Merge branch 'rinderknecht-dev' into 'dev'

Refactorings on the front-ends.

See merge request ligolang/ligo!134
This commit is contained in:
Christian Rinderknecht 2019-10-17 11:02:14 +00:00
commit 9a0847cb9b
17 changed files with 1133 additions and 493 deletions

View File

@ -107,7 +107,7 @@ type t =
| Type of Region.t
| With of Region.t
(* Liquidity specific *)
(* Liquidity-specific *)
| LetEntry of Region.t
| MatchNat of Region.t
@ -137,23 +137,20 @@ val to_region : token -> Region.t
(* Injections *)
type int_err =
Non_canonical_zero
type int_err = Non_canonical_zero
type ident_err = Reserved_name
type invalid_natural =
| Invalid_natural
type nat_err = Invalid_natural
| Non_canonical_zero_nat
type sym_err = Invalid_symbol
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_int : lexeme -> Region.t -> (token, int_err) result
val mk_nat : lexeme -> Region.t -> (token, invalid_natural) result
val mk_nat : lexeme -> Region.t -> (token, nat_err) result
val mk_mtz : lexeme -> Region.t -> (token, int_err) result
val mk_ident : lexeme -> Region.t -> (token, ident_err) result
val mk_sym : lexeme -> Region.t -> (token, sym_err) result
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_constr : lexeme -> Region.t -> token
val mk_sym : lexeme -> Region.t -> token
val eof : Region.t -> token
(* Predicates *)

View File

@ -89,7 +89,7 @@ type t =
| Type of Region.t
| With of Region.t
(* Liquidity specific *)
(* Liquidity-specific *)
| LetEntry of Region.t
| MatchNat of Region.t
@ -379,11 +379,10 @@ let mk_int lexeme region =
then Error Non_canonical_zero
else Ok (Int Region.{region; value = lexeme, z})
type invalid_natural =
| Invalid_natural
type nat_err =
Invalid_natural
| Non_canonical_zero_nat
let mk_nat lexeme region =
match (String.index_opt lexeme 'p') with
| None -> Error Invalid_natural
@ -408,35 +407,41 @@ let mk_mtz lexeme region =
let eof region = EOF region
type sym_err = Invalid_symbol
let mk_sym lexeme region =
match lexeme with
"->" -> ARROW region
| "::" -> CONS region
| "^" -> CAT region
| "-" -> MINUS region
| "+" -> PLUS region
| "/" -> SLASH region
| "*" -> TIMES region
| "[" -> LBRACKET region
| "]" -> RBRACKET region
| "{" -> LBRACE region
| "}" -> RBRACE region
| "," -> COMMA region
| ";" -> SEMI region
| "|" -> VBAR region
| ":" -> COLON region
| "." -> DOT region
| "_" -> WILD region
| "=" -> EQ region
| "<>" -> NE region
| "<" -> LT region
| ">" -> GT region
| "=<" -> LE region
| ">=" -> GE region
| "||" -> BOOL_OR region
| "&&" -> BOOL_AND region
| "(" -> LPAR region
| ")" -> RPAR region
(* Lexemes in common with all concrete syntaxes *)
";" -> Ok (SEMI region)
| "," -> Ok (COMMA region)
| "(" -> Ok (LPAR region)
| ")" -> Ok (RPAR region)
| "[" -> Ok (LBRACKET region)
| "]" -> Ok (RBRACKET region)
| "{" -> Ok (LBRACE region)
| "}" -> Ok (RBRACE region)
| "=" -> Ok (EQ region)
| ":" -> Ok (COLON region)
| "|" -> Ok (VBAR region)
| "->" -> Ok (ARROW region)
| "." -> Ok (DOT region)
| "_" -> Ok (WILD region)
| "^" -> Ok (CAT region)
| "+" -> Ok (PLUS region)
| "-" -> Ok (MINUS region)
| "*" -> Ok (TIMES region)
| "/" -> Ok (SLASH region)
| "<" -> Ok (LT region)
| "<=" -> Ok (LE region)
| ">" -> Ok (GT region)
| ">=" -> Ok (GE region)
| "<>" -> Ok (NE region)
| "::" -> Ok (CONS region)
| "||" -> Ok (BOOL_OR region)
| "&&" -> Ok (BOOL_AND region)
| a -> failwith ("Not understood token: " ^ a)
(* Identifiers *)

View File

@ -63,7 +63,6 @@ type kwd_not = Region.t
type kwd_of = Region.t
type kwd_or = Region.t
type kwd_patch = Region.t
type kwd_procedure = Region.t
type kwd_record = Region.t
type kwd_remove = Region.t
type kwd_set = Region.t
@ -163,7 +162,7 @@ and ast = t
and declaration =
TypeDecl of type_decl reg
| ConstDecl of const_decl reg
| LambdaDecl of lambda_decl
| FunDecl of fun_decl reg
and const_decl = {
kwd_const : kwd_const;
@ -188,7 +187,7 @@ and type_decl = {
and type_expr =
TProd of cartesian
| TSum of (variant reg, vbar) nsepseq reg
| TRecord of record_type
| TRecord of field_decl reg injection reg
| TApp of (type_name * type_tuple) reg
| TFun of (type_expr * arrow * type_expr) reg
| TPar of type_expr par reg
@ -198,11 +197,9 @@ and cartesian = (type_expr, times) nsepseq reg
and variant = {
constr : constr;
args : (kwd_of * cartesian) option
args : (kwd_of * type_expr) option
}
and record_type = field_decl reg injection reg
and field_decl = {
field_name : field_name;
colon : colon;
@ -213,10 +210,6 @@ and type_tuple = (type_expr, comma) nsepseq par reg
(* Function and procedure declarations *)
and lambda_decl =
FunDecl of fun_decl reg
| ProcDecl of proc_decl reg
and fun_decl = {
kwd_function : kwd_function;
name : variable;
@ -231,16 +224,6 @@ and fun_decl = {
terminator : semi option
}
and proc_decl = {
kwd_procedure : kwd_procedure;
name : variable;
param : parameters;
kwd_is : kwd_is;
local_decls : local_decl list;
block : block reg;
terminator : semi option
}
and parameters = (param_decl, semi) nsepseq par reg
and param_decl =
@ -284,7 +267,6 @@ and statement =
and local_decl =
LocalFun of fun_decl reg
| LocalProc of proc_decl reg
| LocalData of data_decl
and data_decl =
@ -425,10 +407,8 @@ and for_loop =
and for_int = {
kwd_for : kwd_for;
assign : var_assign reg;
down : kwd_down option;
kwd_to : kwd_to;
bound : expr;
step : (kwd_step * expr) option;
block : block reg
}
@ -442,11 +422,19 @@ and for_collect = {
kwd_for : kwd_for;
var : variable;
bind_to : (arrow * variable) option;
colon : colon;
elt_type : type_expr;
kwd_in : kwd_in;
collection : collection;
expr : expr;
block : block reg
}
and collection =
Map of kwd_map
| Set of kwd_set
| List of kwd_list
(* Expressions *)
and expr =
@ -577,16 +565,13 @@ and selection =
FieldName of field_name
| Component of (Lexer.lexeme * Z.t) reg
and tuple_expr =
TupleInj of tuple_injection
and tuple_injection = (expr, comma) nsepseq par reg
and tuple_expr = (expr, comma) nsepseq par reg
and none_expr = c_None
and fun_call = (fun_name * arguments) reg
and arguments = tuple_injection
and arguments = tuple_expr
(* Patterns *)
@ -596,6 +581,7 @@ and pattern =
| PVar of Lexer.lexeme reg
| PWild of wild
| PInt of (Lexer.lexeme * Z.t) reg
| PNat of (Lexer.lexeme * Z.t) reg
| PBytes of (Lexer.lexeme * Hex.t) reg
| PString of Lexer.lexeme reg
| PUnit of c_Unit
@ -645,8 +631,7 @@ let rec expr_to_region = function
| ECase {region;_}
| EPar {region; _} -> region
and tuple_expr_to_region = function
TupleInj {region; _} -> region
and tuple_expr_to_region {region; _} = region
and map_expr_to_region = function
MapLookUp {region; _}
@ -733,6 +718,7 @@ let pattern_to_region = function
| PVar {region; _}
| PWild region
| PInt {region; _}
| PNat {region; _}
| PBytes {region; _}
| PString {region; _}
| PUnit region
@ -748,7 +734,6 @@ let pattern_to_region = function
let local_decl_to_region = function
LocalFun {region; _}
| LocalProc {region; _}
| LocalData LocalConst {region; _}
| LocalData LocalVar {region; _} -> region

