: A contract entrypoints are the constructors of the parameter type (variant) and you must use pattern matching (`case`, `match`, `switch`) on the parameter in order to associate each entrypoint to its corresponding handler.
- `parameter` - this is the parameter received in the invocation operation
- `storage` - this is the current (real) on-chain storage value
Storage can only be modified by running the smart contract entrypoint, which is responsible for returning a list of operations, and a new storage at the end of it's execution. To access the 'entrypoints' of a contract, we define a main function whose parameter is a variant type with constructors for each entrypoint. This allows us to satisfy the requirement that LIGO contracts always begin execution from the same function. The main function simply takes this variant, pattern matches it to determine which entrypoint to dispatch the call to, then returns the result of executing that entrypoint with the projected arguments.
> The LIGO variant's are compiled to a Michelson annotated tree of union type.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=recordentry
type parameter_t is
| Entrypoint_a of int
| Entrypoint_b of string
type storage_t is unit
type return_t is (list(operation) * storage_t)
function handle_a (const p : int; const store : storage_t) : return_t is
((nil : list(operation)), store)
function handle_b (const p : string; const store : storage_t) : return_t is
((nil : list(operation)), store)
function main(const parameter: parameter_t; const store: storage_t): return_t is
case parameter of
| Entrypoint_a (p) -> handle_a(p,store)
| Entrypoint_b (p) -> handle_b(p,store)
end
```
<!--CameLIGO-->
```cameligo group=recordentry
type parameter_t =
| Entrypoint_a of int
| Entrypoint_b of string
type storage_t = unit
type return_t = (operation list * storage_t)
let handle_a (parameter, store: int * storage_t) : return_t =
(([]: operation list), store)
let handle_b (parameter, store: string * storage_t) : return_t =
(([]: operation list), store)
let main (parameter, store: parameter_t * storage_t) : return_t =
match parameter with
| Entrypoint_a p -> handle_a (p,store)
| Entrypoint_b p -> handle_b (p,store)
```
<!--ReasonLIGO-->
```reasonligo group=recordentry
type parameter_t =
| Entrypoint_a(int)
| Entrypoint_b(string);
type storage_t = unit;
type return_t = (list(operation) , storage_t);
let handle_a = ((parameter, store): (int, storage_t)) : return_t => {
(([]: list(operation)), store); };
let handle_b = ((parameter, store): (string, storage_t)) : return_t => {
(([]: list(operation)), store); };
let main = ((parameter, store): (parameter_t, storage_t)) : return_t => {
switch (parameter) {
| Entrypoint_a(p) => handle_a((p,store))
| Entrypoint_b(p) => handle_b((p,store))
}
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Built-in contract variables ## Built-in contract variables

View File

@ -4,6 +4,9 @@ title: Cheat Sheet
--- ---
<div class="cheatsheet"> <div class="cheatsheet">
<!--
Note that this table is not compiled before production and currently needs to be managed manually.
-->
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO--> <!--PascaLIGO-->
@ -67,11 +70,42 @@ title: Cheat Sheet
|Variants|<pre><code>type action =<br/>&#124; Increment of int<br/>&#124; Decrement of int</code></pre>| |Variants|<pre><code>type action =<br/>&#124; Increment of int<br/>&#124; Decrement of int</code></pre>|
|Variant *(pattern)* matching|<pre><code>let a: action = Increment 5<br/>match a with<br/>&#124; Increment n -> n + 1<br/>&#124; Decrement n -> n - 1<br/></code></pre>| |Variant *(pattern)* matching|<pre><code>let a: action = Increment 5<br/>match a with<br/>&#124; Increment n -> n + 1<br/>&#124; Decrement n -> n - 1<br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int ;<br/>&nbsp;&nbsp;name: string ;<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age = 18;<br/>&nbsp;&nbsp;name = "John Doe";<br/>}<br/><br/>let name: string = john.name</code></pre>| |Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int ;<br/>&nbsp;&nbsp;name: string ;<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age = 18;<br/>&nbsp;&nbsp;name = "John Doe";<br/>}<br/><br/>let name: string = john.name</code></pre>|
|Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/>&nbsp;&nbsp;(10n, 60mutez);<br/>&nbsp;&nbsp;(50n, 30mutez);<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find 50n prices<br/><br/>let prices: prices = Map.update 200n 5mutez prices</code></pre>| |Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/>&nbsp;&nbsp;(10n, 60mutez);<br/>&nbsp;&nbsp;(50n, 30mutez);<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find_opt 50n prices<br/><br/>let prices: prices = Map.update 200n (Some 5mutez) prices</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Operation.get_contract destination_address</code></pre>| |Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Operation.get_contract destination_address</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, receiver, amount)</code></pre>| |Transactions|<pre><code>let payment : operation = <br/> Operation.transaction unit amount receiver</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`| |Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`|
<!--ReasonLIGO-->
|Primitive |Example|
|--- |---|
|Strings | `"Tezos"`|
|Characters | `"t"`|
|Integers | `42`, `7`|
|Natural numbers | `42n`, `7n`|
|Unit| `unit`|
|Boolean|<pre><code>let has_drivers_license: bool = false;<br/>let adult: bool = true;</code></pre> |
|Boolean Logic|<pre><code>(not true) = false = (false && true) = (false &#124;&#124; false)</code></pre>|
|Mutez (micro tez)| `42mutez`, `7mutez` |
|Address | `("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)`, `("KT1JepfBfMSqkQyf9B1ndvURghGsSB8YCLMD": address)`|
|Addition |`3 + 4`, `3n + 4n`|
|Multiplication & Division| `3 * 4`, `3n * 4n`, `10 / 5`, `10n / 5n`|
|Modulo| `10 mod 3`|
|Tuples| <pre><code>type name = (string, string);<br/>let winner: name = ("John", "Doe");<br/>let first_name: string = winner[0];<br/>let last_name: string = winner[1];</code></pre>|
|Types|`type age = int;`, `type name = string;` |
|Includes|```#include "library.mligo"```|
|Functions |<pre><code>let add = (a: int, b: int) : int => a + b; </code></pre>|
| If Statement | <pre><code>let new_id: int = if (age < 16) {<br/> failwith("Too young to drive."); <br/> } else { prev_id + 1; }</code></pre>|
|Options|<pre><code>type middle_name = option(string);<br/>let middle_name : middle_name = Some("Foo");<br/>let middle_name : middle_name = None;</code></pre>|
|Variable Binding | ```let age: int = 5;```|
|Type Annotations| ```("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address)```|
|Variants|<pre><code>type action =<br/>&#124; Increment(int)<br/>&#124; Decrement(int);</code></pre>|
|Variant *(pattern)* matching|<pre><code>let a: action = Increment(5);<br/>switch(a) {<br/>&#124; Increment(n) => n + 1<br/>&#124; Decrement(n) => n - 1;<br/> } <br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int,<br/>&nbsp;&nbsp;name: string<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age: 18,<br/>&nbsp;&nbsp;name: "John Doe"<br/>};<br/><br/>let name: string = john.name;</code></pre>|
|Maps|<pre><code>type prices = map(nat, tez);<br/><br/>let prices : prices = Map.literal([<br/>&nbsp;&nbsp;(10n, 60mutez),<br/>&nbsp;&nbsp;(50n, 30mutez),<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]);<br/><br/>let price: option(tez) = Map.find_opt(50n, prices);<br/><br/>let prices: prices = Map.update(200n, Some (5mutez), prices);</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Operation.get_contract(destination_address);</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, amount, receiver);</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.");`|
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -15,10 +15,10 @@ Each `block` needs to include at least one `instruction`, or a *placeholder* ins
```pascaligo skip ```pascaligo skip
// shorthand syntax // shorthand syntax
block { skip } block { a := a + 1 }
// verbose syntax // verbose syntax
begin begin
skip a := a + 1
end end
``` ```
@ -29,10 +29,11 @@ end
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
Functions in PascaLIGO are defined using the `function` keyword followed by their `name`, `parameters` and `return` type definitions. Functions in PascaLIGO are defined using the `function` keyword
followed by their `name`, `parameters` and `return` type definitions.
Here's how you define a basic function that accepts two `ints` and returns a single `int`:
Here's how you define a basic function that accepts two `int`s and
returns a single `int`:
```pascaligo group=a ```pascaligo group=a
function add(const a: int; const b: int): int is function add(const a: int; const b: int): int is
@ -48,8 +49,10 @@ The function body consists of two parts:
#### Blockless functions #### Blockless functions
Functions that can contain all of their logic into a single instruction/expression, can be defined without the surrounding `block`. Functions that can contain all of their logic into a single
Instead, you can inline the necessary logic directly, like this: instruction/expression, can be defined without the surrounding
`block`. Instead, you can inline the necessary logic directly, like
this:
```pascaligo group=b ```pascaligo group=b
function add(const a: int; const b: int): int is a + b function add(const a: int; const b: int): int is a + b
@ -57,72 +60,78 @@ function add(const a: int; const b: int): int is a + b
<!--CameLIGO--> <!--CameLIGO-->
Functions in CameLIGO are defined using the `let` keyword, like value bindings. Functions in CameLIGO are defined using the `let` keyword, like value
The difference is that after the value name a list of function parameters is provided, bindings. The difference is that after the value name a list of
along with a return type. function parameters is provided, along with a return type.
CameLIGO is a little different from other syntaxes when it comes to function CameLIGO is a little different from other syntaxes when it comes to
parameters. In OCaml, functions can only take one parameter. To get functions function parameters. In OCaml, functions can only take one
with multiple arguments like we're used to in traditional programming languages, parameter. To get functions with multiple arguments like we are used
a technique called [currying](https://en.wikipedia.org/wiki/Currying) is used. to in traditional programming languages, a technique called
Currying essentially translates a function with multiple arguments into a series [currying](https://en.wikipedia.org/wiki/Currying) is used. Currying
of single argument functions, each returning a new function accepting the next essentially translates a function with multiple arguments into a
argument until every parameter is filled. This is useful because it means that series of single argument functions, each returning a new function
CameLIGO can support [partial application](https://en.wikipedia.org/wiki/Partial_application). accepting the next argument until every parameter is filled. This is
useful because it means that CameLIGO can support
[partial application](https://en.wikipedia.org/wiki/Partial_application).
Currying is however *not* the preferred way to pass function arguments in CameLIGO. Currying is however *not* the preferred way to pass function arguments
While this approach is faithful to the original OCaml, it's costlier in Michelson in CameLIGO. While this approach is faithful to the original OCaml,
than naive function execution accepting multiple arguments. Instead for most it's costlier in Michelson than naive function execution accepting
functions with more than one parameter we should place the arguments in a multiple arguments. Instead for most functions with more than one
[tuple](language-basics/sets-lists-tuples.md) and pass the tuple in as a single parameter we should place the arguments in a
parameter. [tuple](language-basics/sets-lists-tuples.md) and pass the tuple in as
a single parameter.
Here's how you define a basic function that accepts two `ints` and returns an `int` as well: Here is how you define a basic function that accepts two `ints` and
returns an `int` as well:
```cameligo group=b ```cameligo group=b
let add (a,b: int * int) : int = a + b let add (a,b: int * int) : int = a + b
let add_curry (a: int) (b: int) : int = a + b let add_curry (a: int) (b: int) : int = a + b
``` ```
The function body is a series of expressions, which are evaluated to give the return The function body is a series of expressions, which are evaluated to
value. give the return value.
<!--ReasonLIGO--> <!--ReasonLIGO-->
Functions in ReasonLIGO are defined using the `let` keyword, like value bindings. Functions in ReasonLIGO are defined using the `let` keyword, like
The difference is that after the value name a list of function parameters is provided, value bindings. The difference is that after the value name a list of
along with a return type. function parameters is provided, along with a return type.
Here's how you define a basic function that accepts two `ints` and returns an `int` as well: Here is how you define a basic function that accepts two `int`s and
returns an `int` as well:
```reasonligo group=b ```reasonligo group=b
let add = ((a,b): (int, int)) : int => a + b; let add = ((a,b): (int, int)) : int => a + b;
``` ```
The function body is a series of expressions, which are evaluated to give the return The function body is a series of expressions, which are evaluated to
value. give the return value.
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
## Anonymous functions ## Anonymous functions
Functions without a name, also known as anonymous functions are useful in cases when you want to pass the function as an argument or assign it to a key in a record/map. Functions without a name, also known as anonymous functions are useful
in cases when you want to pass the function as an argument or assign
it to a key in a record or a map.
Here's how to define an anonymous function assigned to a variable `increment`, with it's appropriate function type signature. Here's how to define an anonymous function assigned to a variable
`increment`, with it is appropriate function type signature.
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=c ```pascaligo group=c
const increment : (int -> int) = (function (const i : int) : int is i + 1); const increment : int -> int = function (const i : int) : int is i + 1;
// a = 2 // a = 2
const a: int = increment (1); const a: int = increment (1);
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo group=c ```cameligo group=c
let increment : (int -> int) = fun (i: int) -> i + 1 let increment : int -> int = fun (i: int) -> i + 1
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->

View File

@ -3,19 +3,22 @@ id: maps-records
title: Maps, Records title: Maps, Records
--- ---
So far we've seen pretty basic data types. LIGO also offers more complex built-in constructs, such as Maps and Records. So far we have seen pretty basic data types. LIGO also offers more
complex built-in constructs, such as maps and records.
## Maps ## Maps
Maps are natively available in Michelson, and LIGO builds on top of them. A requirement for a Map is that its keys be of the same type, and that type must be comparable. Maps are natively available in Michelson, and LIGO builds on top of
them. A requirement for a map is that its keys be of the same type,
and that type must be comparable.
Here's how a custom map type is defined: Here is how a custom map type is defined:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
type move is (int * int); type move is int * int
type moveset is map(address, move); type moveset is map(address, move)
``` ```
<!--CameLIGO--> <!--CameLIGO-->
@ -32,7 +35,7 @@ type moveset = map(address, move);
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
And here's how a map value is populated: And here is how a map value is populated:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
@ -77,7 +80,10 @@ let moves : moveset =
### Accessing map values by key ### Accessing map values by key
If we want to access a move from our moveset above, we can use the `[]` operator/accessor to read the associated `move` value. However, the value we'll get will be wrapped as an optional; in our case `option(move)`. Here's an example: If we want to access a move from our moveset above, we can use the
`[]` operator/accessor to read the associated `move` value. However,
the value we will get will be wrapped as an optional; in our case
`option(move)`. Here is an example:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
@ -175,7 +181,7 @@ otherwise.
function iter_op (const m : moveset) : unit is function iter_op (const m : moveset) : unit is
block { block {
function aggregate (const i : address ; const j : move) : unit is block function aggregate (const i : address ; const j : move) : unit is block
{ if (j.1 > 1) then skip else failwith("fail") } with unit ; { if j.1 > 1 then skip else failwith("fail") } with unit
} with map_iter(aggregate, m); } with map_iter(aggregate, m);
``` ```
@ -202,7 +208,7 @@ let iter_op = (m: moveset): unit => {
```pascaligo ```pascaligo
function map_op (const m : moveset) : moveset is function map_op (const m : moveset) : moveset is
block { block {
function increment (const i : address ; const j : move) : move is block { skip } with (j.0, j.1 + 1) ; function increment (const i : address ; const j : move) : move is (j.0, j.1 + 1);
} with map_map (increment, m); } with map_map (increment, m);
``` ```
@ -222,29 +228,30 @@ let map_op = (m: moveset): moveset => {
``` ```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
`fold` is an aggregation function that return the combination of a maps contents. `fold` is an aggregation function that return the combination of a
maps contents.
The fold is a loop which extracts an element of the map on each iteration. It then The fold is a loop which extracts an element of the map on each
provides this element and an existing value to a folding function which combines them. iteration. It then provides this element and an existing value to a
On the first iteration, the existing value is an initial expression given by the folding function which combines them. On the first iteration, the
programmer. On each subsequent iteration it is the result of the previous iteration. existing value is an initial expression given by the programmer. On
each subsequent iteration it is the result of the previous iteration.
It eventually returns the result of combining all the elements. It eventually returns the result of combining all the elements.
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
function fold_op (const m : moveset) : int is function fold_op (const m : moveset) : int is
block { block {
function aggregate (const j : int ; const cur : (address * (int * int))) : int is j + cur.1.1 ; function aggregate (const j : int; const cur : address * (int * int)) : int is j + cur.1.1
} with map_fold(aggregate, m, 5) } with map_fold(aggregate, m, 5)
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo ```cameligo
let fold_op (m : moveset) : moveset = let fold_op (m : moveset) : moveset =
let aggregate = fun (i,j: int * (address * (int * int))) -> i + j.1.1 in let aggregate = fun (i,j: int * (address * (int * int))) -> i + j.1.1
Map.fold aggregate m 5 in Map.fold aggregate m 5
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->
@ -268,13 +275,13 @@ too expensive were it not for big maps. Big maps are a data structure offered by
Tezos which handles the scaling concerns for us. In LIGO, the interface for big Tezos which handles the scaling concerns for us. In LIGO, the interface for big
maps is analogous to the one used for ordinary maps. maps is analogous to the one used for ordinary maps.
Here's how we define a big map: Here is how we define a big map:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
type move is (int * int); type move is (int * int)
type moveset is big_map(address, move); type moveset is big_map (address, move)
``` ```
<!--CameLIGO--> <!--CameLIGO-->
@ -291,13 +298,14 @@ type moveset = big_map(address, move);
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
And here's how a map value is populated: And here is how a map value is populated:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
const moves: moveset = big_map const moves: moveset =
big_map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2); ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3); ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
end end
@ -309,15 +317,16 @@ end
<!--CameLIGO--> <!--CameLIGO-->
```cameligo ```cameligo
let moves: moveset = Big_map.literal let moves: moveset =
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ; Big_map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3)); (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
] ]
``` ```
> Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`. > Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`.
> Note also the `;` to separate individual map entries. > Note also the `;` to separate individual map entries.
> >
> `("<string value>": address)` means that we type-cast a string into an address. > `("<string value>": address)` means that we cast a string into an address.
<!--ReasonLIGO--> <!--ReasonLIGO-->
@ -330,24 +339,29 @@ let moves: moveset =
``` ```
> Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`. > Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`.
> >
> `("<string value>": address)` means that we type-cast a string into an address. > `("<string value>": address)` means that we cast a string into an address.
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
### Accessing map values by key ### Accessing map values by key
If we want to access a move from our moveset above, we can use the `[]` operator/accessor to read the associated `move` value. However, the value we'll get will be wrapped as an optional; in our case `option(move)`. Here's an example: If we want to access a move from our moveset above, we can use the
`[]` operator/accessor to read the associated `move` value. However,
the value we will get will be wrapped as an optional; in our case
`option(move)`. Here is an example:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
const my_balance : option(move) = moves[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)]; const my_balance : option(move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)]
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo ```cameligo
let my_balance : move option = Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves let my_balance : move option =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->
@ -360,24 +374,28 @@ let my_balance : option(move) =
#### Obtaining a map value forcefully #### Obtaining a map value forcefully
Accessing a value in a map yields an option, however you can also get the value directly: Accessing a value in a map yields an option, however you can also get
the value directly:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
const my_balance : move = get_force(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves); const my_balance : move =
get_force (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo ```cameligo
let my_balance : move = Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
``` ```
<!--ReasonLIGO--> <!--ReasonLIGO-->
```reasonligo ```reasonligo
let my_balance : move = Big_map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves); let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
``` ```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
@ -388,7 +406,8 @@ let my_balance : move = Big_map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": add
<!--Pascaligo--> <!--Pascaligo-->
The values of a PascaLIGO big map can be updated using the ordinary assignment syntax: The values of a PascaLIGO big map can be updated using the ordinary
assignment syntax:
```pascaligo ```pascaligo
@ -400,7 +419,8 @@ function set_ (var m : moveset) : moveset is
<!--Cameligo--> <!--Cameligo-->
We can update a big map in CameLIGO using the `Big_map.update` built-in: We can update a big map in CameLIGO using the `Big_map.update`
built-in:
```cameligo ```cameligo
@ -410,7 +430,8 @@ let updated_map : moveset =
<!--Reasonligo--> <!--Reasonligo-->
We can update a big map in ReasonLIGO using the `Big_map.update` built-in: We can update a big map in ReasonLIGO using the `Big_map.update`
built-in:
```reasonligo ```reasonligo
let updated_map : moveset = let updated_map : moveset =
@ -421,17 +442,20 @@ let updated_map: moveset =
## Records ## Records
Records are a construct introduced in LIGO, and are not natively available in Michelson. The LIGO compiler translates records into Michelson `Pairs`. Records are a construct introduced in LIGO, and are not natively
available in Michelson. The LIGO compiler translates records into
Michelson `Pairs`.
Here's how a custom record type is defined: Here is how a custom record type is defined:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
type user is record type user is
record
id : nat; id : nat;
is_admin : bool; is_admin : bool;
name: string; name : string
end end
``` ```
@ -440,7 +464,7 @@ end
type user = { type user = {
id : nat; id : nat;
is_admin : bool; is_admin : bool;
name: string; name : string
} }
``` ```
@ -455,15 +479,16 @@ type user = {
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
And here's how a record value is populated: And here is how a record value is populated:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo ```pascaligo
const user: user = record const user : user =
record
id = 1n; id = 1n;
is_admin = True; is_admin = True;
name = "Alice"; name = "Alice"
end end
``` ```
@ -472,7 +497,7 @@ end
let user : user = { let user : user = {
id = 1n; id = 1n;
is_admin = true; is_admin = true;
name = "Alice"; name = "Alice"
} }
``` ```
@ -486,10 +511,10 @@ let user: user = {
``` ```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->
### Accessing record keys by name ### Accessing record keys by name
If we want to obtain a value from a record for a given key, we can do the following: If we want to obtain a value from a record for a given key, we can do
the following:
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
@ -506,5 +531,4 @@ let is_admin : bool = user.is_admin
```reasonligo ```reasonligo
let is_admin: bool = user.is_admin; let is_admin: bool = user.is_admin;
``` ```
<!--END_DOCUSAURUS_CODE_TABS--> <!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -3,13 +3,15 @@ id: sets-lists-tuples
title: Sets, Lists, Tuples title: Sets, Lists, Tuples
--- ---
Apart from complex data types such as `maps` and `records`, ligo also exposes `sets`, `lists` and `tuples`. Apart from complex data types such as `maps` and `records`, ligo also
exposes `sets`, `lists` and `tuples`.
> ⚠️ Make sure to pick the appropriate data type for your use case; it carries not only semantic but also gas related costs. > ⚠️ Make sure to pick the appropriate data type for your use case; it carries not only semantic but also gas related costs.
## Sets ## Sets
Sets are similar to lists. The main difference is that elements of a `set` must be *unique*. Sets are similar to lists. The main difference is that elements of a
`set` must be *unique*.
### Defining a set ### Defining a set
@ -17,11 +19,7 @@ Sets are similar to lists. The main difference is that elements of a `set` must
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=a ```pascaligo group=a
type int_set is set (int); type int_set is set (int);
const my_set: int_set = set const my_set : int_set = set 1; 2; 3 end
1;
2;
3;
end
``` ```
<!--CameLIGO--> <!--CameLIGO-->
@ -45,8 +43,8 @@ let my_set: int_set =
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=a ```pascaligo group=a
const my_set: int_set = set end; const my_set: int_set = set end
const my_set_2: int_set = set_empty; const my_set_2: int_set = set_empty
``` ```
<!--CameLIGO--> <!--CameLIGO-->
```cameligo group=a ```cameligo group=a
@ -63,7 +61,7 @@ let my_set: int_set = (Set.empty: set(int));
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=a ```pascaligo group=a
const contains_three: bool = my_set contains 3; const contains_three : bool = my_set contains 3
// or alternatively // or alternatively
const contains_three_fn: bool = set_mem (3, my_set); const contains_three_fn: bool = set_mem (3, my_set);
``` ```
@ -84,7 +82,7 @@ let contains_three: bool = Set.mem(3, my_set);
<!--DOCUSAURUS_CODE_TABS--> <!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo--> <!--Pascaligo-->
```pascaligo group=a ```pascaligo group=a
const set_size: nat = size(my_set); const set_size: nat = size (my_set)
``` ```
<!--CameLIGO--> <!--CameLIGO-->