View File

@ -47,7 +47,6 @@ type kwd_not = Region.t
type kwd_of = Region.t
type kwd_or = Region.t
type kwd_patch = Region.t
type kwd_procedure = Region.t
type kwd_record = Region.t
type kwd_remove = Region.t
type kwd_set = Region.t
@ -154,7 +153,7 @@ and ast = t
and declaration =
TypeDecl of type_decl reg
| ConstDecl of const_decl reg
| LambdaDecl of lambda_decl
| FunDecl of fun_decl reg
and const_decl = {
kwd_const : kwd_const;
@ -179,7 +178,7 @@ and type_decl = {
and type_expr =
TProd of cartesian
| TSum of (variant reg, vbar) nsepseq reg
| TRecord of record_type
| TRecord of field_decl reg injection reg
| TApp of (type_name * type_tuple) reg
| TFun of (type_expr * arrow * type_expr) reg
| TPar of type_expr par reg
@ -189,11 +188,9 @@ and cartesian = (type_expr, times) nsepseq reg
and variant = {
constr : constr;
args : (kwd_of * cartesian) option
args : (kwd_of * type_expr) option
}
and record_type = field_decl reg injection reg
and field_decl = {
field_name : field_name;
colon : colon;
@ -202,11 +199,7 @@ and field_decl = {
and type_tuple = (type_expr, comma) nsepseq par reg
(* Function and procedure declarations *)
and lambda_decl =
FunDecl of fun_decl reg
| ProcDecl of proc_decl reg
(* Function declarations *)
and fun_decl = {
kwd_function : kwd_function;
@ -222,16 +215,6 @@ and fun_decl = {
terminator : semi option
}
and proc_decl = {
kwd_procedure : kwd_procedure;
name : variable;
param : parameters;
kwd_is : kwd_is;
local_decls : local_decl list;
block : block reg;
terminator : semi option
}
and parameters = (param_decl, semi) nsepseq par reg
and param_decl =
@ -275,7 +258,6 @@ and statement =
and local_decl =
LocalFun of fun_decl reg
| LocalProc of proc_decl reg
| LocalData of data_decl
and data_decl =
@ -416,10 +398,8 @@ and for_loop =
and for_int = {
kwd_for : kwd_for;
assign : var_assign reg;
down : kwd_down option;
kwd_to : kwd_to;
bound : expr;
step : (kwd_step * expr) option;
block : block reg
}
@ -433,15 +413,23 @@ and for_collect = {
kwd_for : kwd_for;
var : variable;
bind_to : (arrow * variable) option;
colon : colon;
elt_type : type_expr;
kwd_in : kwd_in;
collection : collection;
expr : expr;
block : block reg
}
and collection =
Map of kwd_map
| Set of kwd_set
| List of kwd_list
(* Expressions *)
and expr =
| ECase of expr case reg
ECase of expr case reg
| EAnnot of annot_expr reg
| ELogic of logic_expr
| EArith of arith_expr
@ -568,16 +556,13 @@ and selection =
FieldName of field_name
| Component of (Lexer.lexeme * Z.t) reg
and tuple_expr =
TupleInj of tuple_injection
and tuple_injection = (expr, comma) nsepseq par reg
and tuple_expr = (expr, comma) nsepseq par reg
and none_expr = c_None
and fun_call = (fun_name * arguments) reg
and arguments = tuple_injection
and arguments = tuple_expr
(* Patterns *)
@ -587,6 +572,7 @@ and pattern =
| PVar of Lexer.lexeme reg
| PWild of wild
| PInt of (Lexer.lexeme * Z.t) reg
| PNat of (Lexer.lexeme * Z.t) reg
| PBytes of (Lexer.lexeme * Hex.t) reg
| PString of Lexer.lexeme reg
| PUnit of c_Unit

View File

@ -332,15 +332,15 @@ There are three kinds of native numerical types in PascaLIGO: `int`,
other, for example `00` is invalid. Also, for the sake of convenience,
underscores are allowed in the literals, like `1_000_000`.
* The second numerical type is the type of the natural numbers,
e.g., `0n` or `13n`. Note that the `nat` literals must be annotated
with the suffix `n`, which distinguishes them from `int` literals. The
same convenient use of underscores as with integer literals is allowed
too and the canonical form of zero is `0n`.
* The second numerical type is the type of the natural numbers, e.g.,
`0n` or `13n`. Note that the `nat` literals must be annotated with the
suffix `n`, which distinguishes them from `int` literals. The same
convenient use of underscores as with integer literals is allowed too
and the canonical form of zero is `0n`.
* The last kind of native numerical type is `tez`, which is a unit
of measure of the amounts (fees, accounts). Beware: the literals of
the type `tez` are annotated with the suffix `mtz`, which stands for
* The last kind of native numerical type is `tez`, which is a unit of
measure of the amounts (fees, accounts). Beware: the literals of the
type `tez` are annotated with the suffix `mtz`, which stands for
millionth of Tez, for instance, `0mtz` or `1200000mtz`. The same handy
use of underscores as in natural literals help in the writing, like
`1_200_000mtz`.
@ -533,14 +533,13 @@ in terse style (see section "Predefined types and values/Lists").
Given a tuple `t` with _n_ components, the `i`th component is
t.(i)
t.i
where `t.(0)` is the first component. For example, given the
declaration
where `t.0` is the first component. For example, given the declaration
const t : int * string = (4, "four")
the expression `t.(1)` has the value `"four"`.
the expression `t.1` has the value `"four"`.
#### Records

View File

@ -53,13 +53,13 @@ type t =
| VBAR of Region.t (* "|" *)
| ARROW of Region.t (* "->" *)
| ASS of Region.t (* ":=" *)
| EQUAL of Region.t (* "=" *)
| EQ of Region.t (* "=" *)
| COLON of Region.t (* ":" *)
| LT of Region.t (* "<" *)
| LEQ of Region.t (* "<=" *)
| LE of Region.t (* "<=" *)
| GT of Region.t (* ">" *)
| GEQ of Region.t (* ">=" *)
| NEQ of Region.t (* "=/=" *)
| GE of Region.t (* ">=" *)
| NE of Region.t (* "=/=" *)
| PLUS of Region.t (* "+" *)
| MINUS of Region.t (* "-" *)
| SLASH of Region.t (* "/" *)
@ -137,23 +137,20 @@ val to_region : token -> Region.t
(* Injections *)
type int_err =
Non_canonical_zero
type int_err = Non_canonical_zero
type ident_err = Reserved_name
type invalid_natural =
| Invalid_natural
type nat_err = Invalid_natural
| Non_canonical_zero_nat
type sym_err = Invalid_symbol
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_int : lexeme -> Region.t -> (token, int_err) result
val mk_nat : lexeme -> Region.t -> (token, invalid_natural) result
val mk_nat : lexeme -> Region.t -> (token, nat_err) result
val mk_mtz : lexeme -> Region.t -> (token, int_err) result
val mk_ident : lexeme -> Region.t -> (token, ident_err) result
val mk_sym : lexeme -> Region.t -> (token, sym_err) result
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_constr : lexeme -> Region.t -> token
val mk_sym : lexeme -> Region.t -> token
val eof : Region.t -> token
(* Predicates *)

View File

@ -51,13 +51,13 @@ type t =
| VBAR of Region.t
| ARROW of Region.t
| ASS of Region.t
| EQUAL of Region.t
| EQ of Region.t
| COLON of Region.t
| LT of Region.t
| LEQ of Region.t
| LE of Region.t
| GT of Region.t
| GEQ of Region.t
| NEQ of Region.t
| GE of Region.t
| NE of Region.t
| PLUS of Region.t
| MINUS of Region.t
| SLASH of Region.t
@ -183,13 +183,13 @@ let proj_token = function
| VBAR region -> region, "VBAR"
| ARROW region -> region, "ARROW"
| ASS region -> region, "ASS"
| EQUAL region -> region, "EQUAL"
| EQ region -> region, "EQ"
| COLON region -> region, "COLON"
| LT region -> region, "LT"
| LEQ region -> region, "LEQ"
| LE region -> region, "LE"
| GT region -> region, "GT"
| GEQ region -> region, "GEQ"
| NEQ region -> region, "NEQ"
| GE region -> region, "GE"
| NE region -> region, "NE"
| PLUS region -> region, "PLUS"
| MINUS region -> region, "MINUS"
| SLASH region -> region, "SLASH"
@ -276,13 +276,13 @@ let to_lexeme = function
| VBAR _ -> "|"
| ARROW _ -> "->"
| ASS _ -> ":="
| EQUAL _ -> "="
| EQ _ -> "="
| COLON _ -> ":"
| LT _ -> "<"
| LEQ _ -> "<="
| LE _ -> "<="
| GT _ -> ">"
| GEQ _ -> ">="
| NEQ _ -> "=/="
| GE _ -> ">="
| NE _ -> "=/="
| PLUS _ -> "+"
| MINUS _ -> "-"
| SLASH _ -> "/"
@ -480,8 +480,8 @@ let mk_int lexeme region =
then Error Non_canonical_zero
else Ok (Int Region.{region; value = lexeme, z})
type invalid_natural =
| Invalid_natural
type nat_err =
Invalid_natural
| Non_canonical_zero_nat
let mk_nat lexeme region =
@ -508,35 +508,42 @@ let mk_mtz lexeme region =
let eof region = EOF region
type sym_err = Invalid_symbol
let mk_sym lexeme region =
match lexeme with
";" -> SEMI region
| "," -> COMMA region
| "(" -> LPAR region
| ")" -> RPAR region
| "{" -> LBRACE region
| "}" -> RBRACE region
| "[" -> LBRACKET region
| "]" -> RBRACKET region
| "#" -> CONS region
| "|" -> VBAR region
| "->" -> ARROW region
| ":=" -> ASS region
| "=" -> EQUAL region
| ":" -> COLON region
| "<" -> LT region
| "<=" -> LEQ region
| ">" -> GT region
| ">=" -> GEQ region
| "=/=" -> NEQ region
| "+" -> PLUS region
| "-" -> MINUS region
| "/" -> SLASH region
| "*" -> TIMES region
| "." -> DOT region
| "_" -> WILD region
| "^" -> CAT region
| _ -> assert false
(* Lexemes in common with all concrete syntaxes *)
";" -> Ok (SEMI region)
| "," -> Ok (COMMA region)
| "(" -> Ok (LPAR region)
| ")" -> Ok (RPAR region)
| "[" -> Ok (LBRACKET region)
| "]" -> Ok (RBRACKET region)
| "{" -> Ok (LBRACE region)
| "}" -> Ok (RBRACE region)
| "=" -> Ok (EQ region)
| ":" -> Ok (COLON region)
| "|" -> Ok (VBAR region)
| "->" -> Ok (ARROW region)
| "." -> Ok (DOT region)
| "_" -> Ok (WILD region)
| "^" -> Ok (CAT region)
| "+" -> Ok (PLUS region)
| "-" -> Ok (MINUS region)
| "*" -> Ok (TIMES region)
| "/" -> Ok (SLASH region)
| "<" -> Ok (LT region)
| "<=" -> Ok (LE region)
| ">" -> Ok (GT region)
| ">=" -> Ok (GE region)
(* Lexemes specific to PascaLIGO *)
| "=/=" -> Ok (NE region)
| "#" -> Ok (CONS region)
| ":=" -> Ok (ASS region)
(* Invalid lexemes *)
| _ -> Error Invalid_symbol
(* Identifiers *)
@ -632,13 +639,13 @@ let is_sym = function
| VBAR _
| ARROW _
| ASS _
| EQUAL _
| EQ _
| COLON _
| LT _
| LEQ _
| LE _
| GT _
| GEQ _
| NEQ _
| GE _
| NE _
| PLUS _
| MINUS _
| SLASH _

View File

@ -27,13 +27,13 @@
%token <Region.t> VBAR (* "|" *)
%token <Region.t> ARROW (* "->" *)
%token <Region.t> ASS (* ":=" *)
%token <Region.t> EQUAL (* "=" *)
%token <Region.t> EQ (* "=" *)
%token <Region.t> COLON (* ":" *)
%token <Region.t> LT (* "<" *)
%token <Region.t> LEQ (* "<=" *)
%token <Region.t> LE (* "<=" *)
%token <Region.t> GT (* ">" *)
%token <Region.t> GEQ (* ">=" *)
%token <Region.t> NEQ (* "=/=" *)
%token <Region.t> GE (* ">=" *)
%token <Region.t> NE (* "=/=" *)
%token <Region.t> PLUS (* "+" *)
%token <Region.t> MINUS (* "-" *)
%token <Region.t> SLASH (* "/" *)
@ -51,7 +51,6 @@
%token <Region.t> Case (* "case" *)
%token <Region.t> Const (* "const" *)
%token <Region.t> Contains (* "contains" *)
%token <Region.t> Down (* "down" *)
%token <Region.t> Else (* "else" *)
%token <Region.t> End (* "end" *)
%token <Region.t> For (* "for" *)
@ -68,12 +67,10 @@
%token <Region.t> Of (* "of" *)
%token <Region.t> Or (* "or" *)
%token <Region.t> Patch (* "patch" *)
%token <Region.t> Procedure (* "procedure" *)
%token <Region.t> Record (* "record" *)
%token <Region.t> Remove (* "remove" *)
%token <Region.t> Set (* "set" *)
%token <Region.t> Skip (* "skip" *)
%token <Region.t> Step (* "step" *)
%token <Region.t> Then (* "then" *)
%token <Region.t> To (* "to" *)
%token <Region.t> Type (* "type" *)

View File

@ -116,7 +116,7 @@ contract:
declaration:
type_decl { TypeDecl $1 }
| const_decl { ConstDecl $1 }
| lambda_decl { LambdaDecl $1 }
| fun_decl { FunDecl $1 }
(* Type declarations *)
@ -137,23 +137,27 @@ type_decl:
}
type_expr:
cartesian { TProd $1 }
| sum_type { TSum $1 }
sum_type { TSum $1 }
| record_type { TRecord $1 }
| cartesian { $1 }
cartesian:
nsepseq(function_type,TIMES) {
let region = nsepseq_to_region type_expr_to_region $1
in {region; value=$1}}
function_type TIMES nsepseq(function_type,TIMES) {
let value = Utils.nsepseq_cons $1 $2 $3 in
let region = nsepseq_to_region type_expr_to_region value
in TProd {region; value}
}
| function_type { ($1 : type_expr) }
function_type:
core_type {
$1
}
| core_type ARROW function_type {
let region = cover (type_expr_to_region $1)
(type_expr_to_region $3)
in TFun {region; value = ($1, $2, $3)} }
let start = type_expr_to_region $1
and stop = type_expr_to_region $3 in
let region = cover start stop in
TFun {region; value = $1,$2,$3} }
core_type:
type_name {
@ -200,7 +204,7 @@ sum_type:
variant:
Constr Of cartesian {
let region = cover $1.region $3.region
let region = cover $1.region (type_expr_to_region $3)
and value = {constr = $1; args = Some ($2, $3)}
in {region; value}
}
@ -235,11 +239,7 @@ field_decl:
and value = {field_name = $1; colon = $2; field_type = $3}
in {region; value} }
(* Function and procedure declarations *)
lambda_decl:
fun_decl { FunDecl $1 }
| proc_decl { ProcDecl $1 }
(* Function declarations *)
fun_decl:
Function fun_name parameters COLON type_expr Is
@ -265,26 +265,6 @@ fun_decl:
terminator = $11}
in {region; value}}
proc_decl:
Procedure fun_name parameters Is
seq(local_decl)
block option(SEMI)
{
let stop =
match $7 with
Some region -> region
| None -> $6.region in
let region = cover $1 stop
and value = {
kwd_procedure = $1;
name = $2;
param = $3;
kwd_is = $4;
local_decls = $5;
block = $6;
terminator = $7}
in {region; value}}
parameters:
par(nsepseq(param_decl,SEMI)) { $1 }
@ -310,7 +290,7 @@ param_decl:
in ParamConst {region; value}}
param_type:
cartesian { TProd $1 }
cartesian { $1 }
block:
Begin sep_or_term_list(statement,SEMI) End {
@ -342,7 +322,7 @@ open_data_decl:
| open_var_decl { LocalVar $1 }
open_const_decl:
Const unqualified_decl(EQUAL) {
Const unqualified_decl(EQ) {
let name, colon, const_type, equal, init, stop = $2 in
let region = cover $1 stop
and value = {
@ -371,7 +351,6 @@ open_var_decl:
local_decl:
fun_decl { LocalFun $1 }
| proc_decl { LocalProc $1 }
| data_decl { LocalData $1 }
data_decl:
@ -616,38 +595,42 @@ while_loop:
in While {region; value}}
for_loop:
For var_assign Down? To expr option(step_clause) block {
let region = cover $1 $7.region in
For var_assign To expr block {
let region = cover $1 $5.region in
let value = {
kwd_for = $1;
assign = $2;
down = $3;
kwd_to = $4;
bound = $5;
step = $6;
block = $7}
kwd_to = $3;
bound = $4;
block = $5}
in For (ForInt {region; value})
}
| For var option(arrow_clause) In expr block {
let region = cover $1 $6.region in
| For var option(arrow_clause) COLON type_expr
In collection expr block {
let region = cover $1 $9.region in
let value = {
kwd_for = $1;
var = $2;
bind_to = $3;
kwd_in = $4;
expr = $5;
block = $6}
colon = $4;
elt_type = $5;
kwd_in = $6;
collection = $7;
expr = $8;
block = $9}
in For (ForCollect {region; value})}
collection:
Map { Map $1 }
| Set { Set $1 }
| List { List $1 }
var_assign:
var ASS expr {
let region = cover $1.region (expr_to_region $3)
and value = {name = $1; assign = $2; expr = $3}
in {region; value}}
step_clause:
Step expr { $1,$2 }
arrow_clause:
ARROW var { $1,$2 }
@ -701,7 +684,7 @@ comp_expr:
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Lt {region; value}))
}
| comp_expr LEQ cat_expr {
| comp_expr LE cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
@ -715,21 +698,21 @@ comp_expr:
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Gt {region; value}))
}
| comp_expr GEQ cat_expr {
| comp_expr GE cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Geq {region; value}))
}
| comp_expr EQUAL cat_expr {
| comp_expr EQ cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {arg1 = $1; op = $2; arg2 = $3}
in ELogic (CompExpr (Equal {region; value}))
}
| comp_expr NEQ cat_expr {
| comp_expr NE cat_expr {
let start = expr_to_region $1
and stop = expr_to_region $3 in
let region = cover start stop
@ -826,6 +809,7 @@ core_expr:
| C_Unit { EUnit $1 }
| annot_expr { EAnnot $1 }
| tuple_expr { ETuple $1 }
| par(expr) { EPar $1 }
| list_expr { EList $1 }
| C_None { EConstr (NoneExpr $1) }
| fun_call { ECall $1 }
@ -906,7 +890,7 @@ record_expr:
in {region; value} }
field_assignment:
field_name EQUAL expr {
field_name EQ expr {
let region = cover $1.region (expr_to_region $3)
and value = {
field_name = $1;
@ -920,13 +904,14 @@ fun_call:
in {region; value = $1,$2}}
tuple_expr:
tuple_inj { TupleInj $1 }
par(tuple_comp) { $1 }
tuple_inj:
par(nsepseq(expr,COMMA)) { $1 }
tuple_comp:
expr COMMA nsepseq(expr,COMMA) {
Utils.nsepseq_cons $1 $2 $3}
arguments:
tuple_inj { $1 }
par(nsepseq(expr,COMMA)) { $1 }
list_expr:
injection(List,expr) { List $1 }
@ -935,14 +920,18 @@ list_expr:
(* Patterns *)
pattern:
nsepseq(core_pattern,CONS) {
let region = nsepseq_to_region pattern_to_region $1
in PCons {region; value=$1}}
core_pattern CONS nsepseq(core_pattern,CONS) {
let value = Utils.nsepseq_cons $1 $2 $3 in
let region = nsepseq_to_region pattern_to_region value
in PCons {region; value}}
| core_pattern { $1 }
core_pattern:
var { PVar $1 }
| WILD { PWild $1 }
| Int { PInt $1 }
| Nat { PNat $1 }
| Bytes { PBytes $1 }
| String { PString $1 }
| C_Unit { PUnit $1 }
| C_False { PFalse $1 }