View File

@ -41,7 +41,7 @@ let%expect_test _ =
run_ligo_bad [ "compile-contract" ; "../../test/contracts/negative/error_typer_3.mligo" ; "main" ] ; run_ligo_bad [ "compile-contract" ; "../../test/contracts/negative/error_typer_3.mligo" ; "main" ] ;
[%expect {| [%expect {|
ligo: in file "error_typer_3.mligo", line 3, characters 34-53. tuples have different sizes: Expected these two types to be the same, but they're different (both are tuples, but with a different number of arguments) {"a":"tuple[int , string , bool]","b":"tuple[int , string]"} ligo: in file "error_typer_3.mligo", line 3, characters 34-53. different number of arguments to type constructors: Expected these two n-ary type constructors to be the same, but they have different numbers of arguments (both use the TC_tuple type constructor, but they have 3 and 2 arguments, respectively) {"a":"(TO_tuple[int , string , bool])","b":"(TO_tuple[int , string])","op":"TC_tuple","len_a":"3","len_b":"2"}
If you're not sure how to fix this error, you can If you're not sure how to fix this error, you can

View File

@ -9,15 +9,13 @@ let compile_contract : expression -> Compiler.compiled_expression result = fun e
let%bind body = Compiler.Program.translate_function_body body [] input_ty in let%bind body = Compiler.Program.translate_function_body body [] input_ty in
let expr = Self_michelson.optimize body in let expr = Self_michelson.optimize body in
let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in
let open! Compiler.Program in ok ({ expr_ty ; expr } : Compiler.Program.compiled_expression)
ok { expr_ty ; expr }
let compile_expression : expression -> Compiler.compiled_expression result = fun e -> let compile_expression : expression -> Compiler.compiled_expression result = fun e ->
let%bind expr = Compiler.Program.translate_expression e Compiler.Environment.empty in let%bind expr = Compiler.Program.translate_expression e Compiler.Environment.empty in
let expr = Self_michelson.optimize expr in let expr = Self_michelson.optimize expr in
let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in
let open! Compiler.Program in ok ({ expr_ty ; expr } : Compiler.Program.compiled_expression)
ok { expr_ty ; expr }
let aggregate_and_compile = fun program form -> let aggregate_and_compile = fun program form ->
let%bind aggregated = aggregate_entry program form in let%bind aggregated = aggregate_entry program form in

View File

@ -7,7 +7,8 @@ let compile (program : Ast_simplified.program) : (Ast_typed.program * Typer.Solv
let compile_expression ?(env = Ast_typed.Environment.full_empty) ~(state : Typer.Solver.state) (ae : Ast_simplified.expression) let compile_expression ?(env = Ast_typed.Environment.full_empty) ~(state : Typer.Solver.state) (ae : Ast_simplified.expression)
: (Ast_typed.value * Typer.Solver.state) result = : (Ast_typed.value * Typer.Solver.state) result =
Typer.type_expression env state ae let () = Typer.Solver.discard_state state in
Typer.type_expression_subst env state ae
let apply (entry_point : string) (param : Ast_simplified.expression) : Ast_simplified.expression result = let apply (entry_point : string) (param : Ast_simplified.expression) : Ast_simplified.expression result =
let name = Var.of_name entry_point in let name = Var.of_name entry_point in

View File

@ -14,7 +14,7 @@ let assert_equal_contract_type : check_type -> string -> Ast_typed.program -> As
match entry_point.type_annotation.type_value' with match entry_point.type_annotation.type_value' with
| T_arrow (args,_) -> ( | T_arrow (args,_) -> (
match args.type_value' with match args.type_value' with
| T_tuple [param_exp;storage_exp] -> ( | T_operator (TC_tuple [param_exp;storage_exp]) -> (
match c with match c with
| Check_parameter -> assert_type_value_eq (param_exp, param.type_annotation) | Check_parameter -> assert_type_value_eq (param_exp, param.type_annotation)
| Check_storage -> assert_type_value_eq (storage_exp, param.type_annotation) | Check_storage -> assert_type_value_eq (storage_exp, param.type_annotation)

View File

@ -333,10 +333,15 @@ and update = {
lbrace : lbrace; lbrace : lbrace;
record : path; record : path;
kwd_with : kwd_with; kwd_with : kwd_with;
updates : record reg; updates : field_path_assign reg ne_injection reg;
rbrace : rbrace; rbrace : rbrace;
} }
and field_path_assign = {
field_path : (field_name, dot) nsepseq;
assignment : equal;
field_expr : expr
}
and path = and path =
Name of variable Name of variable
| Path of projection reg | Path of projection reg

View File

@ -628,7 +628,7 @@ record_expr:
in {region; value} } in {region; value} }
update_record: update_record:
"{" path "with" sep_or_term_list(field_assignment,";") "}" { "{" path "with" sep_or_term_list(field_path_assignment,";") "}" {
let region = cover $1 $5 in let region = cover $1 $5 in
let ne_elements, terminator = $4 in let ne_elements, terminator = $4 in
let value = { let value = {
@ -642,6 +642,14 @@ update_record:
rbrace = $5} rbrace = $5}
in {region; value} } in {region; value} }
field_path_assignment :
nsepseq(field_name,".") "=" expr {
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3) in
let value = {field_path = $1;
assignment = $2;
field_expr = $3}
in {region; value}}
field_assignment: field_assignment:
field_name "=" expr { field_name "=" expr {
let start = $1.region in let start = $1.region in

View File

@ -188,7 +188,7 @@ and print_update state {value; _} =
print_token state lbrace "{"; print_token state lbrace "{";
print_path state record; print_path state record;
print_token state kwd_with "with"; print_token state kwd_with "with";
print_record_expr state updates; print_ne_injection state print_field_path_assign updates;
print_token state rbrace "}" print_token state rbrace "}"
and print_path state = function and print_path state = function
@ -513,6 +513,12 @@ and print_field_assign state {value; _} =
print_token state assignment "="; print_token state assignment "=";
print_expr state field_expr print_expr state field_expr
and print_field_path_assign state {value; _} =
let {field_path; assignment; field_expr} = value in
print_nsepseq state "." print_var field_path;
print_token state assignment "=";
print_expr state field_expr
and print_sequence state seq = and print_sequence state seq =
print_injection state print_expr seq print_injection state print_expr seq
@ -905,7 +911,7 @@ and pp_projection state proj =
and pp_update state update = and pp_update state update =
pp_path state update.record; pp_path state update.record;
pp_ne_injection pp_field_assign state update.updates.value pp_ne_injection pp_field_path_assign state update.updates.value
and pp_path state = function and pp_path state = function
Name name -> Name name ->
@ -928,6 +934,12 @@ and pp_field_assign state {value; _} =
pp_ident (state#pad 2 0) value.field_name; pp_ident (state#pad 2 0) value.field_name;
pp_expr (state#pad 2 1) value.field_expr pp_expr (state#pad 2 1) value.field_expr
and pp_field_path_assign state {value; _} =
pp_node state "<field path for update>";
let path = Utils.nsepseq_to_list value.field_path in
List.iter (pp_ident (state#pad 2 0)) path;
pp_expr (state#pad 2 1) value.field_expr
and pp_constr_expr state = function and pp_constr_expr state = function
ENone region -> ENone region ->
pp_loc_node state "ENone" region pp_loc_node state "ENone" region

View File

@ -577,7 +577,13 @@ and projection = {
and update = { and update = {
record : path; record : path;
kwd_with : kwd_with; kwd_with : kwd_with;
updates : record reg; updates : field_path_assign reg ne_injection reg
}
and field_path_assign = {
field_path : (field_name, dot) nsepseq;
equal : equal;
field_expr : expr
} }
and selection = and selection =

View File

@ -937,7 +937,7 @@ record_expr:
in {region; value} } in {region; value} }
update_record: update_record:
path "with" ne_injection("record",field_assignment){ path "with" ne_injection("record",field_path_assignment){
let region = cover (path_to_region $1) $3.region in let region = cover (path_to_region $1) $3.region in
let value = { let value = {
record = $1; record = $1;
@ -954,6 +954,14 @@ field_assignment:
field_expr = $3} field_expr = $3}
in {region; value} } in {region; value} }
field_path_assignment:
nsepseq(field_name,".") "=" expr {
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3)
and value = {field_path = $1;
equal = $2;
field_expr = $3}
in {region; value} }
fun_call: fun_call:
fun_name arguments { fun_name arguments {
let region = cover $1.region $2.region let region = cover $1.region $2.region

View File

@ -603,11 +603,18 @@ and print_field_assign state {value; _} =
print_token state equal "="; print_token state equal "=";
print_expr state field_expr print_expr state field_expr
and print_field_path_assign state {value; _} =
let {field_path; equal; field_expr} = value in
print_nsepseq state "field_path" print_var field_path;
print_token state equal "=";
print_expr state field_expr
and print_update_expr state {value; _} = and print_update_expr state {value; _} =
let {record; kwd_with; updates} = value in let {record; kwd_with; updates} = value in
print_path state record; print_path state record;
print_token state kwd_with "with"; print_token state kwd_with "with";
print_record_expr state updates print_ne_injection state "updates field" print_field_path_assign updates
and print_projection state {value; _} = and print_projection state {value; _} =
let {struct_name; selector; field_path} = value in let {struct_name; selector; field_path} = value in
@ -1215,7 +1222,7 @@ and pp_projection state proj =
and pp_update state update = and pp_update state update =
pp_path state update.record; pp_path state update.record;
pp_ne_injection pp_field_assign state update.updates.value pp_ne_injection pp_field_path_assign state update.updates.value
and pp_selection state = function and pp_selection state = function
FieldName name -> FieldName name ->
@ -1320,6 +1327,12 @@ and pp_field_assign state {value; _} =
pp_ident (state#pad 2 0) value.field_name; pp_ident (state#pad 2 0) value.field_name;
pp_expr (state#pad 2 1) value.field_expr pp_expr (state#pad 2 1) value.field_expr
and pp_field_path_assign state {value; _} =
pp_node state "<field path for update>";
let path = Utils.nsepseq_to_list value.field_path in
List.iter (pp_ident (state#pad 2 0)) path;
pp_expr (state#pad 2 1) value.field_expr
and pp_map_patch state patch = and pp_map_patch state patch =
pp_path (state#pad 2 0) patch.path; pp_path (state#pad 2 0) patch.path;
pp_ne_injection pp_binding state patch.map_inj.value pp_ne_injection pp_binding state patch.map_inj.value

View File

@ -810,7 +810,7 @@ path :
| projection { Path $1 } | projection { Path $1 }
update_record: update_record:
"{""..."path "," sep_or_term_list(field_assignment,",") "}" { "{""..."path "," sep_or_term_list(field_path_assignment,",") "}" {
let region = cover $1 $6 in let region = cover $1 $6 in
let ne_elements, terminator = $5 in let ne_elements, terminator = $5 in
let value = { let value = {
@ -871,3 +871,21 @@ field_assignment:
assignment = $2; assignment = $2;
field_expr = $3} field_expr = $3}
in {region; value} } in {region; value} }
field_path_assignment:
field_name {
let value = {
field_path = ($1,[]);
assignment = ghost;
field_expr = EVar $1 }
in {$1 with value}
}
| nsepseq(field_name,".") ":" expr {
let start = nsepseq_to_region (fun x -> x.region) $1 in
let stop = expr_to_region $3 in
let region = cover start stop in
let value = {
field_path = $1;
assignment = $2;
field_expr = $3}
in {region; value} }

View File

@ -247,7 +247,7 @@ and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result
| [hd] -> simpl_type_expression hd | [hd] -> simpl_type_expression hd
| lst -> | lst ->
let%bind lst = bind_map_list simpl_type_expression lst in let%bind lst = bind_map_list simpl_type_expression lst in
ok @@ make_t @@ T_tuple lst ok @@ make_t @@ T_operator (TC_tuple lst)
let rec simpl_expression : let rec simpl_expression :
Raw.expr -> expr result = fun t -> Raw.expr -> expr result = fun t ->
@ -292,14 +292,23 @@ let rec simpl_expression :
| _ -> e_accessor (e_variable (Var.of_name name)) path in | _ -> e_accessor (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in let updates = u.updates.value.ne_elements in
let%bind updates' = let%bind updates' =
let aux (f:Raw.field_assign Raw.reg) = let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in let (f,_) = r_split f in
let%bind expr = simpl_expression f.field_expr in let%bind expr = simpl_expression f.field_expr in
ok (f.field_name.value, expr) ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in in
bind_map_list aux @@ npseq_to_list updates bind_map_list aux @@ npseq_to_list updates
in in
return @@ e_update ~loc record updates' let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_accessor ~loc record [Access_record hd]) tl) in
ok @@ e_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
in in
trace (simplifying_expr t) @@ trace (simplifying_expr t) @@