View File

@ -62,6 +62,11 @@ let print_int buffer {region; value = lexeme, abstract} =
(Z.to_string abstract)
in Buffer.add_string buffer line
let print_nat buffer {region; value = lexeme, abstract} =
let line = sprintf "%s: Nat (\"%s\", %s)\n"
(compact region) lexeme
(Z.to_string abstract)
in Buffer.add_string buffer line
(* Main printing function *)
@ -73,7 +78,7 @@ let rec print_tokens buffer ast =
and print_decl buffer = function
TypeDecl decl -> print_type_decl buffer decl
| ConstDecl decl -> print_const_decl buffer decl
| LambdaDecl decl -> print_lambda_decl buffer decl
| FunDecl decl -> print_fun_decl buffer decl
and print_const_decl buffer {value; _} =
let {kwd_const; name; colon; const_type;
@ -107,14 +112,14 @@ and print_type_expr buffer = function
and print_cartesian buffer {value; _} =
print_nsepseq buffer "*" print_type_expr value
and print_variant buffer {value; _} =
and print_variant buffer ({value; _}: variant reg) =
let {constr; args} = value in
print_constr buffer constr;
match args with
None -> ()
| Some (kwd_of, product) ->
| Some (kwd_of, t_expr) ->
print_token buffer kwd_of "of";
print_cartesian buffer product
print_type_expr buffer t_expr
and print_sum_type buffer {value; _} =
print_nsepseq buffer "|" print_variant value
@ -151,10 +156,6 @@ and print_type_tuple buffer {value; _} =
print_nsepseq buffer "," print_type_expr inside;
print_token buffer rpar ")"
and print_lambda_decl buffer = function
FunDecl fun_decl -> print_fun_decl buffer fun_decl
| ProcDecl proc_decl -> print_proc_decl buffer proc_decl
and print_fun_decl buffer {value; _} =
let {kwd_function; name; param; colon;
ret_type; kwd_is; local_decls;
@ -171,17 +172,6 @@ and print_fun_decl buffer {value; _} =
print_expr buffer return;
print_terminator buffer terminator
and print_proc_decl buffer {value; _} =
let {kwd_procedure; name; param; kwd_is;
local_decls; block; terminator} = value in
print_token buffer kwd_procedure "procedure";
print_var buffer name;
print_parameters buffer param;
print_token buffer kwd_is "is";
print_local_decls buffer local_decls;
print_block buffer block;
print_terminator buffer terminator
and print_parameters buffer {value; _} =
let {lpar; inside; rpar} = value in
print_token buffer lpar "(";
@ -229,7 +219,6 @@ and print_local_decls buffer sequence =
and print_local_decl buffer = function
LocalFun decl -> print_fun_decl buffer decl
| LocalProc decl -> print_proc_decl buffer decl
| LocalData decl -> print_data_decl buffer decl
and print_data_decl buffer = function
@ -342,14 +331,11 @@ and print_for_loop buffer = function
| ForCollect for_collect -> print_for_collect buffer for_collect
and print_for_int buffer ({value; _} : for_int reg) =
let {kwd_for; assign; down; kwd_to;
bound; step; block} = value in
let {kwd_for; assign; kwd_to; bound; block} = value in
print_token buffer kwd_for "for";
print_var_assign buffer assign;
print_down buffer down;
print_token buffer kwd_to "to";
print_expr buffer bound;
print_step buffer step;
print_block buffer block
and print_var_assign buffer {value; _} =
@ -358,25 +344,27 @@ and print_var_assign buffer {value; _} =
print_token buffer assign ":=";
print_expr buffer expr
and print_down buffer = function
Some kwd_down -> print_token buffer kwd_down "down"
| None -> ()
and print_step buffer = function
Some (kwd_step, expr) ->
print_token buffer kwd_step "step";
print_expr buffer expr
| None -> ()
and print_for_collect buffer ({value; _} : for_collect reg) =
let {kwd_for; var; bind_to; kwd_in; expr; block} = value in
let {kwd_for; var; bind_to; colon; elt_type;
kwd_in; collection; expr; block} = value in
print_token buffer kwd_for "for";
print_var buffer var;
print_bind_to buffer bind_to;
print_token buffer colon ":";
print_type_expr buffer elt_type;
print_token buffer kwd_in "in";
print_collection buffer collection;
print_expr buffer expr;
print_block buffer block
and print_collection buffer = function
Map kwd_map ->
print_token buffer kwd_map "map"
| Set kwd_set ->
print_token buffer kwd_set "set"
| List kwd_list ->
print_token buffer kwd_list "list"
and print_bind_to buffer = function
Some (arrow, variable) ->
print_token buffer arrow "->";
@ -632,10 +620,7 @@ and print_binding buffer {value; _} =
print_token buffer arrow "->";
print_expr buffer image
and print_tuple_expr buffer = function
TupleInj inj -> print_tuple_inj buffer inj
and print_tuple_inj buffer {value; _} =
and print_tuple_expr buffer {value; _} =
let {lpar; inside; rpar} = value in
print_token buffer lpar "(";
print_nsepseq buffer "," print_expr inside;
@ -648,19 +633,19 @@ and print_none_expr buffer value = print_token buffer value "None"
and print_fun_call buffer {value; _} =
let fun_name, arguments = value in
print_var buffer fun_name;
print_tuple_inj buffer arguments
print_tuple_expr buffer arguments
and print_constr_app buffer {value; _} =
let constr, arguments = value in
print_constr buffer constr;
match arguments with
None -> ()
| Some args -> print_tuple_inj buffer args
| Some args -> print_tuple_expr buffer args
and print_some_app buffer {value; _} =
let c_Some, arguments = value in
print_token buffer c_Some "Some";
print_tuple_inj buffer arguments
print_tuple_expr buffer arguments
and print_par_expr buffer {value; _} =
let {lpar; inside; rpar} = value in
@ -673,6 +658,7 @@ and print_pattern buffer = function
| PVar var -> print_var buffer var
| PWild wild -> print_token buffer wild "_"
| PInt i -> print_int buffer i
| PNat n -> print_nat buffer n
| PBytes b -> print_bytes buffer b
| PString s -> print_string buffer s
| PUnit region -> print_token buffer region "Unit"
@ -740,3 +726,711 @@ let tokens_to_string = to_string print_tokens
let path_to_string = to_string print_path
let pattern_to_string = to_string print_pattern
let instruction_to_string = to_string print_instruction
(* Pretty-printing the AST *)
let mk_pad len rank pc =
pc ^ (if rank = len-1 then "`-- " else "|-- "),
pc ^ (if rank = len-1 then " " else "| ")
let pp_ident buffer ~pad:(pd,_) name =
let node = sprintf "%s%s\n" pd name
in Buffer.add_string buffer node
let pp_string buffer = pp_ident buffer
let pp_node buffer = pp_ident buffer
let rec pp_ast buffer ~pad:(_,pc as pad) {decl; _} =
let apply len rank =
let pad = mk_pad len rank pc in
pp_declaration buffer ~pad in
let decls = Utils.nseq_to_list decl in
pp_node buffer ~pad "<ast>";
List.iteri (List.length decls |> apply) decls
and pp_declaration buffer ~pad:(_,pc as pad) = function
TypeDecl {value; _} ->
pp_node buffer ~pad "TypeDecl";
pp_ident buffer ~pad:(mk_pad 2 0 pc) value.name.value;
pp_type_expr buffer ~pad:(mk_pad 2 1 pc) value.type_expr
| ConstDecl {value; _} ->
pp_node buffer ~pad "ConstDecl";
pp_const_decl buffer ~pad:(mk_pad 1 0 pc) value
| FunDecl {value; _} ->
pp_node buffer ~pad "FunDecl";
pp_fun_decl buffer ~pad:(mk_pad 1 0 pc) value
and pp_const_decl buffer ~pad:(_,pc) decl =
pp_ident buffer ~pad:(mk_pad 3 0 pc) decl.name.value;
pp_type_expr buffer ~pad:(mk_pad 3 1 pc) decl.const_type;
pp_expr buffer ~pad:(mk_pad 3 2 pc) decl.init
and pp_type_expr buffer ~pad:(_,pc as pad) = function
TProd cartesian ->
pp_node buffer ~pad "TProd";
pp_cartesian buffer ~pad cartesian
| TAlias {value; _} ->
pp_node buffer ~pad "TAlias";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| TPar {value; _} ->
pp_node buffer ~pad "TPar";
pp_type_expr buffer ~pad:(mk_pad 1 0 pc) value.inside
| TApp {value=name,tuple; _} ->
pp_node buffer ~pad "TApp";
pp_ident buffer ~pad:(mk_pad 1 0 pc) name.value;
pp_type_tuple buffer ~pad:(mk_pad 2 1 pc) tuple
| TFun {value; _} ->
pp_node buffer ~pad "TFun";
let apply len rank =
let pad = mk_pad len rank pc in
pp_type_expr buffer ~pad in
let domain, _, range = value in
List.iteri (apply 2) [domain; range]
| TSum {value; _} ->
pp_node buffer ~pad "TSum";
let apply len rank variant =
let pad = mk_pad len rank pc in
pp_variant buffer ~pad variant.value in
let variants = Utils.nsepseq_to_list value in
List.iteri (List.length variants |> apply) variants
| TRecord {value; _} ->
pp_node buffer ~pad "TRecord";
let apply len rank field_decl =
pp_field_decl buffer ~pad:(mk_pad len rank pc)
field_decl.value in
let fields = Utils.sepseq_to_list value.elements in
List.iteri (List.length fields |> apply) fields
and pp_cartesian buffer ~pad:(_,pc) {value; _} =
let apply len rank =
pp_type_expr buffer ~pad:(mk_pad len rank pc) in
let components = Utils.nsepseq_to_list value
in List.iteri (List.length components |> apply) components
and pp_variant buffer ~pad:(_,pc as pad) {constr; args} =
pp_node buffer ~pad constr.value;
match args with
None -> ()
| Some (_,c) ->
pp_type_expr buffer ~pad:(mk_pad 1 0 pc) c
and pp_field_decl buffer ~pad:(_,pc as pad) decl =
pp_node buffer ~pad decl.field_name.value;
pp_type_expr buffer ~pad:(mk_pad 1 0 pc) decl.field_type
and pp_type_tuple buffer ~pad:(_,pc) {value; _} =
let components = Utils.nsepseq_to_list value.inside in
let apply len rank =
pp_type_expr buffer ~pad:(mk_pad len rank pc)
in List.iteri (List.length components |> apply) components
and pp_fun_decl buffer ~pad:(_,pc) decl =
let () =
let pad = mk_pad 6 0 pc in
pp_ident buffer ~pad decl.name.value in
let () =
let pad = mk_pad 6 1 pc in
pp_node buffer ~pad "<parameters>";
pp_parameters buffer ~pad decl.param in
let () =
let _, pc as pad = mk_pad 6 2 pc in
pp_node buffer ~pad "<return type>";
pp_type_expr buffer ~pad:(mk_pad 1 0 pc) decl.ret_type in
let () =
let pad = mk_pad 6 3 pc in
pp_node buffer ~pad "<local declarations>";
pp_local_decls buffer ~pad decl.local_decls in
let () =
let pad = mk_pad 6 4 pc in
pp_node buffer ~pad "<block>";
let statements = decl.block.value.statements in
pp_statements buffer ~pad statements in
let () =
let _, pc as pad = mk_pad 6 5 pc in
pp_node buffer ~pad "<return>";
pp_expr buffer ~pad:(mk_pad 1 0 pc) decl.return
in ()
and pp_parameters buffer ~pad:(_,pc) {value; _} =
let params = Utils.nsepseq_to_list value.inside in
let arity = List.length params in
let apply len rank =
pp_param_decl buffer ~pad:(mk_pad len rank pc)
in List.iteri (apply arity) params
and pp_param_decl buffer ~pad:(_,pc as pad) = function
ParamConst {value; _} ->
pp_node buffer ~pad "ParamConst";
pp_ident buffer ~pad:(mk_pad 2 0 pc) value.var.value;
pp_type_expr buffer ~pad:(mk_pad 2 1 pc) value.param_type
| ParamVar {value; _} ->
pp_node buffer ~pad "ParamVar";
pp_ident buffer ~pad:(mk_pad 2 0 pc) value.var.value;
pp_type_expr buffer ~pad:(mk_pad 2 1 pc) value.param_type
and pp_statements buffer ~pad:(_,pc) statements =
let statements = Utils.nsepseq_to_list statements in
let length = List.length statements in
let apply len rank =
pp_statement buffer ~pad:(mk_pad len rank pc)
in List.iteri (apply length) statements
and pp_statement buffer ~pad:(_,pc as pad) = function
Instr instr ->
pp_node buffer ~pad "Instr";
pp_instruction buffer ~pad:(mk_pad 1 0 pc) instr
| Data data_decl ->
pp_node buffer ~pad "Data";
pp_data_decl buffer ~pad:(mk_pad 1 0 pc) data_decl
and pp_instruction buffer ~pad:(_,pc as pad) = function
Single single_instr ->
pp_node buffer ~pad "Single";
pp_single_instr buffer ~pad:(mk_pad 1 0 pc) single_instr
| Block {value; _} ->
pp_node buffer ~pad "Block";
pp_statements buffer ~pad value.statements
and pp_single_instr buffer ~pad:(_,pc as pad) = function
Cond {value; _} ->
pp_node buffer ~pad "Cond";
pp_conditional buffer ~pad value
| CaseInstr {value; _} ->
pp_node buffer ~pad "CaseInstr";
pp_case pp_instruction buffer ~pad value
| Assign {value; _} ->
pp_node buffer ~pad "Assign";
pp_assignment buffer ~pad value
| Loop loop ->
pp_node buffer ~pad "Loop";
pp_loop buffer ~pad:(mk_pad 1 0 pc) loop
| ProcCall {value; _} ->
pp_node buffer ~pad "ProcCall";
pp_fun_call buffer ~pad value
| Skip _ ->
pp_node buffer ~pad "Skip"
| RecordPatch {value; _} ->
pp_node buffer ~pad "RecordPatch";
pp_record_patch buffer ~pad value
| MapPatch {value; _} ->
pp_node buffer ~pad "MapPatch";
pp_map_patch buffer ~pad value
| SetPatch {value; _} ->
pp_node buffer ~pad "SetPatch";
pp_set_patch buffer ~pad value
| MapRemove {value; _} ->
pp_node buffer ~pad "MapRemove";
pp_map_remove buffer ~pad value
| SetRemove {value; _} ->
pp_node buffer ~pad "SetRemove";
pp_set_remove buffer ~pad value
and pp_conditional buffer ~pad:(_,pc) cond =
let () =
let _, pc as pad = mk_pad 3 0 pc in
pp_node buffer ~pad "<condition>";
pp_expr buffer ~pad:(mk_pad 1 0 pc) cond.test in
let () =
let _, pc as pad = mk_pad 3 1 pc in
pp_node buffer ~pad "<true>";
pp_if_clause buffer ~pad:(mk_pad 1 0 pc) cond.ifso in
let () =
let _, pc as pad = mk_pad 3 2 pc in
pp_node buffer ~pad "<false>";
pp_if_clause buffer ~pad:(mk_pad 1 0 pc) cond.ifnot
in ()
and pp_if_clause buffer ~pad:(_,pc as pad) = function
ClauseInstr instr ->
pp_node buffer ~pad "ClauseInstr";
pp_instruction buffer ~pad:(mk_pad 1 0 pc) instr
| ClauseBlock {value; _} ->
pp_node buffer ~pad "ClauseBlock";
let statements, _ = value.inside in
pp_statements buffer ~pad statements
and pp_case :
'a.(Buffer.t -> pad:(string*string) -> 'a -> unit)
-> Buffer.t -> pad:(string*string) -> 'a case -> unit =
fun printer buffer ~pad:(_,pc) case ->
let clauses = Utils.nsepseq_to_list case.cases.value in
let clauses = List.map (fun {value; _} -> value) clauses in
let length = List.length clauses + 1 in
let apply len rank =
pp_case_clause printer buffer ~pad:(mk_pad len (rank+1) pc)
in pp_expr buffer ~pad:(mk_pad length 0 pc) case.expr;
List.iteri (apply length) clauses
and pp_case_clause :
'a.(Buffer.t -> pad:(string*string) -> 'a -> unit)
-> Buffer.t -> pad:(string*string) -> 'a case_clause -> unit =
fun printer buffer ~pad:(_,pc as pad) clause ->
pp_node buffer ~pad "<clause>";
pp_pattern buffer ~pad:(mk_pad 2 0 pc) clause.pattern;
printer buffer ~pad:(mk_pad 2 1 pc) clause.rhs
and pp_pattern buffer ~pad:(_,pc as pad) = function
PNone _ ->
pp_node buffer ~pad "PNone"
| PSome {value=_,{value=par; _}; _} ->
pp_node buffer ~pad "PSome";
pp_pattern buffer ~pad:(mk_pad 1 0 pc) par.inside
| PWild _ ->
pp_node buffer ~pad "PWild"
| PConstr {value; _} ->
pp_node buffer ~pad "PConstr";