View File

@ -268,7 +268,7 @@ and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result
| [hd] -> simpl_type_expression hd | [hd] -> simpl_type_expression hd
| lst -> | lst ->
let%bind lst = bind_list @@ List.map simpl_type_expression lst in let%bind lst = bind_list @@ List.map simpl_type_expression lst in
ok @@ make_t @@ T_tuple lst ok @@ make_t @@ T_operator (TC_tuple lst)
let simpl_projection : Raw.projection Region.reg -> _ = fun p -> let simpl_projection : Raw.projection Region.reg -> _ = fun p ->
let (p' , loc) = r_split p in let (p' , loc) = r_split p in
@ -474,14 +474,23 @@ and simpl_update = fun (u:Raw.update Region.reg) ->
| _ -> e_accessor (e_variable (Var.of_name name)) path in | _ -> e_accessor (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in let updates = u.updates.value.ne_elements in
let%bind updates' = let%bind updates' =
let aux (f:Raw.field_assign Raw.reg) = let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in let (f,_) = r_split f in
let%bind expr = simpl_expression f.field_expr in let%bind expr = simpl_expression f.field_expr in
ok (f.field_name.value, expr) ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in in
bind_map_list aux @@ npseq_to_list updates bind_map_list aux @@ npseq_to_list updates
in in
ok @@ e_update ~loc record updates' let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_accessor ~loc record [Access_record hd]) tl) in
ok @@ e_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
and simpl_logic_expression (t:Raw.logic_expr) : expression result = and simpl_logic_expression (t:Raw.logic_expr) : expression result =
let return x = ok x in let return x = ok x in
@ -655,7 +664,7 @@ and simpl_fun_decl :
let arguments_name = Var.of_name "arguments" in let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list simpl_param lst in let%bind params = bind_map_list simpl_param lst in
let (binder , input_type) = let (binder , input_type) =
let type_expression = T_tuple (List.map snd params) in let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in (arguments_name , type_expression) in
let%bind tpl_declarations = let%bind tpl_declarations =
let aux = fun i x -> let aux = fun i x ->
@ -674,8 +683,8 @@ and simpl_fun_decl :
let aux prec cur = cur (Some prec) in let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in bind_fold_right_list aux result body in
let expression = let expression =
e_lambda ~loc binder (Some (make_t @@ input_type)) (Some output_type) result in e_lambda ~loc binder (Some input_type) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (make_t input_type, output_type)) in let type_annotation = Some (make_t @@ T_arrow (input_type, output_type)) in
ok ((Var.of_name fun_name.value, type_annotation), expression) ok ((Var.of_name fun_name.value, type_annotation), expression)
) )
) )
@ -709,7 +718,7 @@ and simpl_fun_expression :
let arguments_name = Var.of_name "arguments" in let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list simpl_param lst in let%bind params = bind_map_list simpl_param lst in
let (binder , input_type) = let (binder , input_type) =
let type_expression = T_tuple (List.map snd params) in let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in (arguments_name , type_expression) in
let%bind tpl_declarations = let%bind tpl_declarations =
let aux = fun i x -> let aux = fun i x ->
@ -728,8 +737,8 @@ and simpl_fun_expression :
let aux prec cur = cur (Some prec) in let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in bind_fold_right_list aux result body in
let expression = let expression =
e_lambda ~loc binder (Some (make_t @@ input_type)) (Some output_type) result in e_lambda ~loc binder (Some (input_type)) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (make_t input_type, output_type)) in let type_annotation = Some (make_t @@ T_arrow (input_type, output_type)) in
ok (type_annotation, expression) ok (type_annotation, expression)
) )
) )

View File

@ -41,14 +41,10 @@ let rec fold_expression : 'a folder -> 'a -> expression -> 'a result = fun f ini
let%bind res = bind_fold_lmap aux (ok init') m in let%bind res = bind_fold_lmap aux (ok init') m in
ok res ok res
) )
| E_update {record;updates} -> ( | E_update {record;update=(_,expr)} -> (
let%bind res = self init' record in let%bind res = self init' record in
let aux res (_, expr) =
let%bind res = fold_expression self res expr in let%bind res = fold_expression self res expr in
ok res ok res
in
let%bind res = bind_fold_list aux res updates in
ok res
) )
| E_let_in { binder = _ ; rhs ; result } -> ( | E_let_in { binder = _ ; rhs ; result } -> (
let%bind res = self init' rhs in let%bind res = self init' rhs in
@ -140,10 +136,10 @@ let rec map_expression : mapper -> expression -> expression result = fun f e ->
let%bind m' = bind_map_lmap self m in let%bind m' = bind_map_lmap self m in
return @@ E_record m' return @@ E_record m'
) )
| E_update {record; updates} -> ( | E_update {record; update=(l,expr)} -> (
let%bind record = self record in let%bind record = self record in
let%bind updates = bind_map_list (fun(l,e) -> let%bind e = self e in ok (l,e)) updates in let%bind expr = self expr in
return @@ E_update {record;updates} return @@ E_update {record;update=(l,expr)}
) )
| E_constructor (name , e) -> ( | E_constructor (name , e) -> (
let%bind e' = self e in let%bind e' = self e in

View File

@ -0,0 +1,54 @@
open Solver
open Format
let type_constraint : _ -> type_constraint_simpl -> unit = fun ppf ->
function
|SC_Constructor { tv; c_tag; tv_list=_ } ->
let ct = match c_tag with
| Solver.Core.C_arrow -> "arrow"
| Solver.Core.C_option -> "option"
| Solver.Core.C_tuple -> "tuple"
| Solver.Core.C_record -> failwith "record"
| Solver.Core.C_variant -> failwith "variant"
| Solver.Core.C_map -> "map"
| Solver.Core.C_big_map -> "big_map"
| Solver.Core.C_list -> "list"
| Solver.Core.C_set -> "set"
| Solver.Core.C_unit -> "unit"
| Solver.Core.C_bool -> "bool"
| Solver.Core.C_string -> "string"
| Solver.Core.C_nat -> "nat"
| Solver.Core.C_mutez -> "mutez"
| Solver.Core.C_timestamp -> "timestamp"
| Solver.Core.C_int -> "int"
| Solver.Core.C_address -> "address"
| Solver.Core.C_bytes -> "bytes"
| Solver.Core.C_key_hash -> "key_hash"
| Solver.Core.C_key -> "key"
| Solver.Core.C_signature -> "signature"
| Solver.Core.C_operation -> "operation"
| Solver.Core.C_contract -> "contract"
| Solver.Core.C_chain_id -> "chain_id"
in
fprintf ppf "CTOR %a %s()" Var.pp tv ct
|SC_Alias (a, b) -> fprintf ppf "Alias %a %a" Var.pp a Var.pp b
|SC_Poly _ -> fprintf ppf "Poly"
|SC_Typeclass _ -> fprintf ppf "TC"
let all_constraints ppf ac =
fprintf ppf "[%a]" (pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf ";\n") type_constraint) ac
let aliases ppf (al : unionfind) =
fprintf ppf "ALIASES %a" UF.print al
let structured_dbs : _ -> structured_dbs -> unit = fun ppf structured_dbs ->
let { all_constraints = a ; aliases = b ; _ } = structured_dbs in
fprintf ppf "STRUCTURED_DBS\n %a\n %a" all_constraints a aliases b
let already_selected : _ -> already_selected -> unit = fun ppf already_selected ->
let _ = already_selected in
fprintf ppf "ALREADY_SELECTED"
let state : _ -> state -> unit = fun ppf state ->
let { structured_dbs=a ; already_selected=b } = state in
fprintf ppf "STATE %a %a" structured_dbs a already_selected b

View File

@ -34,8 +34,6 @@ module Wrap = struct
let rec type_expression_to_type_value : T.type_value -> O.type_value = fun te -> let rec type_expression_to_type_value : T.type_value -> O.type_value = fun te ->
match te.type_value' with match te.type_value' with
| T_tuple types ->
P_constant (C_tuple, List.map type_expression_to_type_value types)
| T_sum kvmap -> | T_sum kvmap ->
P_constant (C_variant, T.CMap.to_list @@ T.CMap.map type_expression_to_type_value kvmap) P_constant (C_variant, T.CMap.to_list @@ T.CMap.map type_expression_to_type_value kvmap)
| T_record kvmap -> | T_record kvmap ->
@ -70,15 +68,14 @@ module Wrap = struct
| TC_big_map ( k , v) -> (C_big_map, [k;v]) | TC_big_map ( k , v) -> (C_big_map, [k;v])
| TC_list l -> (C_list, [l]) | TC_list l -> (C_list, [l])
| TC_contract c -> (C_contract, [c]) | TC_contract c -> (C_contract, [c])
| TC_arrow ( arg , ret ) -> (C_arrow, [ arg ; ret ])
| TC_tuple lst -> (C_tuple, lst)
) )
in in
P_constant (csttag, List.map type_expression_to_type_value args) P_constant (csttag, List.map type_expression_to_type_value args)
let rec type_expression_to_type_value_copypasted : I.type_expression -> O.type_value = fun te -> let rec type_expression_to_type_value_copypasted : I.type_expression -> O.type_value = fun te ->
match te.type_expression' with match te.type_expression' with
| T_tuple types ->
P_constant (C_tuple, List.map type_expression_to_type_value_copypasted types)
| T_sum kvmap -> | T_sum kvmap ->
P_constant (C_variant, I.CMap.to_list @@ I.CMap.map type_expression_to_type_value_copypasted kvmap) P_constant (C_variant, I.CMap.to_list @@ I.CMap.map type_expression_to_type_value_copypasted kvmap)
| T_record kvmap -> | T_record kvmap ->
@ -102,6 +99,8 @@ module Wrap = struct
| TC_map ( k , v ) -> (C_map , [k;v]) | TC_map ( k , v ) -> (C_map , [k;v])
| TC_big_map ( k , v ) -> (C_big_map, [k;v]) | TC_big_map ( k , v ) -> (C_big_map, [k;v])
| TC_contract c -> (C_contract, [c]) | TC_contract c -> (C_contract, [c])
| TC_arrow ( arg , ret ) -> (C_arrow, [ arg ; ret ])
| TC_tuple lst -> (C_tuple, lst)
) )
in in
P_constant (csttag, List.map type_expression_to_type_value_copypasted args) P_constant (csttag, List.map type_expression_to_type_value_copypasted args)
@ -475,16 +474,26 @@ module UnionFindWrapper = struct
in in
let dbs = { dbs with grouped_by_variable } in let dbs = { dbs with grouped_by_variable } in
dbs dbs
let merge_variables : type_variable -> type_variable -> structured_dbs -> structured_dbs =
let merge_constraints : type_variable -> type_variable -> structured_dbs -> structured_dbs =
fun variable_a variable_b dbs -> fun variable_a variable_b dbs ->
(* get old representant for variable_a *)
let variable_repr_a , aliases = UF.get_or_set variable_a dbs.aliases in let variable_repr_a , aliases = UF.get_or_set variable_a dbs.aliases in
let dbs = { dbs with aliases } in let dbs = { dbs with aliases } in
(* get old representant for variable_b *)
let variable_repr_b , aliases = UF.get_or_set variable_b dbs.aliases in let variable_repr_b , aliases = UF.get_or_set variable_b dbs.aliases in
let dbs = { dbs with aliases } in let dbs = { dbs with aliases } in
let default d = function None -> d | Some y -> y in
(* alias variable_a and variable_b together *)
let aliases = UF.alias variable_a variable_b dbs.aliases in
let dbs = { dbs with aliases } in
(* Replace the two entries in grouped_by_variable by a single one *)
(
let get_constraints ab = let get_constraints ab =
TypeVariableMap.find_opt ab dbs.grouped_by_variable match TypeVariableMap.find_opt ab dbs.grouped_by_variable with
|> default { constructor = [] ; poly = [] ; tc = [] } in | Some x -> x
| None -> { constructor = [] ; poly = [] ; tc = [] } in
let constraints_a = get_constraints variable_repr_a in let constraints_a = get_constraints variable_repr_a in
let constraints_b = get_constraints variable_repr_b in let constraints_b = get_constraints variable_repr_b in
let all_constraints = { let all_constraints = {
@ -499,20 +508,35 @@ module UnionFindWrapper = struct
TypeVariableMap.remove variable_repr_b dbs.grouped_by_variable in TypeVariableMap.remove variable_repr_b dbs.grouped_by_variable in
let dbs = { dbs with grouped_by_variable} in let dbs = { dbs with grouped_by_variable} in
dbs dbs
)
end end
(* sub-sub component: constraint normalizer: remove dupes and give structure (* sub-sub component: constraint normalizer: remove dupes and give structure
* right now: union-find of unification vars * right now: union-find of unification vars
* later: better database-like organisation of knowledge *) * later: better database-like organisation of knowledge *)
(* Each normalizer returns a *) (* Each normalizer returns an updated database (after storing the
(* If implemented in a language with decent sets, should be 'b set not 'b list. *) incoming constraint) and a list of constraints, used when the
normalizer rewrites the constraints e.g. into simpler ones. *)
(* TODO: If implemented in a language with decent sets, should be 'b set not 'b list. *)
type ('a , 'b) normalizer = structured_dbs -> 'a -> (structured_dbs * 'b list) type ('a , 'b) normalizer = structured_dbs -> 'a -> (structured_dbs * 'b list)
(** Updates the dbs.all_constraints field when new constraints are
discovered.
This field contains a list of all the constraints, without any form of
grouping or sorting. *)
let normalizer_all_constraints : (type_constraint_simpl , type_constraint_simpl) normalizer = let normalizer_all_constraints : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint -> fun dbs new_constraint ->
({ dbs with all_constraints = new_constraint :: dbs.all_constraints } , [new_constraint]) ({ dbs with all_constraints = new_constraint :: dbs.all_constraints } , [new_constraint])
(** Updates the dbs.grouped_by_variable field when new constraints are
discovered.
This field contains a map from type variables to lists of
constraints that are related to that variable (in other words, the
key appears in the equation).
*)
let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_simpl) normalizer = let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint -> fun dbs new_constraint ->
let store_constraint tvars constraints = let store_constraint tvars constraints =
@ -520,16 +544,18 @@ let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_si
UnionFindWrapper.add_constraints_related_to tvar constraints dbs UnionFindWrapper.add_constraints_related_to tvar constraints dbs
in List.fold_left aux dbs tvars in List.fold_left aux dbs tvars
in in
let merge_constraints a b =
UnionFindWrapper.merge_variables a b dbs in
let dbs = match new_constraint with let dbs = match new_constraint with
SC_Constructor ({tv ; c_tag = _ ; tv_list} as c) -> store_constraint (tv :: tv_list) {constructor = [c] ; poly = [] ; tc = []} SC_Constructor ({tv ; c_tag = _ ; tv_list} as c) -> store_constraint (tv :: tv_list) {constructor = [c] ; poly = [] ; tc = []}
| SC_Typeclass ({tc = _ ; args} as c) -> store_constraint args {constructor = [] ; poly = [] ; tc = [c]} | SC_Typeclass ({tc = _ ; args} as c) -> store_constraint args {constructor = [] ; poly = [] ; tc = [c]}
| SC_Poly ({tv; forall = _} as c) -> store_constraint [tv] {constructor = [] ; poly = [c] ; tc = []} | SC_Poly ({tv; forall = _} as c) -> store_constraint [tv] {constructor = [] ; poly = [c] ; tc = []}
| SC_Alias (a , b) -> merge_constraints a b | SC_Alias (a , b) -> UnionFindWrapper.merge_constraints a b dbs
in (dbs , [new_constraint]) in (dbs , [new_constraint])
(* Stores the first assinment ('a = ctor('b, …)) seen *) (** Stores the first assinment ('a = ctor('b, …)) that is encountered.
Subsequent ('a = ctor('b2, )) with the same 'a are ignored.
TOOD: are we checking somewhere that 'b = 'b2 ? *)
let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) normalizer = let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint -> fun dbs new_constraint ->
match new_constraint with match new_constraint with
@ -540,9 +566,14 @@ let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) nor
| _ -> | _ ->
(dbs , [new_constraint]) (dbs , [new_constraint])
(** Evaluates a type-leval application. For now, only supports
immediate beta-reduction at the root of the type. *)
let type_level_eval : type_value -> type_value * type_constraint list = let type_level_eval : type_value -> type_value * type_constraint list =
fun tv -> Typesystem.Misc.Substitution.Pattern.eval_beta_root ~tv fun tv -> Typesystem.Misc.Substitution.Pattern.eval_beta_root ~tv
(** Checks that a type-level application has been fully reduced. For
now, only some simple cases like applications of `forall`
<polymorphic types are allowed. *)
let check_applied ((reduced, _new_constraints) as x) = let check_applied ((reduced, _new_constraints) as x) =
let () = match reduced with let () = match reduced with
P_apply _ -> failwith "internal error: shouldn't happen" (* failwith "could not reduce type-level application. Arbitrary type-level applications are not supported for now." *) P_apply _ -> failwith "internal error: shouldn't happen" (* failwith "could not reduce type-level application. Arbitrary type-level applications are not supported for now." *)
@ -552,6 +583,14 @@ let check_applied ((reduced, _new_constraints) as x) =
(* TODO: at some point there may be uses of named type aliases (type (* TODO: at some point there may be uses of named type aliases (type
foo = int; let x : foo = 42). These should be inlined. *) foo = int; let x : foo = 42). These should be inlined. *)
(** This function converts constraints from type_constraint to
type_constraint_simpl. The former has more possible cases, and the
latter uses a more minimalistic constraint language.
It does not modify the dbs, and only rewrites the constraint
TODO: update the code to show that the dbs are always copied as-is
*)
let rec normalizer_simpl : (type_constraint , type_constraint_simpl) normalizer = let rec normalizer_simpl : (type_constraint , type_constraint_simpl) normalizer =
fun dbs new_constraint -> fun dbs new_constraint ->
let insert_fresh a b = let insert_fresh a b =

View File

@ -334,9 +334,6 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
let%bind a' = evaluate_type e a in let%bind a' = evaluate_type e a in
let%bind b' = evaluate_type e b in let%bind b' = evaluate_type e b in
return (T_arrow (a', b')) return (T_arrow (a', b'))
| T_tuple lst ->
let%bind lst' = bind_list @@ List.map (evaluate_type e) lst in
return (T_tuple lst')
| T_sum m -> | T_sum m ->
let aux k v prev = let aux k v prev =
let%bind prev' = prev in let%bind prev' = prev in
@ -382,6 +379,13 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
| TC_contract c -> | TC_contract c ->
let%bind c = evaluate_type e c in let%bind c = evaluate_type e c in
ok @@ O.TC_contract c ok @@ O.TC_contract c
| TC_arrow ( arg , ret ) ->
let%bind arg' = evaluate_type e arg in
let%bind ret' = evaluate_type e ret in
ok @@ O.TC_arrow ( arg' , ret' )
| TC_tuple lst ->
let%bind lst' = bind_map_list (evaluate_type e) lst in
ok @@ O.TC_tuple lst'
in in
return (T_operator (opt)) return (T_operator (opt))
@ -469,10 +473,11 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
return_wrapped (e_operation o) state @@ Wrap.literal (t_operation ()) return_wrapped (e_operation o) state @@ Wrap.literal (t_operation ())
) )
| E_literal (Literal_unit) -> ( | E_literal (Literal_unit) -> (
return_wrapped (e_unit) state @@ Wrap.literal (t_unit ()) return_wrapped (e_unit ()) state @@ Wrap.literal (t_unit ())
) )
| E_skip -> ( | E_skip -> (
failwith "TODO: missing implementation for E_skip" (* E_skip just returns unit *)
return_wrapped (e_unit ()) state @@ Wrap.literal (t_unit ())
) )
(* | E_literal (Literal_string s) -> ( (* | E_literal (Literal_string s) -> (
* L.log (Format.asprintf "literal_string option type: %a" PP_helpers.(option O.PP.type_expression) tv_opt) ; * L.log (Format.asprintf "literal_string option type: %a" PP_helpers.(option O.PP.type_expression) tv_opt) ;
@ -516,7 +521,6 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
trace_option error @@ trace_option error @@
Environment.get_constructor c e in Environment.get_constructor c e in
let%bind (expr' , state') = type_expression e state expr in let%bind (expr' , state') = type_expression e state expr in
let%bind _assert = O.assert_type_value_eq (expr'.type_annotation, c_tv) in
let wrapped = Wrap.constructor expr'.type_annotation c_tv sum_tv in let wrapped = Wrap.constructor expr'.type_annotation c_tv sum_tv in
return_wrapped (E_constructor (c , expr')) state' wrapped return_wrapped (E_constructor (c , expr')) state' wrapped
@ -529,27 +533,22 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
let%bind (m' , state') = I.bind_fold_lmap aux (ok (I.LMap.empty , state)) m in let%bind (m' , state') = I.bind_fold_lmap aux (ok (I.LMap.empty , state)) m in
let wrapped = Wrap.record (I.LMap.map get_type_annotation m') in let wrapped = Wrap.record (I.LMap.map get_type_annotation m') in
return_wrapped (E_record m') state' wrapped return_wrapped (E_record m') state' wrapped
| E_update {record; updates} -> | E_update {record; update=(k,expr)} ->
let%bind (record, state) = type_expression e state record in let%bind (record, state) = type_expression e state record in
let aux (lst,state) (k, expr) = let%bind (expr,state) = type_expression e state expr in
let%bind (expr', state) = type_expression e state expr in
ok ((k,expr')::lst, state)
in
let%bind (updates, state) = bind_fold_list aux ([], state) updates in
let wrapped = get_type_annotation record in let wrapped = get_type_annotation record in
let%bind wrapped = match wrapped.type_value' with let%bind (wrapped,tv) =
| T_record record -> match wrapped.type_value' with
let aux (k, e) = | T_record record -> (
let field_op = I.LMap.find_opt k record in let field_op = I.LMap.find_opt k record in
match field_op with match field_op with
| Some tv -> ok (record,tv)
| None -> failwith @@ Format.asprintf "field %a is not part of record" Stage_common.PP.label k | None -> failwith @@ Format.asprintf "field %a is not part of record" Stage_common.PP.label k
| Some tv -> O.assert_type_value_eq (tv, get_type_annotation e) )
in
let%bind () = bind_iter_list aux updates in
ok (record)
| _ -> failwith "Update an expression which is not a record" | _ -> failwith "Update an expression which is not a record"
in in
return_wrapped (E_record_update (record, updates)) state (Wrap.record wrapped) let%bind () = O.assert_type_value_eq (tv, get_type_annotation expr) in
return_wrapped (E_record_update (record, (k,expr))) state (Wrap.record wrapped)
(* Data-structure *) (* Data-structure *)
(* (*
@ -937,9 +936,7 @@ let untype_type_value (t:O.type_value) : (I.type_expression) result =
(* (*
Apply type_declaration on all the node of the AST_simplified from the root p Apply type_declaration on all the node of the AST_simplified from the root p
*) *)
let type_program_returns_state (p:I.program) : (environment * Solver.state * O.program) result = let type_program_returns_state ((env, state, p) : environment * Solver.state * I.program) : (environment * Solver.state * O.program) result =
let env = Ast_typed.Environment.full_empty in
let state = Solver.initial_state in
let aux ((e : environment), (s : Solver.state) , (ds : O.declaration Location.wrap list)) (d:I.declaration Location.wrap) = let aux ((e : environment), (s : Solver.state) , (ds : O.declaration Location.wrap list)) (d:I.declaration Location.wrap) =
let%bind (e' , s' , d'_opt) = type_declaration e s (Location.unwrap d) in let%bind (e' , s' , d'_opt) = type_declaration e s (Location.unwrap d) in
let ds' = match d'_opt with let ds' = match d'_opt with
@ -954,51 +951,45 @@ let type_program_returns_state (p:I.program) : (environment * Solver.state * O.p
let () = ignore (env' , state') in let () = ignore (env' , state') in
ok (env', state', declarations) ok (env', state', declarations)
(* module TSMap = TMap(Solver.TypeVariable) *) let type_and_subst_xyz (env_state_node : environment * Solver.state * 'a) (apply_substs : 'b Typesystem.Misc.Substitution.Pattern.w) (type_xyz_returns_state : (environment * Solver.state * 'a) -> (environment * Solver.state * 'b) Trace.result) : ('b * Solver.state) result =
let%bind (env, state, program) = type_xyz_returns_state env_state_node in
(* let c_tag_to_string : Solver.Core.constant_tag -> string = function
* | Solver.Core.C_arrow -> "arrow"
* | Solver.Core.C_option -> "option"
* | Solver.Core.C_tuple -> "tuple"
* | Solver.Core.C_record -> failwith "record"
* | Solver.Core.C_variant -> failwith "variant"
* | Solver.Core.C_map -> "map"
* | Solver.Core.C_big_map -> "big"
* | Solver.Core.C_list -> "list"
* | Solver.Core.C_set -> "set"
* | Solver.Core.C_unit -> "unit"
* | Solver.Core.C_bool -> "bool"
* | Solver.Core.C_string -> "string"
* | Solver.Core.C_nat -> "nat"
* | Solver.Core.C_mutez -> "mutez"
* | Solver.Core.C_timestamp -> "timestamp"
* | Solver.Core.C_int -> "int"
* | Solver.Core.C_address -> "address"
* | Solver.Core.C_bytes -> "bytes"
* | Solver.Core.C_key_hash -> "key_hash"
* | Solver.Core.C_key -> "key"
* | Solver.Core.C_signature -> "signature"
* | Solver.Core.C_operation -> "operation"
* | Solver.Core.C_contract -> "contract"
* | Solver.Core.C_chain_id -> "chain_id" *)
let type_program (p : I.program) : (O.program * Solver.state) result =
let%bind (env, state, program) = type_program_returns_state p in
let subst_all = let subst_all =
let aliases = state.structured_dbs.aliases in
let assignments = state.structured_dbs.assignments in let assignments = state.structured_dbs.assignments in
let aux (v : I.type_variable) (expr : Solver.c_constructor_simpl) (p:O.program result) = let substs : variable: I.type_variable -> _ = fun ~variable ->
let%bind p = p in to_option @@
let Solver.{ tv ; c_tag ; tv_list } = expr in let%bind root =
trace_option (simple_error (Format.asprintf "can't find alias root of variable %a" Var.pp variable)) @@
(* TODO: after upgrading UnionFind, this will be an option, not an exception. *)
try Some (Solver.UF.repr variable aliases) with Not_found -> None in
let%bind assignment =
trace_option (simple_error (Format.asprintf "can't find assignment for root %a" Var.pp root)) @@
(Solver.TypeVariableMap.find_opt root assignments) in
let Solver.{ tv ; c_tag ; tv_list } = assignment in
let () = ignore tv (* I think there is an issue where the tv is stored twice (as a key and in the element itself) *) in let () = ignore tv (* I think there is an issue where the tv is stored twice (as a key and in the element itself) *) in
let%bind (expr : O.type_value') = Typesystem.Core.type_expression'_of_simple_c_constant (c_tag , (List.map (fun s -> O.{ type_value' = T_variable s ; simplified = None }) tv_list)) in let%bind (expr : O.type_value') = Typesystem.Core.type_expression'_of_simple_c_constant (c_tag , (List.map (fun s -> O.{ type_value' = T_variable s ; simplified = None }) tv_list)) in
Typesystem.Misc.Substitution.Pattern.program ~p ~v ~expr in ok @@ expr
(* let p = TSMap.bind_fold_Map aux program assignments in *) (* TODO: Module magic: this does not work *) in
let p = Solver.TypeVariableMap.fold aux assignments (ok program) in let p = apply_substs ~substs program in
p in p in
let%bind program = subst_all in let%bind program = subst_all in
let () = ignore env in (* TODO: shouldn't we use the `env` somewhere? *) let () = ignore env in (* TODO: shouldn't we use the `env` somewhere? *)
ok (program, state) ok (program, state)
let type_program (p : I.program) : (O.program * Solver.state) result =
let empty_env = Ast_typed.Environment.full_empty in
let empty_state = Solver.initial_state in
type_and_subst_xyz (empty_env , empty_state , p) Typesystem.Misc.Substitution.Pattern.s_program type_program_returns_state
let type_expression_returns_state : (environment * Solver.state * I.expression) -> (environment * Solver.state * O.annotated_expression) Trace.result =
fun (env, state, e) ->
let%bind (e , state) = type_expression env state e in
ok (env, state, e)
let type_expression_subst (env : environment) (state : Solver.state) ?(tv_opt : O.type_value option) (e : I.expression) : (O.annotated_expression * Solver.state) result =
let () = ignore tv_opt in (* For compatibility with the old typer's API, this argument can be removed once the new typer is used. *)
type_and_subst_xyz (env , state , e) Typesystem.Misc.Substitution.Pattern.s_annotated_expression type_expression_returns_state
(* (*
TODO: Similar to type_program but use a fold_map_list and List.fold_left and add element to the left or the list which gives a better complexity TODO: Similar to type_program but use a fold_map_list and List.fold_left and add element to the left or the list which gives a better complexity
*) *)
@ -1026,9 +1017,6 @@ let type_program' : I.program -> O.program result = fun p ->
let rec untype_type_expression (t:O.type_value) : (I.type_expression) result = let rec untype_type_expression (t:O.type_value) : (I.type_expression) result =
(* TODO: or should we use t.simplified if present? *) (* TODO: or should we use t.simplified if present? *)
let%bind t = match t.type_value' with let%bind t = match t.type_value' with
| O.T_tuple x ->
let%bind x' = bind_map_list untype_type_expression x in
ok @@ I.T_tuple x'
| O.T_sum x -> | O.T_sum x ->
let%bind x' = I.bind_map_cmap untype_type_expression x in let%bind x' = I.bind_map_cmap untype_type_expression x in
ok @@ I.T_sum x' ok @@ I.T_sum x'
@ -1064,6 +1052,13 @@ let rec untype_type_expression (t:O.type_value) : (I.type_expression) result =
| O.TC_contract c-> | O.TC_contract c->
let%bind c = untype_type_expression c in let%bind c = untype_type_expression c in
ok @@ I.TC_contract c ok @@ I.TC_contract c
| O.TC_arrow ( arg , ret ) ->
let%bind arg' = untype_type_expression arg in
let%bind ret' = untype_type_expression ret in
ok @@ I.TC_arrow ( arg' , ret' )
| O.TC_tuple lst ->
let%bind lst' = bind_map_list untype_type_expression lst in
ok @@ I.TC_tuple lst'
in in
ok @@ I.T_operator (type_name) ok @@ I.T_operator (type_name)
in in
@ -1139,14 +1134,11 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
| E_record_accessor (r, Label s) -> | E_record_accessor (r, Label s) ->
let%bind r' = untype_expression r in let%bind r' = untype_expression r in
return (e_accessor r' [Access_record s]) return (e_accessor r' [Access_record s])
| E_record_update (r, updates) -> | E_record_update (r, (l,e)) ->
let%bind r' = untype_expression r in let%bind r' = untype_expression r in
let aux (Label l,e) =
let%bind e = untype_expression e in let%bind e = untype_expression e in
ok (l, e) let Label l = l in
in return (e_update r' l e)
let%bind updates = bind_map_list aux updates in
return (e_update r' updates)
| E_map m -> | E_map m ->
let%bind m' = bind_map_list (bind_map_pair untype_expression) m in let%bind m' = bind_map_list (bind_map_pair untype_expression) m in
return (e_map m') return (e_map m')

View File

@ -44,6 +44,7 @@ val type_declaration : environment -> Solver.state -> I.declaration -> (environm
(* val type_match : (environment -> 'i -> 'o result) -> environment -> O.type_value -> 'i I.matching -> I.expression -> Location.t -> 'o O.matching result *) (* val type_match : (environment -> 'i -> 'o result) -> environment -> O.type_value -> 'i I.matching -> I.expression -> Location.t -> 'o O.matching result *)
val evaluate_type : environment -> I.type_expression -> O.type_value result val evaluate_type : environment -> I.type_expression -> O.type_value result
val type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result val type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val type_expression_subst : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val type_constant : I.constant -> O.type_value list -> O.type_value option -> (O.constant * O.type_value) result val type_constant : I.constant -> O.type_value list -> O.type_value option -> (O.constant * O.type_value) result
(* (*
val untype_type_value : O.type_value -> (I.type_expression) result val untype_type_value : O.type_value -> (I.type_expression) result

View File

@ -327,9 +327,6 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
let%bind a' = evaluate_type e a in let%bind a' = evaluate_type e a in
let%bind b' = evaluate_type e b in let%bind b' = evaluate_type e b in
return (T_arrow (a', b')) return (T_arrow (a', b'))
| T_tuple lst ->
let%bind lst' = bind_list @@ List.map (evaluate_type e) lst in
return (T_tuple lst')
| T_sum m -> | T_sum m ->
let aux k v prev = let aux k v prev =
let%bind prev' = prev in let%bind prev' = prev in
@ -375,6 +372,13 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
| TC_contract c -> | TC_contract c ->
let%bind c = evaluate_type e c in let%bind c = evaluate_type e c in
ok @@ I.TC_contract c ok @@ I.TC_contract c
| TC_arrow ( arg , ret ) ->
let%bind arg' = evaluate_type e arg in
let%bind ret' = evaluate_type e ret in
ok @@ I.TC_arrow ( arg' , ret' )
| TC_tuple lst ->
let%bind lst' = bind_map_list (evaluate_type e) lst in
ok @@ I.TC_tuple lst'
in in
return (T_operator (opt)) return (T_operator (opt))
@ -496,26 +500,22 @@ and type_expression' : environment -> ?tv_opt:O.type_value -> I.expression -> O.
in in
let%bind m' = I.bind_fold_lmap aux (ok I.LMap.empty) m in let%bind m' = I.bind_fold_lmap aux (ok I.LMap.empty) m in
return (E_record m') (t_record (I.LMap.map get_type_annotation m') ()) return (E_record m') (t_record (I.LMap.map get_type_annotation m') ())
| E_update {record; updates} -> | E_update {record; update =(l,expr)} ->
let%bind record = type_expression' e record in let%bind record = type_expression' e record in
let aux acc (k, expr) =
let%bind expr' = type_expression' e expr in let%bind expr' = type_expression' e expr in
ok ((k,expr')::acc)
in
let%bind updates = bind_fold_list aux ([]) updates in
let wrapped = get_type_annotation record in let wrapped = get_type_annotation record in
let%bind () = match wrapped.type_value' with let%bind tv =
| T_record record -> match wrapped.type_value' with
let aux (k, e) = | T_record record -> (
let field_op = I.LMap.find_opt k record in let field_op = I.LMap.find_opt l record in
match field_op with match field_op with
| None -> failwith @@ Format.asprintf "field %a is not part of record" Stage_common.PP.label k | Some tv -> ok (tv)
| Some tv -> O.assert_type_value_eq (tv, get_type_annotation e) | None -> failwith @@ Format.asprintf "field %a is not part of record %a" Stage_common.PP.label l O.PP.type_value wrapped
in )
bind_iter_list aux updates
| _ -> failwith "Update an expression which is not a record" | _ -> failwith "Update an expression which is not a record"
in in
return (E_record_update (record, updates)) wrapped let%bind () = O.assert_type_value_eq (tv, get_type_annotation expr') in
return (E_record_update (record, (l,expr'))) wrapped
(* Data-structure *) (* Data-structure *)
| E_list lst -> | E_list lst ->
let%bind lst' = bind_map_list (type_expression' e) lst in let%bind lst' = bind_map_list (type_expression' e) lst in
@ -896,14 +896,11 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
| E_record_accessor (r, Label s) -> | E_record_accessor (r, Label s) ->
let%bind r' = untype_expression r in let%bind r' = untype_expression r in
return (e_accessor r' [Access_record s]) return (e_accessor r' [Access_record s])
| E_record_update (r, updates) -> | E_record_update (r, (l,e)) ->
let%bind r' = untype_expression r in let%bind r' = untype_expression r in
let aux (Label l,e) =
let%bind e = untype_expression e in let%bind e = untype_expression e in
ok (l, e) let Label l = l in
in return (e_update r' l e)
let%bind updates = bind_map_list aux updates in
return (e_update r' updates)
| E_map m -> | E_map m ->
let%bind m' = bind_map_list (bind_map_pair untype_expression) m in let%bind m' = bind_map_list (bind_map_pair untype_expression) m in
return (e_map m') return (e_map m')

View File

@ -10,5 +10,5 @@ module Solver = Typer_new.Solver (* Both the old typer and the new typer use the
type environment = Environment.t type environment = Environment.t
let type_program = if use_new_typer then Typer_new.type_program else Typer_old.type_program let type_program = if use_new_typer then Typer_new.type_program else Typer_old.type_program
let type_expression = if use_new_typer then Typer_new.type_expression else Typer_old.type_expression let type_expression_subst = if use_new_typer then Typer_new.type_expression_subst else Typer_old.type_expression (* the old typer does not have unification variables that would need substitution, so no need to "subst" anything. *)
let untype_expression = if use_new_typer then Typer_new.untype_expression else Typer_old.untype_expression let untype_expression = if use_new_typer then Typer_new.untype_expression else Typer_old.untype_expression

View File

@ -12,5 +12,5 @@ module Solver = Typer_new.Solver
type environment = Environment.t type environment = Environment.t
val type_program : I.program -> (O.program * Solver.state) result val type_program : I.program -> (O.program * Solver.state) result
val type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result val type_expression_subst : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val untype_expression : O.annotated_expression -> I.expression result val untype_expression : O.annotated_expression -> I.expression result