pp_constr_pattern buffer ~pad:(mk_pad 1 0 pc) value
| PCons {value; _} ->
let patterns = Utils.nsepseq_to_list value in
let length = List.length patterns in
let apply len rank =
pp_pattern buffer ~pad:(mk_pad len rank pc) in
pp_node buffer ~pad "PCons";
List.iteri (apply length) patterns
| PVar {value; _} ->
pp_node buffer ~pad "PVar";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| PInt {value; _} ->
pp_node buffer ~pad "PInt";
pp_int buffer ~pad value
| PNat {value; _} ->
pp_node buffer ~pad "PNat";
pp_int buffer ~pad value
| PBytes {value; _} ->
pp_node buffer ~pad "PBytes";
pp_bytes buffer ~pad value
| PString {value; _} ->
pp_node buffer ~pad "PString";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| PUnit _ ->
pp_node buffer ~pad "PUnit"
| PFalse _ ->
pp_node buffer ~pad "PFalse"
| PTrue _ ->
pp_node buffer ~pad "PTrue"
| PList plist ->
pp_node buffer ~pad "PList";
pp_plist buffer ~pad:(mk_pad 1 0 pc) plist
| PTuple {value; _} ->
pp_node buffer ~pad "PTuple";
pp_tuple_pattern buffer ~pad:(mk_pad 1 0 pc) value
and pp_bytes buffer ~pad:(_,pc) (lexeme, hex) =
pp_string buffer ~pad:(mk_pad 2 0 pc) lexeme;
pp_string buffer ~pad:(mk_pad 2 1 pc) (Hex.to_string hex)
and pp_int buffer ~pad:(_,pc) (lexeme, z) =
pp_string buffer ~pad:(mk_pad 2 0 pc) lexeme;
pp_string buffer ~pad:(mk_pad 2 1 pc) (Z.to_string z)
and pp_constr_pattern buffer ~pad = function
{value; _}, None ->
pp_ident buffer ~pad value
| {value=id; _}, Some {value=ptuple; _} ->
pp_ident buffer ~pad id;
pp_tuple_pattern buffer ~pad ptuple
and pp_plist buffer ~pad:(_,pc as pad) = function
Sugar {value; _} ->
pp_node buffer ~pad "Sugar";
pp_injection pp_pattern buffer ~pad:(mk_pad 1 0 pc) value
| PNil _ ->
pp_node buffer ~pad "PNil"
| Raw {value; _} ->
pp_node buffer ~pad "Raw";
pp_raw buffer ~pad:(mk_pad 1 0 pc) value.inside
and pp_raw buffer ~pad:(_,pc) (head, _, tail) =
pp_pattern buffer ~pad:(mk_pad 2 0 pc) head;
pp_pattern buffer ~pad:(mk_pad 2 1 pc) tail
and pp_injection :
'a.(Buffer.t -> pad:(string*string) -> 'a -> unit)
-> Buffer.t -> pad:(string*string) -> 'a injection -> unit =
fun printer buffer ~pad:(_,pc) inj ->
let elements = Utils.sepseq_to_list inj.elements in
let length = List.length elements in
let apply len rank = printer buffer ~pad:(mk_pad len rank pc)
in List.iteri (apply length) elements
and pp_tuple_pattern buffer ~pad:(_,pc) tuple =
let patterns = Utils.nsepseq_to_list tuple.inside in
let length = List.length patterns in
let apply len rank =
pp_pattern buffer ~pad:(mk_pad len rank pc)
in List.iteri (apply length) patterns
and pp_assignment buffer ~pad:(_,pc) asgn =
pp_lhs buffer ~pad:(mk_pad 2 0 pc) asgn.lhs;
pp_expr buffer ~pad:(mk_pad 2 1 pc) asgn.rhs
and pp_lhs buffer ~pad:(_,pc as pad) = function
Path path ->
pp_node buffer ~pad "Path";
pp_path buffer ~pad:(mk_pad 1 0 pc) path
| MapPath {value; _} ->
pp_node buffer ~pad "MapPath";
pp_map_lookup buffer ~pad value
and pp_path buffer ~pad:(_,pc as pad) = function
Name {value; _} ->
pp_node buffer ~pad "Name";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| Path {value; _} ->
pp_node buffer ~pad "Path";
pp_projection buffer ~pad value
and pp_projection buffer ~pad:(_,pc) proj =
let selections = Utils.nsepseq_to_list proj.field_path in
let len = List.length selections in
let apply len rank =
pp_selection buffer ~pad:(mk_pad len rank pc) in
pp_ident buffer ~pad:(mk_pad (1+len) 0 pc) proj.struct_name.value;
List.iteri (apply len) selections
and pp_selection buffer ~pad:(_,pc as pad) = function
FieldName {value; _} ->
pp_node buffer ~pad "FieldName";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| Component {value; _} ->
pp_node buffer ~pad "Component";
pp_int buffer ~pad value
and pp_map_lookup buffer ~pad:(_,pc) lookup =
pp_path buffer ~pad:(mk_pad 2 0 pc) lookup.path;
pp_expr buffer ~pad:(mk_pad 2 1 pc) lookup.index.value.inside
and pp_loop buffer ~pad:(_,pc as pad) = function
While {value; _} ->
pp_node buffer ~pad "<while>";
let () =
let _, pc as pad = mk_pad 2 0 pc in
pp_node buffer ~pad "<condition>";
pp_expr buffer ~pad:(mk_pad 1 0 pc) value.cond in
let () =
let pad = mk_pad 2 1 pc in
let statements = value.block.value.statements in
pp_node buffer ~pad "<statements>";
pp_statements buffer ~pad statements
in ()
| For for_loop ->
pp_node buffer ~pad "<for>";
pp_for_loop buffer ~pad:(mk_pad 1 0 pc) for_loop
and pp_for_loop buffer ~pad = function
ForInt {value; _} ->
pp_node buffer ~pad "ForInt";
pp_for_int buffer ~pad value
| ForCollect {value; _} ->
pp_node buffer ~pad "ForCollect";
pp_for_collect buffer ~pad value
and pp_for_int buffer ~pad:(_,pc) for_int =
let () =
let pad = mk_pad 3 0 pc in
pp_node buffer ~pad "<init>";
pp_var_assign buffer ~pad for_int.assign.value in
let () =
let _, pc as pad = mk_pad 3 1 pc in
pp_node buffer ~pad "<bound>";
pp_expr buffer ~pad:(mk_pad 1 0 pc) for_int.bound in
let () =
let pad = mk_pad 3 2 pc in
let statements = for_int.block.value.statements in
pp_node buffer ~pad "<statements>";
pp_statements buffer ~pad statements
in ()
and pp_var_assign buffer ~pad:(_,pc) asgn =
let pad = mk_pad 2 0 pc in
pp_ident buffer ~pad asgn.name.value;
let pad = mk_pad 2 1 pc in
pp_expr buffer ~pad asgn.expr
and pp_for_collect buffer ~pad:(_,pc) collect =
let () =
let pad = mk_pad 4 0 pc in
match collect.bind_to with
None ->
pp_ident buffer ~pad collect.var.value
| Some (_, var) ->
pp_var_binding buffer ~pad (collect.var, var) in
let () =
let _, pc as pad = mk_pad 4 1 pc in
pp_node buffer ~pad "<element type>";
pp_type_expr buffer ~pad:(mk_pad 1 0 pc) collect.elt_type in
let () =
let _, pc as pad = mk_pad 4 2 pc in
pp_node buffer ~pad "<collection>";
pp_collection buffer ~pad:(mk_pad 2 0 pc) collect.collection;
pp_expr buffer ~pad:(mk_pad 1 0 pc) collect.expr in
let () =
let pad = mk_pad 4 3 pc in
let statements = collect.block.value.statements in
pp_node buffer ~pad "<statements>";
pp_statements buffer ~pad statements
in ()
and pp_collection buffer ~pad = function
Map _ -> pp_string buffer ~pad "map"
| Set _ -> pp_string buffer ~pad "set"
| List _ -> pp_string buffer ~pad "list"
and pp_var_binding buffer ~pad:(_,pc as pad) (source, image) =
pp_node buffer ~pad "<binding>";
pp_ident buffer ~pad:(mk_pad 2 0 pc) source.value;
pp_ident buffer ~pad:(mk_pad 2 1 pc) image.value
and pp_fun_call buffer ~pad:(_,pc) (name, args) =
let args = Utils.nsepseq_to_list args.value.inside in
let arity = List.length args in
let apply len rank =
pp_expr buffer ~pad:(mk_pad len rank pc)
in pp_ident buffer ~pad:(mk_pad (1+arity) 0 pc) name.value;
List.iteri (apply arity) args
and pp_record_patch buffer ~pad:(_,pc as pad) patch =
pp_path buffer ~pad:(mk_pad 2 0 pc) patch.path;
pp_injection pp_field_assign buffer
~pad patch.record_inj.value
and pp_field_assign buffer ~pad:(_,pc as pad) {value; _} =
pp_node buffer ~pad "<field assignment>";
pp_ident buffer ~pad:(mk_pad 2 0 pc) value.field_name.value;
pp_expr buffer ~pad:(mk_pad 2 1 pc) value.field_expr
and pp_map_patch buffer ~pad:(_,pc as pad) patch =
pp_path buffer ~pad:(mk_pad 2 0 pc) patch.path;