View File

@ -146,6 +146,11 @@ let rec transpile_type (t:AST.type_value) : type_value result =
| T_operator (TC_option o) -> | T_operator (TC_option o) ->
let%bind o' = transpile_type o in let%bind o' = transpile_type o in
ok (T_option o') ok (T_option o')
| T_operator (TC_arrow (param , result)) -> (
let%bind param' = transpile_type param in
let%bind result' = transpile_type result in
ok (T_function (param', result'))
)
(* TODO hmm *) (* TODO hmm *)
| T_sum m -> | T_sum m ->
let node = Append_tree.of_list @@ kv_list_of_cmap m in let node = Append_tree.of_list @@ kv_list_of_cmap m in
@ -173,7 +178,7 @@ let rec transpile_type (t:AST.type_value) : type_value result =
ok (Some ann, a)) ok (Some ann, a))
aux node in aux node in
ok @@ snd m' ok @@ snd m'
| T_tuple lst -> | T_operator (TC_tuple lst) ->
let node = Append_tree.of_list lst in let node = Append_tree.of_list lst in
let aux a b : type_value result = let aux a b : type_value result =
let%bind a = a in let%bind a = a in
@ -206,11 +211,11 @@ let tuple_access_to_lr : type_value -> type_value list -> int -> (type_value * [
bind_fold_list aux (ty , []) lr_path in bind_fold_list aux (ty , []) lr_path in
ok lst ok lst
let record_access_to_lr : type_value -> type_value AST.label_map -> string -> (type_value * [`Left | `Right]) list result = fun ty tym ind -> let record_access_to_lr : type_value -> type_value AST.label_map -> label -> (type_value * [`Left | `Right]) list result = fun ty tym ind ->
let tys = kv_list_of_lmap tym in let tys = kv_list_of_lmap tym in
let node_tv = Append_tree.of_list tys in let node_tv = Append_tree.of_list tys in
let%bind path = let%bind path =
let aux (Label i , _) = i = ind in let aux (Label i , _) = let Label ind = ind in i = ind in
trace_option (corner_case ~loc:__LOC__ "record access leaf") @@ trace_option (corner_case ~loc:__LOC__ "record access leaf") @@
Append_tree.exists_path aux node_tv in Append_tree.exists_path aux node_tv in
let lr_path = List.map (fun b -> if b then `Right else `Left) path in let lr_path = List.map (fun b -> if b then `Right else `Left) path in
@ -320,7 +325,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
| E_tuple_accessor (tpl, ind) -> ( | E_tuple_accessor (tpl, ind) -> (
let%bind ty' = transpile_type tpl.type_annotation in let%bind ty' = transpile_type tpl.type_annotation in
let%bind ty_lst = let%bind ty_lst =
trace_strong (corner_case ~loc:__LOC__ "not a tuple") @@ trace_strong (corner_case ~loc:__LOC__ "transpiler: E_tuple_accessor: not a tuple") @@
get_t_tuple tpl.type_annotation in get_t_tuple tpl.type_annotation in
let%bind ty'_lst = bind_map_list transpile_type ty_lst in let%bind ty'_lst = bind_map_list transpile_type ty_lst in
let%bind path = let%bind path =
@ -348,7 +353,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
trace_strong (corner_case ~loc:__LOC__ "record build") @@ trace_strong (corner_case ~loc:__LOC__ "record build") @@
Append_tree.fold_ne (transpile_annotated_expression) aux node Append_tree.fold_ne (transpile_annotated_expression) aux node
) )
| E_record_accessor (record, Label property) -> | E_record_accessor (record, property) ->
let%bind ty' = transpile_type (get_type_annotation record) in let%bind ty' = transpile_type (get_type_annotation record) in
let%bind ty_lmap = let%bind ty_lmap =
trace_strong (corner_case ~loc:__LOC__ "not a record") @@ trace_strong (corner_case ~loc:__LOC__ "not a record") @@
@ -365,23 +370,19 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
let%bind record' = transpile_annotated_expression record in let%bind record' = transpile_annotated_expression record in
let expr = List.fold_left aux record' path in let expr = List.fold_left aux record' path in
ok expr ok expr
| E_record_update (record, updates) -> | E_record_update (record, (l,expr)) ->
let%bind ty' = transpile_type (get_type_annotation record) in let%bind ty' = transpile_type (get_type_annotation record) in
let%bind ty_lmap = let%bind ty_lmap =
trace_strong (corner_case ~loc:__LOC__ "not a record") @@ trace_strong (corner_case ~loc:__LOC__ "not a record") @@
get_t_record (get_type_annotation record) in get_t_record (get_type_annotation record) in
let%bind ty'_lmap = AST.bind_map_lmap transpile_type ty_lmap in let%bind ty'_lmap = AST.bind_map_lmap transpile_type ty_lmap in
let aux (Label l, expr) =
let%bind path = let%bind path =
trace_strong (corner_case ~loc:__LOC__ "record access") @@ trace_strong (corner_case ~loc:__LOC__ "record access") @@
record_access_to_lr ty' ty'_lmap l in record_access_to_lr ty' ty'_lmap l in
let path' = List.map snd path in let path' = List.map snd path in
let%bind expr' = transpile_annotated_expression expr in let%bind expr' = transpile_annotated_expression expr in
ok (path',expr')
in
let%bind updates = bind_map_list aux updates in
let%bind record = transpile_annotated_expression record in let%bind record = transpile_annotated_expression record in
return @@ E_update (record, updates) return @@ E_update (record, (path',expr'))
| E_constant (name , lst) -> ( | E_constant (name , lst) -> (
let iterator_generator iterator_name = let iterator_generator iterator_name =
let lambda_to_iterator_body (f : AST.annotated_expression) (l : AST.lambda) = let lambda_to_iterator_body (f : AST.annotated_expression) (l : AST.lambda) =
@ -509,7 +510,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
match cur with match cur with
| Access_tuple ind -> ( | Access_tuple ind -> (
let%bind ty_lst = let%bind ty_lst =
trace_strong (corner_case ~loc:__LOC__ "not a tuple") @@ trace_strong (corner_case ~loc:__LOC__ "transpiler: E_assign: Access_tuple: not a tuple") @@
AST.Combinators.get_t_tuple prev in AST.Combinators.get_t_tuple prev in
let%bind ty'_lst = bind_map_list transpile_type ty_lst in let%bind ty'_lst = bind_map_list transpile_type ty_lst in
let%bind path = tuple_access_to_lr ty' ty'_lst ind in let%bind path = tuple_access_to_lr ty' ty'_lst ind in
@ -521,7 +522,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
trace_strong (corner_case ~loc:__LOC__ "not a record") @@ trace_strong (corner_case ~loc:__LOC__ "not a record") @@
AST.Combinators.get_t_record prev in AST.Combinators.get_t_record prev in
let%bind ty'_map = bind_map_lmap transpile_type ty_map in let%bind ty'_map = bind_map_lmap transpile_type ty_map in
let%bind path = record_access_to_lr ty' ty'_map prop in let%bind path = record_access_to_lr ty' ty'_map (Label prop) in
let path' = List.map snd path in let path' = List.map snd path in
let%bind prop_in_ty_map = trace_option let%bind prop_in_ty_map = trace_option
(Errors.not_found "acessing prop in ty_map [TODO: better error message]") (Errors.not_found "acessing prop in ty_map [TODO: better error message]")

View File

@ -36,15 +36,6 @@ them. please report this to the developers." in
] in ] in
error ~data title content error ~data title content
let unknown_untranspile unknown_type value =
let title () = "untranspiling unknown value" in
let content () = Format.asprintf "can not untranspile %s" unknown_type in
let data = [
("unknown_type" , fun () -> unknown_type) ;
("value" , fun () -> Format.asprintf "%a" Mini_c.PP.value value) ;
] in
error ~data title content
end end
open Errors open Errors
@ -196,6 +187,22 @@ let rec untranspile (v : value) (t : AST.type_value) : AST.annotated_expression
) )
| TC_contract _ -> | TC_contract _ ->
fail @@ bad_untranspile "contract" v fail @@ bad_untranspile "contract" v
| TC_arrow _ -> (
let%bind n =
trace_strong (wrong_mini_c_value "lambda as string" v) @@
get_string v in
return (E_literal (Literal_string n))
)
| TC_tuple lst ->
let%bind node = match Append_tree.of_list lst with
| Empty -> fail @@ corner_case ~loc:__LOC__ "empty tuple"
| Full t -> ok t in
let%bind tpl =
trace_strong (corner_case ~loc:__LOC__ "tuple extract") @@
extract_tuple v node in
let%bind tpl' = bind_list
@@ List.map (fun (x, y) -> untranspile x y) tpl in
return (E_tuple tpl')
) )
| T_sum m -> | T_sum m ->
let lst = kv_list_of_cmap m in let lst = kv_list_of_cmap m in
@ -208,16 +215,6 @@ let rec untranspile (v : value) (t : AST.type_value) : AST.annotated_expression
extract_constructor v node in extract_constructor v node in
let%bind sub = untranspile v tv in let%bind sub = untranspile v tv in
return (E_constructor (Constructor name, sub)) return (E_constructor (Constructor name, sub))
| T_tuple lst ->
let%bind node = match Append_tree.of_list lst with
| Empty -> fail @@ corner_case ~loc:__LOC__ "empty tuple"
| Full t -> ok t in
let%bind tpl =
trace_strong (corner_case ~loc:__LOC__ "tuple extract") @@
extract_tuple v node in
let%bind tpl' = bind_list
@@ List.map (fun (x, y) -> untranspile x y) tpl in
return (E_tuple tpl')
| T_record m -> | T_record m ->
let lst = kv_list_of_lmap m in let lst = kv_list_of_lmap m in
let%bind node = match Append_tree.of_list lst with let%bind node = match Append_tree.of_list lst with

View File

@ -84,13 +84,9 @@ let rec fold_expression : 'a folder -> 'a -> expression -> 'a result = fun f ini
let%bind res = self init' exp in let%bind res = self init' exp in
ok res ok res
) )
| E_update (r, updates) -> ( | E_update (r, (_,e)) -> (
let%bind res = self init' r in let%bind res = self init' r in
let aux prev (_,e) = let%bind res = self res e in
let%bind res = self prev e in
ok res
in
let%bind res = bind_fold_list aux res updates in
ok res ok res
) )
@ -158,10 +154,10 @@ let rec map_expression : mapper -> expression -> expression result = fun f e ->
let%bind exp' = self exp in let%bind exp' = self exp in
return @@ E_assignment (s, lrl, exp') return @@ E_assignment (s, lrl, exp')
) )
| E_update (r, updates) -> ( | E_update (r, (l,e)) -> (
let%bind r = self r in let%bind r = self r in
let%bind updates = bind_map_list (fun (p,e) -> let%bind e = self e in ok(p,e)) updates in let%bind e = self e in
return @@ E_update(r,updates) return @@ E_update(r,(l,e))
) )
let map_sub_level_expression : mapper -> expression -> expression result = fun f e -> let map_sub_level_expression : mapper -> expression -> expression result = fun f e ->

View File

@ -66,8 +66,8 @@ let rec is_pure : expression -> bool = fun e ->
| E_constant (c, args) | E_constant (c, args)
-> is_pure_constant c && List.for_all is_pure args -> is_pure_constant c && List.for_all is_pure args
| E_update (e, updates) | E_update (r, (_,e))
-> is_pure e && List.for_all (fun (_,e) -> is_pure e) updates -> is_pure r && is_pure e
(* I'm not sure about these. Maybe can be tested better? *) (* I'm not sure about these. Maybe can be tested better? *)
| E_application _ | E_application _
@ -111,8 +111,8 @@ let rec is_assigned : ignore_lambdas:bool -> expression_variable -> expression -
match e.content with match e.content with
| E_assignment (x, _, e) -> | E_assignment (x, _, e) ->
it x || self e it x || self e
| E_update (r, updates) -> | E_update (r, (_,e)) ->
List.fold_left (fun prev (_,e) -> prev || self e) (self r) updates self r || self e
| E_closure { binder; body } -> | E_closure { binder; body } ->
if ignore_lambdas if ignore_lambdas
then false then false

View File

@ -94,10 +94,10 @@ let rec replace : expression -> var_name -> var_name -> expression =
let v = replace_var v in let v = replace_var v in
let e = replace e in let e = replace e in
return @@ E_assignment (v, path, e) return @@ E_assignment (v, path, e)
| E_update (r, updates) -> | E_update (r, (p,e)) ->
let r = replace r in let r = replace r in
let updates = List.map (fun (p,e)-> (p, replace e)) updates in let e = replace e in
return @@ E_update (r,updates) return @@ E_update (r, (p,e))
| E_while (cond, body) -> | E_while (cond, body) ->
let cond = replace cond in let cond = replace cond in
let body = replace body in let body = replace body in
@ -209,10 +209,10 @@ let rec subst_expression : body:expression -> x:var_name -> expr:expression -> e
if Var.equal s x then raise Bad_argument ; if Var.equal s x then raise Bad_argument ;
return @@ E_assignment (s, lrl, exp') return @@ E_assignment (s, lrl, exp')
) )
| E_update (r, updates) -> ( | E_update (r, (p,e)) -> (
let r' = self r in let r' = self r in
let updates' = List.map (fun (p,e) -> (p, self e)) updates in let e' = self e in
return @@ E_update(r',updates') return @@ E_update(r', (p,e'))
) )
let%expect_test _ = let%expect_test _ =

View File

@ -402,12 +402,9 @@ and translate_expression (expr:expression) (env:environment) : michelson result
i_push_unit ; i_push_unit ;
] ]
) )
| E_update (record, updates) -> ( | E_update (record, (path, expr)) -> (
let%bind record' = translate_expression record env in let%bind record' = translate_expression record env in
let insts = [
i_comment "r_update: start, move the record on top # env";
record';] in
let aux (init :t list) (update,expr) =
let record_var = Var.fresh () in let record_var = Var.fresh () in
let env' = Environment.add (record_var, record.type_value) env in let env' = Environment.add (record_var, record.type_value) env in
let%bind expr' = translate_expression expr env' in let%bind expr' = translate_expression expr env' in
@ -417,17 +414,17 @@ and translate_expression (expr:expression) (env:environment) : michelson result
| `Right -> seq [dip i_unpiar ; acc ; i_piar] | `Right -> seq [dip i_unpiar ; acc ; i_piar]
in in
let init = dip i_drop in let init = dip i_drop in
List.fold_right' aux init update List.fold_right' aux init path
in in
ok @@ init @ [ return @@ seq [
i_comment "r_update: start # env";
record';
i_comment "r_update: move the record on top # env";
expr'; expr';
i_comment "r_updates : compute rhs # rhs:env"; i_comment "r_updates : compute rhs # rhs:env";
modify_code; modify_code;
i_comment "r_update: modify code # record+rhs : env"; i_comment "r_update: modify code # record+rhs : env";
] ]
in
let%bind insts = bind_fold_list aux insts updates in
return @@ seq insts
) )
| E_while (expr , block) -> ( | E_while (expr , block) -> (

View File

@ -18,7 +18,7 @@ and type_expression ppf (te: type_expression) : unit =
te' ppf te.type_expression' te' ppf te.type_expression'
let rec expression ppf (e:expression) = match e.expression with let rec expression ppf (e:expression) = match e.expression with
| E_literal l -> literal ppf l | E_literal l -> fprintf ppf "%a" literal l
| E_variable n -> fprintf ppf "%a" name n | E_variable n -> fprintf ppf "%a" name n
| E_application (f, arg) -> fprintf ppf "(%a)@(%a)" expression f expression arg | E_application (f, arg) -> fprintf ppf "(%a)@(%a)" expression f expression arg
| E_constructor (c, ae) -> fprintf ppf "%a(%a)" constructor c expression ae | E_constructor (c, ae) -> fprintf ppf "%a(%a)" constructor c expression ae
@ -26,7 +26,7 @@ let rec expression ppf (e:expression) = match e.expression with
| E_tuple lst -> fprintf ppf "(%a)" (tuple_sep_d expression) lst | E_tuple lst -> fprintf ppf "(%a)" (tuple_sep_d expression) lst
| E_accessor (ae, p) -> fprintf ppf "%a.%a" expression ae access_path p | E_accessor (ae, p) -> fprintf ppf "%a.%a" expression ae access_path p
| E_record m -> fprintf ppf "{%a}" (lrecord_sep expression (const " , ")) m | E_record m -> fprintf ppf "{%a}" (lrecord_sep expression (const " , ")) m
| E_update {record; updates} -> fprintf ppf "%a with {%a}" expression record (tuple_sep_d (fun ppf (a,b) -> fprintf ppf "%a = %a" label a expression b)) updates | E_update {record; update=(path,expr)} -> fprintf ppf "%a with { %a = %a }" expression record Stage_common.PP.label path expression expr
| E_map m -> fprintf ppf "[%a]" (list_sep_d assoc_expression) m | E_map m -> fprintf ppf "[%a]" (list_sep_d assoc_expression) m
| E_big_map m -> fprintf ppf "big_map[%a]" (list_sep_d assoc_expression) m | E_big_map m -> fprintf ppf "big_map[%a]" (list_sep_d assoc_expression) m
| E_list lst -> fprintf ppf "[%a]" (list_sep_d expression) lst | E_list lst -> fprintf ppf "[%a]" (list_sep_d expression) lst

View File

@ -36,7 +36,7 @@ let t_key_hash : type_expression = make_t @@ T_constant (TC_key_hash)
let t_option o : type_expression = make_t @@ T_operator (TC_option o) let t_option o : type_expression = make_t @@ T_operator (TC_option o)
let t_list t : type_expression = make_t @@ T_operator (TC_list t) let t_list t : type_expression = make_t @@ T_operator (TC_list t)
let t_variable n : type_expression = make_t @@ T_variable (Var.of_name n) let t_variable n : type_expression = make_t @@ T_variable (Var.of_name n)
let t_tuple lst : type_expression = make_t @@ T_tuple lst let t_tuple lst : type_expression = make_t @@ T_operator (TC_tuple lst)
let t_pair (a , b) : type_expression = t_tuple [a ; b] let t_pair (a , b) : type_expression = t_tuple [a ; b]
let t_record_ez lst = let t_record_ez lst =
let lst = List.map (fun (k, v) -> (Label k, v)) lst in let lst = List.map (fun (k, v) -> (Label k, v)) lst in
@ -174,9 +174,10 @@ let e_ez_record ?loc (lst : (string * expr) list) : expression =
let e_record ?loc map = let e_record ?loc map =
let lst = Map.String.to_kv_list map in let lst = Map.String.to_kv_list map in
e_ez_record ?loc lst e_ez_record ?loc lst
let e_update ?loc record updates =
let updates = List.map (fun (x,y) -> (Label x, y)) updates in let e_update ?loc record path expr =
location_wrap ?loc @@ E_update {record; updates} let update = (Label path, expr) in
location_wrap ?loc @@ E_update {record; update}
let get_e_accessor = fun t -> let get_e_accessor = fun t ->
match t with match t with
@ -205,7 +206,7 @@ let get_e_list = fun t ->
let get_e_tuple = fun t -> let get_e_tuple = fun t ->
match t with match t with
| E_tuple lst -> ok lst | E_tuple lst -> ok lst
| _ -> simple_fail "not a tuple" | _ -> simple_fail "ast_simplified: get_e_tuple: not a tuple"
let extract_pair : expression -> (expression * expression) result = fun e -> let extract_pair : expression -> (expression * expression) result = fun e ->
match e.expression with match e.expression with

View File

@ -27,8 +27,8 @@ val t_option : type_expression -> type_expression
*) *)
val t_list : type_expression -> type_expression val t_list : type_expression -> type_expression
val t_variable : string -> type_expression val t_variable : string -> type_expression
(*
val t_tuple : type_expression list -> type_expression val t_tuple : type_expression list -> type_expression
(*
val t_record : te_map -> type_expression val t_record : te_map -> type_expression
*) *)
val t_pair : ( type_expression * type_expression ) -> type_expression val t_pair : ( type_expression * type_expression ) -> type_expression
@ -109,7 +109,7 @@ val e_typed_set : ?loc:Location.t -> expression list -> type_expression -> expre
val e_lambda : ?loc:Location.t -> expression_variable -> type_expression option -> type_expression option -> expression -> expression val e_lambda : ?loc:Location.t -> expression_variable -> type_expression option -> type_expression option -> expression -> expression
val e_record : ?loc:Location.t -> expr Map.String.t -> expression val e_record : ?loc:Location.t -> expr Map.String.t -> expression
val e_update : ?loc:Location.t -> expression -> (string * expression) list -> expression val e_update : ?loc:Location.t -> expression -> string -> expression -> expression
val e_ez_record : ?loc:Location.t -> ( string * expr ) list -> expression val e_ez_record : ?loc:Location.t -> ( string * expr ) list -> expression
(* (*

View File

@ -1,6 +1,8 @@
open Trace open Trace
open Types open Types
include Stage_common.Misc
module Errors = struct module Errors = struct
let different_literals_because_different_types name a b () = let different_literals_because_different_types name a b () =
let title () = "literals have different types: " ^ name in let title () = "literals have different types: " ^ name in
@ -133,14 +135,14 @@ let rec assert_value_eq (a, b: (expression * expression )) : unit result =
simple_fail "comparing record with other expression" simple_fail "comparing record with other expression"
| E_update ura, E_update urb -> | E_update ura, E_update urb ->
let%bind lst = let _ =
generic_try (simple_error "updates with different number of fields") generic_try (simple_error "Updating different record") @@
(fun () -> List.combine ura.updates urb.updates) in fun () -> assert_value_eq (ura.record, urb.record) in
let aux ((Label a,expra),(Label b, exprb))= let aux ((Label a,expra),(Label b, exprb))=
assert (String.equal a b); assert (String.equal a b);
assert_value_eq (expra,exprb) assert_value_eq (expra,exprb)
in in
let%bind _all = bind_list @@ List.map aux lst in let%bind _all = aux (ura.update, urb.update) in
ok () ok ()
| E_update _, _ -> | E_update _, _ ->
simple_fail "comparing record update with other expression" simple_fail "comparing record update with other expression"