pp_injection pp_binding buffer
~pad patch.map_inj.value
and pp_binding buffer ~pad:(_,pc as pad) {value; _} =
let source, image = value.source, value.image in
pp_node buffer ~pad "<binding>";
pp_expr buffer ~pad:(mk_pad 2 0 pc) source;
pp_expr buffer ~pad:(mk_pad 2 1 pc) image
and pp_set_patch buffer ~pad:(_,pc as pad) patch =
pp_path buffer ~pad:(mk_pad 2 0 pc) patch.path;
pp_injection pp_expr buffer ~pad patch.set_inj.value
and pp_map_remove buffer ~pad:(_,pc) rem =
pp_expr buffer ~pad:(mk_pad 2 0 pc) rem.key;
pp_path buffer ~pad:(mk_pad 2 1 pc) rem.map
and pp_set_remove buffer ~pad:(_,pc) rem =
pp_expr buffer ~pad:(mk_pad 2 0 pc) rem.element;
pp_path buffer ~pad:(mk_pad 2 1 pc) rem.set
and pp_local_decls buffer ~pad:(_,pc) decls =
let apply len rank =
pp_local_decl buffer ~pad:(mk_pad len rank pc)
in List.iteri (List.length decls |> apply) decls
and pp_local_decl buffer ~pad:(_,pc as pad) = function
LocalFun {value; _} ->
pp_node buffer ~pad "LocalFun";
pp_fun_decl buffer ~pad:(mk_pad 1 0 pc) value
| LocalData data ->
pp_node buffer ~pad "LocalData";
pp_data_decl buffer ~pad:(mk_pad 1 0 pc) data
and pp_data_decl buffer ~pad = function
LocalConst {value; _} ->
pp_node buffer ~pad "LocalConst";
pp_const_decl buffer ~pad value
| LocalVar {value; _} ->
pp_node buffer ~pad "LocalVar";
pp_var_decl buffer ~pad value
and pp_var_decl buffer ~pad:(_,pc) decl =
pp_ident buffer ~pad:(mk_pad 3 0 pc) decl.name.value;
pp_type_expr buffer ~pad:(mk_pad 3 1 pc) decl.var_type;
pp_expr buffer ~pad:(mk_pad 3 2 pc) decl.init
and pp_expr buffer ~pad:(_,pc as pad) = function
ECase {value; _} ->
pp_node buffer ~pad "ECase";
pp_case pp_expr buffer ~pad value
| EAnnot {value; _} ->
pp_node buffer ~pad "EAnnot";
pp_annotated buffer ~pad value
| ELogic e_logic ->
pp_node buffer ~pad "ELogic";
pp_e_logic buffer ~pad:(mk_pad 1 0 pc) e_logic
| EArith e_arith ->
pp_node buffer ~pad "EArith";
pp_arith_expr buffer ~pad:(mk_pad 1 0 pc) e_arith
| EString e_string ->
pp_node buffer ~pad "EString";
pp_string_expr buffer ~pad:(mk_pad 1 0 pc) e_string
| EList e_list ->
pp_node buffer ~pad "EList";
pp_list_expr buffer ~pad:(mk_pad 1 0 pc) e_list
| ESet e_set ->
pp_node buffer ~pad "ESet";
pp_set_expr buffer ~pad:(mk_pad 1 0 pc) e_set
| EConstr e_constr ->
pp_node buffer ~pad "EConstr";
pp_constr_expr buffer ~pad:(mk_pad 1 0 pc) e_constr
| ERecord {value; _} ->
pp_node buffer ~pad "ERecord";
pp_injection pp_field_assign buffer ~pad value
| EProj {value; _} ->
pp_node buffer ~pad "EProj";
pp_projection buffer ~pad value
| EMap e_map ->
pp_node buffer ~pad "EMap";
pp_map_expr buffer ~pad:(mk_pad 1 0 pc) e_map
| EVar {value; _} ->
pp_node buffer ~pad "EVar";
pp_ident buffer ~pad:(mk_pad 1 0 pc) value
| ECall {value; _} ->
pp_node buffer ~pad "ECall";
pp_fun_call buffer ~pad value
| EBytes {value; _} ->
pp_node buffer ~pad "EBytes";
pp_bytes buffer ~pad value
| EUnit _ ->
pp_node buffer ~pad "EUnit"
| ETuple e_tuple ->
pp_node buffer ~pad "ETuple";
pp_tuple_expr buffer ~pad e_tuple
| EPar {value; _} ->
pp_node buffer ~pad "EPar";
pp_expr buffer ~pad:(mk_pad 1 0 pc) value.inside
and pp_list_expr buffer ~pad:(_,pc as pad) = function
Cons {value; _} ->
pp_node buffer ~pad "Cons";
pp_expr buffer ~pad:(mk_pad 2 0 pc) value.arg1;
pp_expr buffer ~pad:(mk_pad 2 1 pc) value.arg2
| List {value; _} ->
pp_node buffer ~pad "List";
pp_injection pp_expr buffer ~pad value
| Nil _ ->
pp_node buffer ~pad "Nil"
and pp_arith_expr buffer ~pad:(_,pc as pad) = function
Add {value; _} ->
pp_bin_op "Add" buffer ~pad value
| Sub {value; _} ->
pp_bin_op "Sub" buffer ~pad value
| Mult {value; _} ->
pp_bin_op "Mult" buffer ~pad value
| Div {value; _} ->
pp_bin_op "Div" buffer ~pad value
| Mod {value; _} ->
pp_bin_op "Mod" buffer ~pad value
| Neg {value; _} ->
pp_node buffer ~pad "Neg";
pp_expr buffer ~pad:(mk_pad 1 0 pc) value.arg;
| Int {value; _} ->
pp_node buffer ~pad "Int";
pp_int buffer ~pad value
| Nat {value; _} ->
pp_node buffer ~pad "Nat";
pp_int buffer ~pad value
| Mtz {value; _} ->
pp_node buffer ~pad "Mtz";
pp_int buffer ~pad value
and pp_set_expr buffer ~pad:(_,pc as pad) = function
SetInj {value; _} ->
pp_node buffer ~pad "SetInj";
pp_injection pp_expr buffer ~pad value
| SetMem {value; _} ->
pp_node buffer ~pad "SetMem";
pp_expr buffer ~pad:(mk_pad 2 0 pc) value.set;
pp_expr buffer ~pad:(mk_pad 2 1 pc) value.element
and pp_e_logic buffer ~pad = function
BoolExpr e ->
pp_node buffer ~pad "BoolExpr";
pp_bool_expr buffer ~pad e
| CompExpr e ->
pp_node buffer ~pad "CompExpr";
pp_comp_expr buffer ~pad e
and pp_bool_expr buffer ~pad:(_,pc as pad) = function
Or {value; _} ->
pp_bin_op "Or" buffer ~pad value
| And {value; _} ->
pp_bin_op "And" buffer ~pad value
| Not {value; _} ->
let _, pc as pad = mk_pad 1 0 pc in
pp_node buffer ~pad "Not";
pp_expr buffer ~pad:(mk_pad 1 0 pc) value.arg
| False _ ->
pp_node buffer ~pad:(mk_pad 1 0 pc) "False"
| True _ ->
pp_node buffer ~pad:(mk_pad 1 0 pc) "True"
and pp_comp_expr buffer ~pad = function
Lt {value; _} ->
pp_bin_op "Lt" buffer ~pad value
| Leq {value; _} ->
pp_bin_op "Leq" buffer ~pad value
| Gt {value; _} ->
pp_bin_op "Gt" buffer ~pad value
| Geq {value; _} ->
pp_bin_op "Geq" buffer ~pad value
| Equal {value; _} ->
pp_bin_op "Equal" buffer ~pad value
| Neq {value; _} ->
pp_bin_op "Neq" buffer ~pad value
and pp_constr_expr buffer ~pad:(_, pc as pad) = function
SomeApp {value=some_region,args; _} ->
let constr = {value="Some"; region=some_region} in
let app = constr, Some args in
pp_node buffer ~pad "SomeApp";
pp_constr_app buffer ~pad app
| NoneExpr _ ->
pp_node buffer ~pad "NoneExpr"
| ConstrApp {value; _} ->
pp_node buffer ~pad "ConstrApp";
pp_constr_app buffer ~pad:(mk_pad 1 0 pc) value
and pp_constr_app buffer ~pad (constr, args_opt) =
pp_ident buffer ~pad constr.value;
match args_opt with
None -> ()
| Some args -> pp_tuple_expr buffer ~pad args
and pp_map_expr buffer ~pad = function
MapLookUp {value; _} ->
pp_node buffer ~pad "MapLookUp";
pp_map_lookup buffer ~pad value
| MapInj {value; _} ->
pp_node buffer ~pad "MapInj";
pp_injection pp_binding buffer ~pad value
and pp_tuple_expr buffer ~pad:(_,pc) {value; _} =
let exprs = Utils.nsepseq_to_list value.inside in
let length = List.length exprs in
let apply len rank =
pp_expr buffer ~pad:(mk_pad len rank pc)
in List.iteri (apply length) exprs
and pp_string_expr buffer ~pad:(_,pc as pad) = function
Cat {value; _} ->
pp_node buffer ~pad "Cat";
pp_expr buffer ~pad:(mk_pad 2 0 pc) value.arg1;
pp_expr buffer ~pad:(mk_pad 2 1 pc) value.arg2;
| String {value; _} ->
pp_node buffer ~pad "String";
pp_string buffer ~pad:(mk_pad 1 0 pc) value
and pp_annotated buffer ~pad:(_,pc) (expr, t_expr) =
pp_expr buffer ~pad:(mk_pad 2 0 pc) expr;
pp_type_expr buffer ~pad:(mk_pad 2 1 pc) t_expr
and pp_bin_op node buffer ~pad:(_,pc) op =
pp_node buffer ~pad:(mk_pad 1 0 pc) node;
let _, pc = mk_pad 1 0 pc in
(pp_expr buffer ~pad:(mk_pad 2 0 pc) op.arg1;
pp_expr buffer ~pad:(mk_pad 2 1 pc) op.arg2)
let pp_ast buffer = pp_ast buffer ~pad:("","")