View File

@ -1,5 +1,8 @@
open Trace open Trace
open Types open Types
include module type of Stage_common.Misc
(* (*
module Errors : sig module Errors : sig

View File

@ -67,6 +67,6 @@ and expression = {
expression : expression' ; expression : expression' ;
location : Location.t ; location : Location.t ;
} }
and update = {record: expr; updates: (label*expr)list} and update = { record: expr; update: (label *expr) }
and matching_expr = (expr,unit) matching and matching_expr = (expr,unit) matching

View File

@ -15,12 +15,11 @@ and type_value ppf (tv:type_value) : unit =
let rec annotated_expression ppf (ae:annotated_expression) : unit = let rec annotated_expression ppf (ae:annotated_expression) : unit =
match ae.type_annotation.simplified with match ae.type_annotation.simplified with
| Some _ -> fprintf ppf "@[<v>%a:%a@]" expression ae.expression type_value ae.type_annotation | _ -> fprintf ppf "@[<v>%a:%a@]" expression ae.expression type_value ae.type_annotation
| _ -> fprintf ppf "@[<v>%a@]" expression ae.expression
and lambda ppf l = and lambda ppf l =
let ({ binder ; body } : lambda) = l in let ({ binder ; body } : lambda) = l in
fprintf ppf "lambda (%a) -> %a" fprintf ppf "(lambda (%a) -> %a)"
name binder name binder
annotated_expression body annotated_expression body
@ -33,14 +32,14 @@ and option_inline ppf inline =
and expression ppf (e:expression) : unit = and expression ppf (e:expression) : unit =
match e with match e with
| E_literal l -> Stage_common.PP.literal ppf l | E_literal l -> Stage_common.PP.literal ppf l
| E_constant (b, lst) -> fprintf ppf "%a(%a)" constant b (list_sep_d annotated_expression) lst | E_constant (b, lst) -> fprintf ppf "(e_constant %a(%a))" constant b (list_sep_d annotated_expression) lst
| E_constructor (c, lst) -> fprintf ppf "%a(%a)" constructor c annotated_expression lst | E_constructor (c, lst) -> fprintf ppf "(e_constructor %a(%a))" constructor c annotated_expression lst
| E_variable a -> fprintf ppf "%a" name a | E_variable a -> fprintf ppf "(e_var %a)" name a
| E_application (f, arg) -> fprintf ppf "(%a) (%a)" annotated_expression f annotated_expression arg | E_application (f, arg) -> fprintf ppf "(%a) (%a)" annotated_expression f annotated_expression arg
| E_lambda l -> fprintf ppf "%a" lambda l | E_lambda l -> fprintf ppf "%a" lambda l
| E_tuple_accessor (ae, i) -> fprintf ppf "%a.%d" annotated_expression ae i | E_tuple_accessor (ae, i) -> fprintf ppf "%a.%d" annotated_expression ae i
| E_record_accessor (ae, l) -> fprintf ppf "%a.%a" annotated_expression ae label l | E_record_accessor (ae, l) -> fprintf ppf "%a.%a" annotated_expression ae label l
| E_record_update (ae, ups) -> fprintf ppf "%a with record[%a]" annotated_expression ae (lmap_sep annotated_expression (const " , ")) (LMap.of_list ups) | E_record_update (ae, (path,expr)) -> fprintf ppf "%a with record[%a=%a]" annotated_expression ae Stage_common.PP.label path annotated_expression expr
| E_tuple lst -> fprintf ppf "tuple[@; @[<v>%a@]@;]" (list_sep annotated_expression (tag ",@;")) lst | E_tuple lst -> fprintf ppf "tuple[@; @[<v>%a@]@;]" (list_sep annotated_expression (tag ",@;")) lst
| E_record m -> fprintf ppf "record[%a]" (lmap_sep annotated_expression (const " , ")) m | E_record m -> fprintf ppf "record[%a]" (lmap_sep annotated_expression (const " , ")) m
| E_map m -> fprintf ppf "map[@; @[<v>%a@]@;]" (list_sep assoc_annotated_expression (tag ",@;")) m | E_map m -> fprintf ppf "map[@; @[<v>%a@]@;]" (list_sep assoc_annotated_expression (tag ",@;")) m
@ -50,7 +49,7 @@ and expression ppf (e:expression) : unit =
| E_look_up (ds, i) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression i | E_look_up (ds, i) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression i
| E_matching (ae, m) -> | E_matching (ae, m) ->
fprintf ppf "match %a with %a" annotated_expression ae (matching annotated_expression) m fprintf ppf "match %a with %a" annotated_expression ae (matching annotated_expression) m
| E_sequence (a , b) -> fprintf ppf "%a ; %a" annotated_expression a annotated_expression b | E_sequence (a , b) -> fprintf ppf "(e_seq %a ; %a)" annotated_expression a annotated_expression b
| E_loop (expr , body) -> fprintf ppf "while %a { %a }" annotated_expression expr annotated_expression body | E_loop (expr , body) -> fprintf ppf "while %a { %a }" annotated_expression expr annotated_expression body
| E_assign (name , path , expr) -> | E_assign (name , path , expr) ->
fprintf ppf "%a.%a := %a" fprintf ppf "%a.%a := %a"

View File

@ -48,7 +48,7 @@ let t_mutez ?s () : type_value = make_t (T_constant TC_mutez) s
let t_timestamp ?s () : type_value = make_t (T_constant TC_timestamp) s let t_timestamp ?s () : type_value = make_t (T_constant TC_timestamp) s
let t_unit ?s () : type_value = make_t (T_constant TC_unit) s let t_unit ?s () : type_value = make_t (T_constant TC_unit) s
let t_option o ?s () : type_value = make_t (T_operator (TC_option o)) s let t_option o ?s () : type_value = make_t (T_operator (TC_option o)) s
let t_tuple lst ?s () : type_value = make_t (T_tuple lst) s let t_tuple lst ?s () : type_value = make_t (T_operator (TC_tuple lst)) s
let t_variable t ?s () : type_value = make_t (T_variable t) s let t_variable t ?s () : type_value = make_t (T_variable t) s
let t_list t ?s () : type_value = make_t (T_operator (TC_list t)) s let t_list t ?s () : type_value = make_t (T_operator (TC_list t)) s
let t_set t ?s () : type_value = make_t (T_operator (TC_set t)) s let t_set t ?s () : type_value = make_t (T_operator (TC_set t)) s
@ -147,11 +147,11 @@ let get_t_key_hash (t:type_value) : unit result = match t.type_value' with
| _ -> fail @@ Errors.not_a_x_type "key_hash" t () | _ -> fail @@ Errors.not_a_x_type "key_hash" t ()
let get_t_tuple (t:type_value) : type_value list result = match t.type_value' with let get_t_tuple (t:type_value) : type_value list result = match t.type_value' with
| T_tuple lst -> ok lst | T_operator (TC_tuple lst) -> ok lst
| _ -> fail @@ Errors.not_a_x_type "tuple" t () | _ -> fail @@ Errors.not_a_x_type "tuple" t ()
let get_t_pair (t:type_value) : (type_value * type_value) result = match t.type_value' with let get_t_pair (t:type_value) : (type_value * type_value) result = match t.type_value' with
| T_tuple lst -> | T_operator (TC_tuple lst) ->
let%bind () = let%bind () =
trace_strong (Errors.not_a_x_type "pair (tuple with two elements)" t ()) @@ trace_strong (Errors.not_a_x_type "pair (tuple with two elements)" t ()) @@
Assert.assert_list_size lst 2 in Assert.assert_list_size lst 2 in
@ -160,6 +160,7 @@ let get_t_pair (t:type_value) : (type_value * type_value) result = match t.type_
let get_t_function (t:type_value) : (type_value * type_value) result = match t.type_value' with let get_t_function (t:type_value) : (type_value * type_value) result = match t.type_value' with
| T_arrow (a,r) -> ok (a,r) | T_arrow (a,r) -> ok (a,r)
| T_operator (TC_arrow (a , b)) -> ok (a , b)
| _ -> fail @@ Errors.not_a_x_type "function" t () | _ -> fail @@ Errors.not_a_x_type "function" t ()
let get_t_sum (t:type_value) : type_value constructor_map result = match t.type_value' with let get_t_sum (t:type_value) : type_value constructor_map result = match t.type_value' with
@ -253,11 +254,11 @@ let ez_e_record (lst : (label * ae) list) : expression =
let map = List.fold_left aux LMap.empty lst in let map = List.fold_left aux LMap.empty lst in
e_record map e_record map
let e_some s : expression = E_constant (C_SOME, [s]) let e_some s : expression = E_constant (C_SOME, [s])
let e_none : expression = E_constant (C_NONE, []) let e_none () : expression = E_constant (C_NONE, [])
let e_map lst : expression = E_map lst let e_map lst : expression = E_map lst
let e_unit : expression = E_literal (Literal_unit) let e_unit () : expression = E_literal (Literal_unit)
let e_int n : expression = E_literal (Literal_int n) let e_int n : expression = E_literal (Literal_int n)
let e_nat n : expression = E_literal (Literal_nat n) let e_nat n : expression = E_literal (Literal_nat n)
let e_mutez n : expression = E_literal (Literal_mutez n) let e_mutez n : expression = E_literal (Literal_mutez n)
@ -279,7 +280,7 @@ let e_list lst : expression = E_list lst
let e_let_in binder inline rhs result = E_let_in { binder ; rhs ; result; inline } let e_let_in binder inline rhs result = E_let_in { binder ; rhs ; result; inline }
let e_tuple lst : expression = E_tuple lst let e_tuple lst : expression = E_tuple lst
let e_a_unit = make_a_e e_unit (t_unit ()) let e_a_unit = make_a_e (e_unit ()) (t_unit ())
let e_a_int n = make_a_e (e_int n) (t_int ()) let e_a_int n = make_a_e (e_int n) (t_int ())
let e_a_nat n = make_a_e (e_nat n) (t_nat ()) let e_a_nat n = make_a_e (e_nat n) (t_nat ())
let e_a_mutez n = make_a_e (e_mutez n) (t_mutez ()) let e_a_mutez n = make_a_e (e_mutez n) (t_mutez ())
@ -289,7 +290,7 @@ let e_a_address s = make_a_e (e_address s) (t_address ())
let e_a_pair a b = make_a_e (e_pair a b) (t_pair a.type_annotation b.type_annotation ()) let e_a_pair a b = make_a_e (e_pair a b) (t_pair a.type_annotation b.type_annotation ())
let e_a_some s = make_a_e (e_some s) (t_option s.type_annotation ()) let e_a_some s = make_a_e (e_some s) (t_option s.type_annotation ())
let e_a_lambda l in_ty out_ty = make_a_e (e_lambda l) (t_function in_ty out_ty ()) let e_a_lambda l in_ty out_ty = make_a_e (e_lambda l) (t_function in_ty out_ty ())
let e_a_none t = make_a_e e_none (t_option t ()) let e_a_none t = make_a_e (e_none ()) (t_option t ())
let e_a_tuple lst = make_a_e (E_tuple lst) (t_tuple (List.map get_type_annotation lst) ()) let e_a_tuple lst = make_a_e (E_tuple lst) (t_tuple (List.map get_type_annotation lst) ())
let e_a_record r = make_a_e (e_record r) (t_record (LMap.map get_type_annotation r) ()) let e_a_record r = make_a_e (e_record r) (t_record (LMap.map get_type_annotation r) ())
let e_a_application a b = make_a_e (e_application a b) (get_type_annotation b) let e_a_application a b = make_a_e (e_application a b) (get_type_annotation b)

View File

@ -111,9 +111,9 @@ val ez_e_record : ( string * annotated_expression ) list -> expression
*) *)
val e_some : value -> expression val e_some : value -> expression
val e_none : expression val e_none : unit -> expression
val e_map : ( value * value ) list -> expression val e_map : ( value * value ) list -> expression
val e_unit : expression val e_unit : unit -> expression
val e_int : int -> expression val e_int : int -> expression
val e_nat : int -> expression val e_nat : int -> expression
val e_mutez : int -> expression val e_mutez : int -> expression

View File

@ -1,5 +1,6 @@
open Trace open Trace
open Types open Types
include Stage_common.Misc include Stage_common.Misc
module Errors = struct module Errors = struct
@ -29,6 +30,21 @@ module Errors = struct
] in ] in
error ~data title message () error ~data title message ()
let different_operator_number_of_arguments opa opb lena lenb () =
let title = (thunk "different number of arguments to type constructors") in
assert (String.equal (type_operator_name opa) (type_operator_name opb));
let message () = Format.asprintf
"Expected these two n-ary type constructors to be the same, but they have different numbers of arguments (both use the %s type constructor, but they have %d and %d arguments, respectively)"
(type_operator_name opa) lena lenb in
let data = [
("a" , fun () -> Format.asprintf "%a" (Stage_common.PP.type_operator PP.type_value) opa) ;
("b" , fun () -> Format.asprintf "%a" (Stage_common.PP.type_operator PP.type_value) opb) ;
("op" , fun () -> type_operator_name opa) ;
("len_a" , fun () -> Format.asprintf "%d" lena) ;
("len_b" , fun () -> Format.asprintf "%d" lenb) ;
] in
error ~data title message ()
let different_size_type name a b () = let different_size_type name a b () =
let title () = name ^ " have different sizes" in let title () = name ^ " have different sizes" in
let message () = "Expected these two types to be the same, but they're different (both are " ^ name ^ ", but with a different number of arguments)" in let message () = "Expected these two types to be the same, but they're different (both are " ^ name ^ ", but with a different number of arguments)" in
@ -49,8 +65,6 @@ module Errors = struct
let _different_size_constants = different_size_type "type constructors" let _different_size_constants = different_size_type "type constructors"
let different_size_tuples = different_size_type "tuples"
let different_size_sums = different_size_type "sums" let different_size_sums = different_size_type "sums"
let different_size_records = different_size_type "records" let different_size_records = different_size_type "records"
@ -179,7 +193,7 @@ module Free_variables = struct
| E_constructor (_ , a) -> self a | E_constructor (_ , a) -> self a
| E_record m -> unions @@ List.map self @@ LMap.to_list m | E_record m -> unions @@ List.map self @@ LMap.to_list m
| E_record_accessor (a, _) -> self a | E_record_accessor (a, _) -> self a
| E_record_update (r,ups) -> union (self r) @@ unions @@ List.map (fun (_,e) -> self e) ups | E_record_update (r,(_,e)) -> union (self r) @@ self e
| E_tuple_accessor (a, _) -> self a | E_tuple_accessor (a, _) -> self a
| E_list lst -> unions @@ List.map self lst | E_list lst -> unions @@ List.map self lst
| E_set lst -> unions @@ List.map self lst | E_set lst -> unions @@ List.map self lst
@ -301,13 +315,6 @@ open Errors
let rec assert_type_value_eq (a, b: (type_value * type_value)) : unit result = match (a.type_value', b.type_value') with let rec assert_type_value_eq (a, b: (type_value * type_value)) : unit result = match (a.type_value', b.type_value') with
| T_tuple ta, T_tuple tb -> (
let%bind _ =
trace_strong (fun () -> (different_size_tuples a b ()))
@@ Assert.assert_true List.(length ta = length tb) in
bind_list_iter assert_type_value_eq (List.combine ta tb)
)
| T_tuple _, _ -> fail @@ different_kinds a b
| T_constant ca, T_constant cb -> ( | T_constant ca, T_constant cb -> (
trace_strong (different_constants ca cb) trace_strong (different_constants ca cb)
@@ Assert.assert_true (ca = cb) @@ Assert.assert_true (ca = cb)
@ -321,8 +328,14 @@ let rec assert_type_value_eq (a, b: (type_value * type_value)) : unit result = m
| TC_set la, TC_set lb -> ok @@ ([la], [lb]) | TC_set la, TC_set lb -> ok @@ ([la], [lb])
| TC_map (ka,va), TC_map (kb,vb) | TC_map (ka,va), TC_map (kb,vb)
| TC_big_map (ka,va), TC_big_map (kb,vb) -> ok @@ ([ka;va] ,[kb;vb]) | TC_big_map (ka,va), TC_big_map (kb,vb) -> ok @@ ([ka;va] ,[kb;vb])
| _,_ -> fail @@ different_operators opa opb | TC_tuple lsta, TC_tuple lstb -> ok @@ (lsta , lstb)
| TC_arrow (froma , toa) , TC_arrow (fromb , tob) -> ok @@ ([froma;toa] , [fromb;tob])
| (TC_option _ | TC_list _ | TC_contract _ | TC_set _ | TC_map _ | TC_big_map _ | TC_tuple _ | TC_arrow _),
(TC_option _ | TC_list _ | TC_contract _ | TC_set _ | TC_map _ | TC_big_map _ | TC_tuple _ | TC_arrow _) -> fail @@ different_operators opa opb
in in
if List.length lsta <> List.length lstb then
fail @@ different_operator_number_of_arguments opa opb (List.length lsta) (List.length lstb)
else
trace (different_types "arguments to type operators" a b) trace (different_types "arguments to type operators" a b)
@@ bind_list_iter (fun (a,b) -> assert_type_value_eq (a,b) )(List.combine lsta lstb) @@ bind_list_iter (fun (a,b) -> assert_type_value_eq (a,b) )(List.combine lsta lstb)
) )

View File

@ -1,6 +1,8 @@
open Trace open Trace
open Types open Types
include module type of Stage_common.Misc
val assert_value_eq : ( value * value ) -> unit result val assert_value_eq : ( value * value ) -> unit result
val assert_type_value_eq : ( type_value * type_value ) -> unit result val assert_type_value_eq : ( type_value * type_value ) -> unit result
@ -43,7 +45,6 @@ module Errors : sig
val different_size_type : name -> type_value -> type_value -> unit -> error val different_size_type : name -> type_value -> type_value -> unit -> error
val different_props_in_record : string -> string -> unit -> error val different_props_in_record : string -> string -> unit -> error
val different_size_constants : type_value -> type_value -> unit -> error val different_size_constants : type_value -> type_value -> unit -> error
val different_size_tuples : type_value -> type_value -> unit -> error
val different_size_sums : type_value -> type_value -> unit -> error val different_size_sums : type_value -> type_value -> unit -> error
val different_size_records : type_value -> type_value -> unit -> error val different_size_records : type_value -> type_value -> unit -> error
val different_types : name -> type_value -> type_value -> unit -> error val different_types : name -> type_value -> type_value -> unit -> error

View File

@ -72,14 +72,10 @@ module Captured_variables = struct
let%bind lst' = bind_map_list self @@ LMap.to_list m in let%bind lst' = bind_map_list self @@ LMap.to_list m in
ok @@ unions lst' ok @@ unions lst'
| E_record_accessor (a, _) -> self a | E_record_accessor (a, _) -> self a
| E_record_update (r,ups) -> | E_record_update (r,(_,e)) ->
let%bind r = self r in let%bind r = self r in
let aux (_, e) =
let%bind e = self e in let%bind e = self e in
ok e ok @@ union r e
in
let%bind lst = bind_map_list aux ups in
ok @@ union r @@ unions lst
| E_tuple_accessor (a, _) -> self a | E_tuple_accessor (a, _) -> self a
| E_list lst -> | E_list lst ->
let%bind lst' = bind_map_list self lst in let%bind lst' = bind_map_list self lst in

View File

@ -34,6 +34,12 @@ and annotated_expression = {
location : Location.t ; location : Location.t ;
} }
(* This seems to be used only for top-level declarations, and
represents the name of the top-level binding, and the expression
assigned to it. -- Suzanne.
TODO: if this is correct, then we should inline this in
"declaration" or at least move it close to it. *)
and named_expression = { and named_expression = {
name: expression_variable ; name: expression_variable ;
annotated_expression: ae ; annotated_expression: ae ;
@ -41,6 +47,7 @@ and named_expression = {
and ae = annotated_expression and ae = annotated_expression
and type_value' = type_value type_expression' and type_value' = type_value type_expression'
and type_value = { and type_value = {
type_value' : type_value'; type_value' : type_value';
simplified : S.type_expression option ; (* If we have the simplified this AST fragment comes from, it is stored here, for easier untyping. *) simplified : S.type_expression option ; (* If we have the simplified this AST fragment comes from, it is stored here, for easier untyping. *)
@ -77,7 +84,7 @@ and 'a expression' =
| E_application of (('a) * ('a)) | E_application of (('a) * ('a))
| E_lambda of lambda | E_lambda of lambda
| E_let_in of let_in | E_let_in of let_in
(* Tuple *) (* Tuple, TODO: remove tuples and use records with integer keys instead *)
| E_tuple of ('a) list | E_tuple of ('a) list
| E_tuple_accessor of (('a) * int) (* Access n'th tuple's element *) | E_tuple_accessor of (('a) * int) (* Access n'th tuple's element *)
(* Sum *) (* Sum *)
@ -85,7 +92,7 @@ and 'a expression' =
(* Record *) (* Record *)
| E_record of ('a) label_map | E_record of ('a) label_map
| E_record_accessor of (('a) * label) | E_record_accessor of (('a) * label)
| E_record_update of ('a * (label* 'a) list) | E_record_update of ('a * (label * 'a))
(* Data Structures *) (* Data Structures *)
| E_map of (('a) * ('a)) list | E_map of (('a) * ('a)) list
| E_big_map of (('a) * ('a)) list | E_big_map of (('a) * ('a)) list

View File

@ -141,7 +141,6 @@ let lmap_sep_d x = lmap_sep x (const " , ")
let rec type_expression' : type a . (formatter -> a -> unit) -> formatter -> a type_expression' -> unit = let rec type_expression' : type a . (formatter -> a -> unit) -> formatter -> a type_expression' -> unit =
fun f ppf te -> fun f ppf te ->
match te with match te with
| T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d f) lst
| T_sum m -> fprintf ppf "sum[%a]" (cmap_sep_d f) m | T_sum m -> fprintf ppf "sum[%a]" (cmap_sep_d f) m
| T_record m -> fprintf ppf "record[%a]" (lmap_sep_d f ) m | T_record m -> fprintf ppf "record[%a]" (lmap_sep_d f ) m
| T_arrow (a, b) -> fprintf ppf "%a -> %a" f a f b | T_arrow (a, b) -> fprintf ppf "%a -> %a" f a f b
@ -178,6 +177,8 @@ and type_operator : type a . (formatter -> a -> unit) -> formatter -> a type_ope
| TC_map (k, v) -> Format.asprintf "Map (%a,%a)" f k f v | TC_map (k, v) -> Format.asprintf "Map (%a,%a)" f k f v
| TC_big_map (k, v) -> Format.asprintf "Big Map (%a,%a)" f k f v | TC_big_map (k, v) -> Format.asprintf "Big Map (%a,%a)" f k f v
| TC_contract (c) -> Format.asprintf "Contract (%a)" f c | TC_contract (c) -> Format.asprintf "Contract (%a)" f c
| TC_arrow (a , b) -> Format.asprintf "TC_Arrow (%a,%a)" f a f b
| TC_tuple lst -> Format.asprintf "tuple[%a]" (list_sep_d f) lst
in in
fprintf ppf "(TO_%s)" s fprintf ppf "(TO_%s)" s

View File

@ -13,3 +13,4 @@ val type_expression' : (formatter -> 'a -> unit) -> formatter -> 'a type_express
val type_operator : (formatter -> 'a -> unit) -> formatter -> 'a type_operator -> unit val type_operator : (formatter -> 'a -> unit) -> formatter -> 'a type_operator -> unit
val type_constant : formatter -> type_constant -> unit val type_constant : formatter -> type_constant -> unit
val literal : formatter -> literal -> unit val literal : formatter -> literal -> unit
val list_sep_d : (formatter -> 'a -> unit) -> formatter -> 'a list -> unit

View File

@ -8,6 +8,8 @@ let map_type_operator f = function
| TC_set x -> TC_set (f x) | TC_set x -> TC_set (f x)
| TC_map (x , y) -> TC_map (f x , f y) | TC_map (x , y) -> TC_map (f x , f y)
| TC_big_map (x , y) -> TC_big_map (f x , f y) | TC_big_map (x , y) -> TC_big_map (f x , f y)
| TC_arrow (x , y) -> TC_arrow (f x , f y)
| TC_tuple lst -> TC_tuple (List.map f lst)
let bind_map_type_operator f = function let bind_map_type_operator f = function
TC_contract x -> let%bind x = f x in ok @@ TC_contract x TC_contract x -> let%bind x = f x in ok @@ TC_contract x
@ -16,6 +18,8 @@ let bind_map_type_operator f = function
| TC_set x -> let%bind x = f x in ok @@ TC_set x | TC_set x -> let%bind x = f x in ok @@ TC_set x
| TC_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_map (x , y) | TC_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_map (x , y)
| TC_big_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_big_map (x , y) | TC_big_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_big_map (x , y)
| TC_arrow (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_arrow (x , y)
| TC_tuple lst -> let%bind lst = bind_map_list f lst in ok @@ TC_tuple lst
let type_operator_name = function let type_operator_name = function
TC_contract _ -> "TC_contract" TC_contract _ -> "TC_contract"
@ -24,6 +28,8 @@ let type_operator_name = function
| TC_set _ -> "TC_set" | TC_set _ -> "TC_set"
| TC_map _ -> "TC_map" | TC_map _ -> "TC_map"
| TC_big_map _ -> "TC_big_map" | TC_big_map _ -> "TC_big_map"
| TC_arrow _ -> "TC_arrow"
| TC_tuple _ -> "TC_tuple"
let type_expression'_of_string = function let type_expression'_of_string = function
| "TC_contract" , [x] -> ok @@ T_operator(TC_contract x) | "TC_contract" , [x] -> ok @@ T_operator(TC_contract x)
@ -61,6 +67,8 @@ let string_of_type_operator = function
| TC_set x -> "TC_set" , [x] | TC_set x -> "TC_set" , [x]
| TC_map (x , y) -> "TC_map" , [x ; y] | TC_map (x , y) -> "TC_map" , [x ; y]
| TC_big_map (x , y) -> "TC_big_map" , [x ; y] | TC_big_map (x , y) -> "TC_big_map" , [x ; y]
| TC_arrow (x , y) -> "TC_arrow" , [x ; y]
| TC_tuple lst -> "TC_tuple" , lst
let string_of_type_constant = function let string_of_type_constant = function
| TC_unit -> "TC_unit", [] | TC_unit -> "TC_unit", []
@ -81,5 +89,6 @@ let string_of_type_constant = function
let string_of_type_expression' = function let string_of_type_expression' = function
| T_operator o -> string_of_type_operator o | T_operator o -> string_of_type_operator o
| T_constant c -> string_of_type_constant c | T_constant c -> string_of_type_constant c
| T_tuple _|T_sum _|T_record _|T_arrow (_, _)|T_variable _ -> | T_sum _|T_record _|T_arrow (_, _)|T_variable _ ->
failwith "not a type operator or constant" failwith "not a type operator or constant"

View File

@ -0,0 +1,9 @@
open Types
val map_type_operator : ('a -> 'b) -> 'a type_operator -> 'b type_operator
val bind_map_type_operator : ('a -> ('b * 'c list, 'd) Pervasives.result) -> 'a type_operator -> ('b type_operator * 'c list, 'd) Pervasives.result
val type_operator_name : 'a type_operator -> string
val type_expression'_of_string : string * 'a list -> ('a type_expression' * 'b list, 'c) Pervasives.result
val string_of_type_operator : 'a type_operator -> string * 'a list
val string_of_type_constant : type_constant -> string * 'a list
val string_of_type_expression' : 'a type_expression' -> string * 'a list

View File

@ -66,7 +66,6 @@ and literal =
(* The ast is a tree of node, 'a is the type of the node (type_variable or {type_variable, previous_type}) *) (* The ast is a tree of node, 'a is the type of the node (type_variable or {type_variable, previous_type}) *)
type 'a type_expression' = type 'a type_expression' =
| T_tuple of 'a list
| T_sum of 'a constructor_map | T_sum of 'a constructor_map
| T_record of 'a label_map | T_record of 'a label_map
| T_arrow of 'a * 'a | T_arrow of 'a * 'a
@ -96,6 +95,8 @@ and 'a type_operator =
| TC_set of 'a | TC_set of 'a
| TC_map of 'a * 'a | TC_map of 'a * 'a
| TC_big_map of 'a * 'a | TC_big_map of 'a * 'a
| TC_arrow of 'a * 'a
| TC_tuple of 'a list
type type_base = type type_base =
| Base_unit | Base_unit

View File

@ -99,8 +99,8 @@ and expression' ppf (e:expression') = match e with
fprintf ppf "fold %a on %a with %a do ( %a )" expression collection expression initial Stage_common.PP.name name expression body fprintf ppf "fold %a on %a with %a do ( %a )" expression collection expression initial Stage_common.PP.name name expression body
| E_assignment (r , path , e) -> | E_assignment (r , path , e) ->
fprintf ppf "%a.%a := %a" Stage_common.PP.name r (list_sep lr (const ".")) path expression e fprintf ppf "%a.%a := %a" Stage_common.PP.name r (list_sep lr (const ".")) path expression e
| E_update (r, updates) -> | E_update (r, (path,e)) ->
fprintf ppf "%a with {%a}" expression r (list_sep_d (fun ppf (path, e) -> fprintf ppf "%a = %a" (list_sep lr (const ".")) path expression e)) updates fprintf ppf "%a with {%a=%a}" expression r (list_sep lr (const ".")) path expression e
| E_while (e , b) -> | E_while (e , b) ->
fprintf ppf "while (%a) %a" expression e expression b fprintf ppf "while (%a) %a" expression e expression b

View File

@ -81,7 +81,7 @@ module Free_variables = struct
| E_sequence (x, y) -> union (self x) (self y) | E_sequence (x, y) -> union (self x) (self y)
(* NB different from ast_typed... *) (* NB different from ast_typed... *)
| E_assignment (v, _, e) -> unions [ var_name b v ; self e ] | E_assignment (v, _, e) -> unions [ var_name b v ; self e ]
| E_update (e, updates) -> union (self e) (unions @@ List.map (fun (_,e) -> self e) updates) | E_update (r, (_,e)) -> union (self r) (self e)
| E_while (cond , body) -> union (self cond) (self body) | E_while (cond , body) -> union (self cond) (self body)
and var_name : bindings -> var_name -> bindings = fun b n -> and var_name : bindings -> var_name -> bindings = fun b n ->

View File

@ -73,7 +73,7 @@ and expression' =
| E_let_in of ((var_name * type_value) * inline * expression * expression) | E_let_in of ((var_name * type_value) * inline * expression * expression)
| E_sequence of (expression * expression) | E_sequence of (expression * expression)
| E_assignment of (expression_variable * [`Left | `Right] list * expression) | E_assignment of (expression_variable * [`Left | `Right] list * expression)
| E_update of (expression * ([`Left | `Right] list * expression) list) | E_update of (expression * ([`Left | `Right] list * expression))
| E_while of (expression * expression) | E_while of (expression * expression)
and expression = { and expression = {

View File

@ -3,120 +3,122 @@ open Core
let pair_map = fun f (x , y) -> (f x , f y) let pair_map = fun f (x , y) -> (f x , f y)
module Substitution = struct module Substitution = struct
module Pattern = struct module Pattern = struct
open Trace open Trace
module T = Ast_typed module T = Ast_typed
(* module TSMap = Trace.TMap(String) *) (* module TSMap = Trace.TMap(String) *)
type 'a w = 'a -> 'a result type substs = variable:type_variable -> T.type_value' option (* this string is a type_name or type_variable I think *)
let mk_substs ~v ~expr = (v , expr)
type 'a w = substs:substs -> 'a -> 'a result
let rec rec_yes = true let rec rec_yes = true
and s_environment_element_definition ~v ~expr = function and s_environment_element_definition ~substs = function
| T.ED_binder -> ok @@ T.ED_binder | T.ED_binder -> ok @@ T.ED_binder
| T.ED_declaration (val_, free_variables) -> | T.ED_declaration (val_, free_variables) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
let%bind free_variables = bind_map_list (s_variable ~v ~expr) free_variables in let%bind free_variables = bind_map_list (s_variable ~substs) free_variables in
ok @@ T.ED_declaration (val_, free_variables) ok @@ T.ED_declaration (val_, free_variables)
and s_environment ~v ~expr : T.environment w = fun env -> and s_environment : T.environment w = fun ~substs env ->
bind_map_list (fun (variable, T.{ type_value; source_environment; definition }) -> bind_map_list (fun (variable, T.{ type_value; source_environment; definition }) ->
let%bind variable = s_variable ~v ~expr variable in let%bind variable = s_variable ~substs variable in
let%bind type_value = s_type_value ~v ~expr type_value in let%bind type_value = s_type_value ~substs type_value in
let%bind source_environment = s_full_environment ~v ~expr source_environment in let%bind source_environment = s_full_environment ~substs source_environment in
let%bind definition = s_environment_element_definition ~v ~expr definition in let%bind definition = s_environment_element_definition ~substs definition in
ok @@ (variable, T.{ type_value; source_environment; definition })) env ok @@ (variable, T.{ type_value; source_environment; definition })) env
and s_type_environment ~v ~expr : T.type_environment w = fun tenv -> and s_type_environment : T.type_environment w = fun ~substs tenv ->
bind_map_list (fun (type_variable , type_value) -> bind_map_list (fun (type_variable , type_value) ->
let%bind type_variable = s_type_variable ~v ~expr type_variable in let%bind type_variable = s_type_variable ~substs type_variable in
let%bind type_value = s_type_value ~v ~expr type_value in let%bind type_value = s_type_value ~substs type_value in
ok @@ (type_variable , type_value)) tenv ok @@ (type_variable , type_value)) tenv
and s_small_environment ~v ~expr : T.small_environment w = fun (environment, type_environment) -> and s_small_environment : T.small_environment w = fun ~substs (environment, type_environment) ->
let%bind environment = s_environment ~v ~expr environment in let%bind environment = s_environment ~substs environment in
let%bind type_environment = s_type_environment ~v ~expr type_environment in let%bind type_environment = s_type_environment ~substs type_environment in
ok @@ (environment, type_environment) ok @@ (environment, type_environment)
and s_full_environment ~v ~expr : T.full_environment w = fun (a , b) -> and s_full_environment : T.full_environment w = fun ~substs (a , b) ->
let%bind a = s_small_environment ~v ~expr a in let%bind a = s_small_environment ~substs a in
let%bind b = bind_map_list (s_small_environment ~v ~expr) b in let%bind b = bind_map_list (s_small_environment ~substs) b in
ok (a , b) ok (a , b)
and s_variable ~v ~expr : T.expression_variable w = fun var -> and s_variable : T.expression_variable w = fun ~substs var ->
let () = ignore (v, expr) in let () = ignore @@ substs in
ok var ok var
and s_type_variable ~v ~expr : T.type_variable w = fun tvar -> and s_type_variable : T.type_variable w = fun ~substs tvar ->
let _TODO = ignore (v, expr) in let _TODO = ignore @@ substs in
Printf.printf "TODO: subst: unimplemented case s_type_variable"; Printf.printf "TODO: subst: unimplemented case s_type_variable";
ok @@ tvar ok @@ tvar
(* if String.equal tvar v then (* if String.equal tvar v then
* expr * expr
* else * else
* ok tvar *) * ok tvar *)
and s_label ~v ~expr : T.label w = fun l -> and s_label : T.label w = fun ~substs l ->
let () = ignore (v, expr) in let () = ignore @@ substs in
ok l ok l
and s_build_in ~v ~expr : T.constant w = fun b -> and s_build_in : T.constant w = fun ~substs b ->
let () = ignore (v, expr) in let () = ignore @@ substs in
ok b ok b
and s_constructor ~v ~expr : T.constructor w = fun c -> and s_constructor : T.constructor w = fun ~substs c ->
let () = ignore (v, expr) in let () = ignore @@ substs in
ok c ok c
and s_type_name_constant ~v ~expr : T.type_constant w = fun type_name -> and s_type_name_constant : T.type_constant w = fun ~substs type_name ->
(* TODO: we don't need to subst anything, right? *) (* TODO: we don't need to subst anything, right? *)
let () = ignore (v , expr) in let () = ignore @@ substs in
ok @@ type_name ok @@ type_name
and s_type_value' ~v ~expr : T.type_value' w = function and s_type_value' : T.type_value' w = fun ~substs -> function
| T.T_tuple type_value_list -> | T.T_operator (TC_tuple type_value_list) ->
let%bind type_value_list = bind_map_list (s_type_value ~v ~expr) type_value_list in let%bind type_value_list = bind_map_list (s_type_value ~substs) type_value_list in
ok @@ T.T_tuple type_value_list ok @@ T.T_operator (TC_tuple type_value_list)
| T.T_sum _ -> failwith "TODO: T_sum" | T.T_sum _ -> failwith "TODO: T_sum"
| T.T_record _ -> failwith "TODO: T_record" | T.T_record _ -> failwith "TODO: T_record"
| T.T_constant (type_name) -> | T.T_constant type_name ->
let%bind type_name = s_type_name_constant ~v ~expr type_name in let%bind type_name = s_type_name_constant ~substs type_name in
ok @@ T.T_constant (type_name) ok @@ T.T_constant (type_name)
| T.T_variable variable -> | T.T_variable variable ->
if Var.equal variable v begin
then ok @@ expr match substs ~variable with
else ok @@ T.T_variable variable | Some expr -> s_type_value' ~substs expr (* TODO: is it the right thing to recursively examine this? We mustn't go into an infinite loop. *)
| T.T_operator (type_name_and_args) -> | None -> ok @@ T.T_variable variable
let bind_map_type_operator = Stage_common.Misc.bind_map_type_operator in (* TODO: write T.Misc.bind_map_type_operator, but it doesn't work *) end
let%bind type_name_and_args = bind_map_type_operator (s_type_value ~v ~expr) type_name_and_args in | T.T_operator type_name_and_args ->
let%bind type_name_and_args = T.Misc.bind_map_type_operator (s_type_value ~substs) type_name_and_args in
ok @@ T.T_operator type_name_and_args ok @@ T.T_operator type_name_and_args
| T.T_arrow _ -> | T.T_arrow _ ->
let _TODO = (v, expr) in let _TODO = substs in
failwith "TODO: T_function" failwith "TODO: T_function"
and s_type_expression' ~v ~expr : _ Ast_simplified.type_expression' w = fun type_expression' -> and s_type_expression' : _ Ast_simplified.type_expression' w = fun ~substs -> function
match type_expression' with
| Ast_simplified.T_tuple _ -> failwith "TODO: subst: unimplemented case s_type_expression tuple"
| Ast_simplified.T_sum _ -> failwith "TODO: subst: unimplemented case s_type_expression sum" | Ast_simplified.T_sum _ -> failwith "TODO: subst: unimplemented case s_type_expression sum"
| Ast_simplified.T_record _ -> failwith "TODO: subst: unimplemented case s_type_expression record" | Ast_simplified.T_record _ -> failwith "TODO: subst: unimplemented case s_type_expression record"
| Ast_simplified.T_arrow (_, _) -> failwith "TODO: subst: unimplemented case s_type_expression arrow" | Ast_simplified.T_arrow (_, _) -> failwith "TODO: subst: unimplemented case s_type_expression arrow"
| Ast_simplified.T_variable _ -> failwith "TODO: subst: unimplemented case s_type_expression variable" | Ast_simplified.T_variable _ -> failwith "TODO: subst: unimplemented case s_type_expression variable"
| Ast_simplified.T_operator op -> | Ast_simplified.T_operator op ->
let%bind op = let%bind op =
Stage_common.Misc.bind_map_type_operator (* TODO: write Ast_simplified.Misc.type_operator_name *) Ast_simplified.Misc.bind_map_type_operator
(s_type_expression ~v ~expr) (s_type_expression ~substs)
op in op in
(* TODO: when we have generalized operators, we might need to subst the operator name itself? *)
ok @@ Ast_simplified.T_operator op ok @@ Ast_simplified.T_operator op
| Ast_simplified.T_constant constant -> | Ast_simplified.T_constant constant ->
ok @@ Ast_simplified.T_constant constant ok @@ Ast_simplified.T_constant constant
and s_type_expression ~v ~expr : Ast_simplified.type_expression w = fun {type_expression'} -> and s_type_expression : Ast_simplified.type_expression w = fun ~substs {type_expression'} ->
let%bind type_expression' = s_type_expression' ~v ~expr type_expression' in let%bind type_expression' = s_type_expression' ~substs type_expression' in
ok @@ Ast_simplified.{type_expression'} ok @@ Ast_simplified.{type_expression'}
and s_type_value ~v ~expr : T.type_value w = fun { type_value'; simplified } -> and s_type_value : T.type_value w = fun ~substs { type_value'; simplified } ->
let%bind type_value' = s_type_value' ~v ~expr type_value' in let%bind type_value' = s_type_value' ~substs type_value' in
let%bind simplified = bind_map_option (s_type_expression ~v ~expr) simplified in let%bind simplified = bind_map_option (s_type_expression ~substs) simplified in
ok @@ T.{ type_value'; simplified } ok @@ T.{ type_value'; simplified }
and s_literal ~v ~expr : T.literal w = function and s_literal : T.literal w = fun ~substs -> function
| T.Literal_unit -> | T.Literal_unit ->
let () = ignore (v, expr) in let () = ignore @@ substs in
ok @@ T.Literal_unit ok @@ T.Literal_unit
| (T.Literal_bool _ as x) | (T.Literal_bool _ as x)
| (T.Literal_int _ as x) | (T.Literal_int _ as x)
@ -132,144 +134,145 @@ module Substitution = struct
| (T.Literal_chain_id _ as x) | (T.Literal_chain_id _ as x)
| (T.Literal_operation _ as x) -> | (T.Literal_operation _ as x) ->
ok @@ x ok @@ x
and s_matching_expr ~v ~expr : T.matching_expr w = fun _ -> and s_matching_expr : T.matching_expr w = fun ~substs _ ->
let _TODO = v, expr in let _TODO = substs in
failwith "TODO: subst: unimplemented case s_matching" failwith "TODO: subst: unimplemented case s_matching"
and s_named_type_value ~v ~expr : T.named_type_value w = fun _ -> and s_named_type_value : T.named_type_value w = fun ~substs _ ->
let _TODO = v, expr in let _TODO = substs in
failwith "TODO: subst: unimplemented case s_named_type_value" failwith "TODO: subst: unimplemented case s_named_type_value"
and s_access_path ~v ~expr : T.access_path w = fun _ -> and s_access_path : T.access_path w = fun ~substs _ ->
let _TODO = v, expr in let _TODO = substs in
failwith "TODO: subst: unimplemented case s_access_path" failwith "TODO: subst: unimplemented case s_access_path"
and s_expression ~v ~expr : T.expression w = function and s_expression : T.expression w = fun ~(substs : substs) -> function
| T.E_literal x -> | T.E_literal x ->
let%bind x = s_literal ~v ~expr x in let%bind x = s_literal ~substs x in
ok @@ T.E_literal x ok @@ T.E_literal x
| T.E_constant (var, vals) -> | T.E_constant (var, vals) ->
let%bind var = s_build_in ~v ~expr var in let%bind var = s_build_in ~substs var in
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_constant (var, vals) ok @@ T.E_constant (var, vals)
| T.E_variable tv -> | T.E_variable tv ->
let%bind tv = s_variable ~v ~expr tv in let%bind tv = s_variable ~substs tv in
ok @@ T.E_variable tv ok @@ T.E_variable tv
| T.E_application (val1 , val2) -> | T.E_application (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_application (val1 , val2) ok @@ T.E_application (val1 , val2)
| T.E_lambda { binder; body } -> | T.E_lambda { binder; body } ->
let%bind binder = s_variable ~v ~expr binder in let%bind binder = s_variable ~substs binder in
let%bind body = s_annotated_expression ~v ~expr body in let%bind body = s_annotated_expression ~substs body in
ok @@ T.E_lambda { binder; body } ok @@ T.E_lambda { binder; body }
| T.E_let_in { binder; rhs; result; inline } -> | T.E_let_in { binder; rhs; result; inline } ->
let%bind binder = s_variable ~v ~expr binder in let%bind binder = s_variable ~substs binder in
let%bind rhs = s_annotated_expression ~v ~expr rhs in let%bind rhs = s_annotated_expression ~substs rhs in
let%bind result = s_annotated_expression ~v ~expr result in let%bind result = s_annotated_expression ~substs result in
ok @@ T.E_let_in { binder; rhs; result; inline } ok @@ T.E_let_in { binder; rhs; result; inline }
| T.E_tuple vals -> | T.E_tuple vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_tuple vals ok @@ T.E_tuple vals
| T.E_tuple_accessor (val_, i) -> | T.E_tuple_accessor (val_, i) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
let i = i in let i = i in
ok @@ T.E_tuple_accessor (val_, i) ok @@ T.E_tuple_accessor (val_, i)
| T.E_constructor (tvar, val_) -> | T.E_constructor (tvar, val_) ->
let%bind tvar = s_constructor ~v ~expr tvar in let%bind tvar = s_constructor ~substs tvar in
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
ok @@ T.E_constructor (tvar, val_) ok @@ T.E_constructor (tvar, val_)
| T.E_record aemap -> | T.E_record aemap ->
let _TODO = aemap in let _TODO = aemap in
failwith "TODO: subst in record" failwith "TODO: subst in record"
(* let%bind aemap = TSMap.bind_map_Map (fun ~k:key ~v:val_ -> (* let%bind aemap = TSMap.bind_map_Map (fun ~k:key ~v:val_ ->
* let key = s_type_variable ~v ~expr key in * let key = s_type_variable ~substs key in
* let val_ = s_annotated_expression ~v ~expr val_ in * let val_ = s_annotated_expression ~substs val_ in
* ok @@ (key , val_)) aemap in * ok @@ (key , val_)) aemap in
* ok @@ T.E_record aemap *) * ok @@ T.E_record aemap *)
| T.E_record_accessor (val_, l) -> | T.E_record_accessor (val_, l) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
let%bind l = s_label ~v ~expr l in let l = l in (* Nothing to substitute, this is a label, not a type *)
ok @@ T.E_record_accessor (val_, l) ok @@ T.E_record_accessor (val_, l)
| T.E_record_update (r, ups) -> | T.E_record_update (r, (l, e)) ->
let%bind r = s_annotated_expression ~v ~expr r in let%bind r = s_annotated_expression ~substs r in
let%bind ups = bind_map_list (fun (l,e) -> let%bind e = s_annotated_expression ~v ~expr e in ok (l,e)) ups in let%bind e = s_annotated_expression ~substs e in
ok @@ T.E_record_update (r,ups) ok @@ T.E_record_update (r, (l, e))
| T.E_map val_val_list -> | T.E_map val_val_list ->
let%bind val_val_list = bind_map_list (fun (val1 , val2) -> let%bind val_val_list = bind_map_list (fun (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ (val1 , val2) ok @@ (val1 , val2)
) val_val_list in ) val_val_list in
ok @@ T.E_map val_val_list ok @@ T.E_map val_val_list
| T.E_big_map val_val_list -> | T.E_big_map val_val_list ->
let%bind val_val_list = bind_map_list (fun (val1 , val2) -> let%bind val_val_list = bind_map_list (fun (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ (val1 , val2) ok @@ (val1 , val2)
) val_val_list in ) val_val_list in
ok @@ T.E_big_map val_val_list ok @@ T.E_big_map val_val_list
| T.E_list vals -> | T.E_list vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_list vals ok @@ T.E_list vals
| T.E_set vals -> | T.E_set vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_set vals ok @@ T.E_set vals
| T.E_look_up (val1, val2) -> | T.E_look_up (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_look_up (val1 , val2) ok @@ T.E_look_up (val1 , val2)
| T.E_matching (val_ , matching_expr) -> | T.E_matching (val_ , matching_expr) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
let%bind matching = s_matching_expr ~v ~expr matching_expr in let%bind matching = s_matching_expr ~substs matching_expr in
ok @@ T.E_matching (val_ , matching) ok @@ T.E_matching (val_ , matching)
| T.E_sequence (val1, val2) -> | T.E_sequence (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_sequence (val1 , val2) ok @@ T.E_sequence (val1 , val2)
| T.E_loop (val1, val2) -> | T.E_loop (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_loop (val1 , val2) ok @@ T.E_loop (val1 , val2)
| T.E_assign (named_tval, access_path, val_) -> | T.E_assign (named_tval, access_path, val_) ->
let%bind named_tval = s_named_type_value ~v ~expr named_tval in let%bind named_tval = s_named_type_value ~substs named_tval in
let%bind access_path = s_access_path ~v ~expr access_path in let%bind access_path = s_access_path ~substs access_path in
let%bind val_ = s_annotated_expression ~v ~expr val_ in let%bind val_ = s_annotated_expression ~substs val_ in
ok @@ T.E_assign (named_tval, access_path, val_) ok @@ T.E_assign (named_tval, access_path, val_)
and s_annotated_expression ~v ~expr : T.annotated_expression w = fun { expression; type_annotation; environment; location } -> and s_annotated_expression : T.annotated_expression w = fun ~substs { expression; type_annotation; environment; location } ->
let%bind expression = s_expression ~v ~expr expression in let%bind expression = s_expression ~substs expression in
let%bind type_annotation = s_type_value ~v ~expr type_annotation in let%bind type_annotation = s_type_value ~substs type_annotation in
let%bind environment = s_full_environment ~v ~expr environment in let%bind environment = s_full_environment ~substs environment in
let location = location in let location = location in
ok T.{ expression; type_annotation; environment; location } ok T.{ expression; type_annotation; environment; location }
and s_named_expression ~v ~expr : T.named_expression w = fun { name; annotated_expression } -> and s_named_expression : T.named_expression w = fun ~substs { name; annotated_expression } ->
let%bind name = s_variable ~v ~expr name in let name = name in (* Nothing to substitute, this is a variable name *)
let%bind annotated_expression = s_annotated_expression ~v ~expr annotated_expression in let%bind annotated_expression = s_annotated_expression ~substs annotated_expression in
ok T.{ name; annotated_expression } ok T.{ name; annotated_expression }
and s_declaration ~v ~expr : T.declaration w = and s_declaration : T.declaration w = fun ~substs ->
function function
Ast_typed.Declaration_constant (e, i, (env1, env2)) -> Ast_typed.Declaration_constant (e, inline, (env1, env2)) ->
let%bind e = s_named_expression ~v ~expr e in let%bind e = s_named_expression ~substs e in
let%bind env1 = s_full_environment ~v ~expr env1 in let%bind env1 = s_full_environment ~substs env1 in
let%bind env2 = s_full_environment ~v ~expr env2 in let%bind env2 = s_full_environment ~substs env2 in
ok @@ Ast_typed.Declaration_constant (e, i, (env1, env2)) ok @@ Ast_typed.Declaration_constant (e, inline, (env1, env2))
and s_declaration_wrap ~v ~expr : T.declaration Location.wrap w = fun d -> and s_declaration_wrap : T.declaration Location.wrap w = fun ~substs d ->
Trace.bind_map_location (s_declaration ~v ~expr) d Trace.bind_map_location (s_declaration ~substs) d
(* Replace the type variable ~v with ~expr everywhere within the (* Replace the type variable ~v with ~expr everywhere within the
program ~p. TODO: issues with scoping/shadowing. *) program ~p. TODO: issues with scoping/shadowing. *)
and program ~(p : Ast_typed.program) ~(v:type_variable) ~expr : Ast_typed.program Trace.result = and s_program : Ast_typed.program w = fun ~substs p ->
Trace.bind_map_list (s_declaration_wrap ~v ~expr) p Trace.bind_map_list (s_declaration_wrap ~substs) p
(* (*
Computes `P[v := expr]`. Computes `P[v := expr]`.
*) *)
and type_value ~tv ~v ~expr = and type_value ~tv ~substs =
let self tv = type_value ~tv ~v ~expr in let self tv = type_value ~tv ~substs in
let (v, expr) = substs in
match tv with match tv with
| P_variable v' when v' = v -> expr | P_variable v' when Var.equal v' v -> expr
| P_variable _ -> tv | P_variable _ -> tv
| P_constant (x , lst) -> ( | P_constant (x , lst) -> (
let lst' = List.map self lst in let lst' = List.map self lst in
@ -280,7 +283,7 @@ module Substitution = struct
P_apply ab' P_apply ab'
) )
| P_forall p -> ( | P_forall p -> (
let aux c = constraint_ ~c ~v ~expr in let aux c = constraint_ ~c ~substs in
let constraints = List.map aux p.constraints in let constraints = List.map aux p.constraints in
if (p.binder = v) then ( if (p.binder = v) then (
P_forall { p with constraints } P_forall { p with constraints }
@ -290,31 +293,33 @@ module Substitution = struct
) )
) )
and constraint_ ~c ~v ~expr = and constraint_ ~c ~substs =
match c with match c with
| C_equation ab -> ( | C_equation ab -> (
let ab' = pair_map (fun tv -> type_value ~tv ~v ~expr) ab in let ab' = pair_map (fun tv -> type_value ~tv ~substs) ab in
C_equation ab' C_equation ab'
) )
| C_typeclass (tvs , tc) -> ( | C_typeclass (tvs , tc) -> (
let tvs' = List.map (fun tv -> type_value ~tv ~v ~expr) tvs in let tvs' = List.map (fun tv -> type_value ~tv ~substs) tvs in
let tc' = typeclass ~tc ~v ~expr in let tc' = typeclass ~tc ~substs in
C_typeclass (tvs' , tc') C_typeclass (tvs' , tc')
) )
| C_access_label (tv , l , v') -> ( | C_access_label (tv , l , v') -> (
let tv' = type_value ~tv ~v ~expr in let tv' = type_value ~tv ~substs in
C_access_label (tv' , l , v') C_access_label (tv' , l , v')
) )
and typeclass ~tc ~v ~expr = and typeclass ~tc ~substs =
List.map (List.map (fun tv -> type_value ~tv ~v ~expr)) tc List.map (List.map (fun tv -> type_value ~tv ~substs)) tc
let program = s_program
(* Performs beta-reduction at the root of the type *) (* Performs beta-reduction at the root of the type *)
let eval_beta_root ~(tv : type_value) = let eval_beta_root ~(tv : type_value) =
match tv with match tv with
P_apply (P_forall { binder; constraints; body }, arg) -> P_apply (P_forall { binder; constraints; body }, arg) ->
let constraints = List.map (fun c -> constraint_ ~c ~v:binder ~expr:arg) constraints in let constraints = List.map (fun c -> constraint_ ~c ~substs:(mk_substs ~v:binder ~expr:arg)) constraints in
(type_value ~tv:body ~v:binder ~expr:arg , constraints) (type_value ~tv:body ~substs:(mk_substs ~v:binder ~expr:arg) , constraints)
| _ -> (tv , []) | _ -> (tv , [])
end end

View File

@ -64,5 +64,5 @@ end
function modify_inner (const r : double_record) : double_record is function modify_inner (const r : double_record) : double_record is
block { block {
r := r with record inner = r.inner with record b = 2048; end; end; r := r with record inner.b = 2048; end;
} with r } with r

View File

@ -50,4 +50,4 @@ type double_record = {
inner : abc; inner : abc;
} }
let modify_inner (r : double_record) : double_record = {r with inner = {r.inner with b = 2048 }} let modify_inner (r : double_record) : double_record = {r with inner.b = 2048 }

View File

@ -50,4 +50,4 @@ type double_record = {
inner : abc, inner : abc,
}; };
let modify_inner = (r : double_record) : double_record => {...r,inner : {...r.inner, b : 2048 } }; let modify_inner = (r : double_record) : double_record => {...r,inner.b : 2048 };

View File

@ -12,7 +12,7 @@ let int () : unit result =
let open Typer in let open Typer in
let e = Environment.full_empty in let e = Environment.full_empty in
let state = Typer.Solver.initial_state in let state = Typer.Solver.initial_state in
let%bind (post , new_state) = type_expression e state pre in let%bind (post , new_state) = type_expression_subst e state pre in
let () = Typer.Solver.discard_state new_state in let () = Typer.Solver.discard_state new_state in
let open! Typed in let open! Typed in
let open Combinators in let open Combinators in
@ -27,7 +27,7 @@ module TestExpressions = struct
let pre = expr in let pre = expr in
let open Typer in let open Typer in
let open! Typed in let open! Typed in
let%bind (post , new_state) = type_expression env state pre in let%bind (post , new_state) = type_expression_subst env state pre in
let () = Typer.Solver.discard_state new_state in let () = Typer.Solver.discard_state new_state in
let%bind () = assert_type_value_eq (post.type_annotation, test_expected_ty) in let%bind () = assert_type_value_eq (post.type_annotation, test_expected_ty) in
ok () ok ()

View File

@ -38,12 +38,10 @@ module Make (Item: Partition.Item) =
(* Printing *) (* Printing *)
let print (p: partition) = let print ppf p =
let buffer = Buffer.create 80 in
let print src dst = let print src dst =
let link = Format.fprintf ppf "%s -> %s (%s)\n"
Printf.sprintf "%s -> %s\n" (Item.to_string src) (Item.to_string dst) (Item.to_string (repr src p))
(Item.to_string src) (Item.to_string dst) in ItemMap.iter print p
in Buffer.add_string buffer link
in (ItemMap.iter print p; buffer)
end end