View File

@ -12,3 +12,5 @@ val tokens_to_string : AST.t -> string
val path_to_string : AST.path -> string
val pattern_to_string : AST.pattern -> string
val instruction_to_string : AST.instruction -> string
val pp_ast : Buffer.t -> AST.t -> unit

View File

@ -103,6 +103,14 @@ let () =
try
let ast = Parser.contract tokeniser buffer in
if Utils.String.Set.mem "ast" options.verbose
then let buffer = Buffer.create 131 in
begin
ParserLog.offsets := options.offsets;
ParserLog.mode := options.mode;
ParserLog.pp_ast buffer ast;
Buffer.output_buffer stdout buffer
end
else if Utils.String.Set.mem "ast-tokens" options.verbose
then let buffer = Buffer.create 131 in
begin
ParserLog.offsets := options.offsets;

View File

@ -39,7 +39,7 @@ let help language extension () =
print " -q, --quiet No output, except errors (default)";
print " --columns Columns for source locations";
print " --bytes Bytes for source locations";
print " --verbose=<stages> cmdline, cpp, ast (colon-separated)";
print " --verbose=<stages> cmdline, cpp, ast-tokens, ast (colon-separated)";
print " --version Commit hash on stdout";
print " -h, --help This help";
exit 0

View File

@ -62,20 +62,20 @@ module type TOKEN =
type int_err = Non_canonical_zero
type ident_err = Reserved_name
type invalid_natural =
| Invalid_natural
type nat_err = Invalid_natural
| Non_canonical_zero_nat
type sym_err = Invalid_symbol
(* Injections *)
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_int : lexeme -> Region.t -> (token, int_err) result
val mk_nat : lexeme -> Region.t -> (token, invalid_natural) result
val mk_nat : lexeme -> Region.t -> (token, nat_err) result
val mk_mtz : lexeme -> Region.t -> (token, int_err) result
val mk_ident : lexeme -> Region.t -> (token, ident_err) result
val mk_sym : lexeme -> Region.t -> (token, sym_err) result
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_constr : lexeme -> Region.t -> token
val mk_sym : lexeme -> Region.t -> token
val eof : Region.t -> token
(* Predicates *)

View File

@ -103,20 +103,20 @@ module type TOKEN =
type int_err = Non_canonical_zero
type ident_err = Reserved_name
type invalid_natural =
| Invalid_natural
type nat_err = Invalid_natural
| Non_canonical_zero_nat
type sym_err = Invalid_symbol
(* Injections *)
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_int : lexeme -> Region.t -> (token, int_err) result
val mk_nat : lexeme -> Region.t -> (token, invalid_natural) result
val mk_nat : lexeme -> Region.t -> (token, nat_err) result
val mk_mtz : lexeme -> Region.t -> (token, int_err) result
val mk_ident : lexeme -> Region.t -> (token, ident_err) result
val mk_sym : lexeme -> Region.t -> (token, sym_err) result
val mk_string : lexeme -> Region.t -> token
val mk_bytes : lexeme -> Region.t -> token
val mk_constr : lexeme -> Region.t -> token
val mk_sym : lexeme -> Region.t -> token
val eof : Region.t -> token
(* Predicates *)
@ -343,6 +343,7 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
type Error.t += Broken_string
type Error.t += Invalid_character_in_string
type Error.t += Reserved_name
type Error.t += Invalid_symbol
type Error.t += Invalid_natural
let error_to_string = function
@ -386,6 +387,9 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
| Reserved_name ->
"Reserved named.\n\
Hint: Change the name.\n"
| Invalid_symbol ->
"Invalid symbol.\n\
Hint: Check the LIGO syntax you use.\n"
| Invalid_natural ->
"Invalid natural."
| _ -> assert false
@ -487,8 +491,10 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
in Token.mk_constr lexeme region, state
let mk_sym state buffer =
let region, lexeme, state = sync state buffer
in Token.mk_sym lexeme region, state
let region, lexeme, state = sync state buffer in
match Token.mk_sym lexeme region with
Ok token -> token, state
| Error Token.Invalid_symbol -> fail region Invalid_symbol
let mk_eof state buffer =
let region, _, state = sync state buffer
@ -518,11 +524,16 @@ let byte_seq = byte | byte (byte | '_')* byte
let bytes = "0x" (byte_seq? as seq)
let esc = "\\n" | "\\\"" | "\\\\" | "\\b"
| "\\r" | "\\t" | "\\x" byte
let symbol = ';' | ',' | '(' | ')'| '[' | ']' | '{' | '}'
| '#' | '|' | "->" | ":=" | '=' | ':'
| '<' | "<=" | '>' | ">=" | "=/=" | "<>"
| '+' | '-' | '*' | '/' | '.' | '_' | '^'
| "::" | "||" | "&&"
let pascaligo_sym = "=/=" | '#' | ":="
let cameligo_sym = "<>" | "::" | "||" | "&&"
let symbol =
';' | ',' | '(' | ')'| '[' | ']' | '{' | '}'
| '=' | ':' | '|' | "->" | '.' | '_' | '^'
| '+' | '-' | '*' | '/'
| '<' | "<=" | '>' | ">="
| pascaligo_sym | cameligo_sym
let string = [^'"' '\\' '\n']* (* For strings of #include *)
(* RULES *)

View File

@ -35,26 +35,6 @@ module Errors = struct
] in
error ~data title message
let unsupported_proc_decl decl =
let title () = "procedure declarations" in
let message () =
Format.asprintf "procedures are not supported yet" in
let data = [
("declaration",
fun () -> Format.asprintf "%a" Location.pp_lift @@ decl.Region.region)
] in
error ~data title message
let unsupported_local_proc region =
let title () = "local procedure declarations" in
let message () =
Format.asprintf "local procedures are not supported yet" in
let data = [
("declaration",
fun () -> Format.asprintf "%a" Location.pp_lift @@ region)
] in
error ~data title message
let corner_case ~loc message =
let title () = "corner case" in
let content () = "We don't have a good error message for this case. \
@ -88,16 +68,6 @@ module Errors = struct
] in
error ~data title message
let unsupported_proc_calls call =
let title () = "procedure calls" in
let message () =
Format.asprintf "procedure calls are not supported yet" in
let data = [
("call_loc",
fun () -> Format.asprintf "%a" Location.pp_lift @@ call.Region.region)
] in
error ~data title message
let unsupported_for_loops region =
let title () = "bounded iterators" in
let message () =
@ -273,10 +243,11 @@ let rec simpl_type_expression (t:Raw.type_expr) : type_expression result =
let args =
match v.value.args with
None -> []
| Some (_, product) ->
npseq_to_list product.value in
let%bind te = simpl_list_type_expression
@@ args in
| Some (_, t_expr) ->
match t_expr with
TProd product -> npseq_to_list product.value
| _ -> [t_expr] in
let%bind te = simpl_list_type_expression @@ args in
ok (v.value.constr.value, te)
in
let%bind lst = bind_list
@ -345,8 +316,7 @@ let rec simpl_expression (t:Raw.expr) : expr result =
let (x' , loc) = r_split x in
return @@ e_literal ~loc (Literal_bytes (Bytes.of_string @@ fst x'))
| ETuple tpl ->
let (Raw.TupleInj tpl') = tpl in
let (tpl' , loc) = r_split tpl' in
let (tpl' , loc) = r_split tpl in
simpl_tuple_expression ~loc @@ npseq_to_list tpl'.inside
| ERecord r ->
let%bind fields = bind_list
@ -550,8 +520,7 @@ and simpl_local_declaration : Raw.local_decl -> _ result = fun t ->
let (f , loc) = r_split f in
let%bind (name , e) = simpl_fun_declaration ~loc f in
return_let_in ~loc name e
| LocalProc d ->
fail @@ unsupported_local_proc d.Region.region
and simpl_data_declaration : Raw.data_decl -> _ result = fun t ->
match t with
| LocalVar x ->
@ -659,13 +628,11 @@ and simpl_declaration : Raw.declaration -> declaration Location.wrap result =
ok @@ Declaration_constant (name.value , type_annotation , expression)
in
bind_map_location simpl_const_decl (Location.lift_region x)
| LambdaDecl (FunDecl x) -> (
| FunDecl x -> (
let (x , loc) = r_split x in
let%bind ((name , ty_opt) , expr) = simpl_fun_declaration ~loc x in
ok @@ Location.wrap ~loc (Declaration_constant (name , ty_opt , expr))
)
| LambdaDecl (ProcDecl decl) ->
fail @@ unsupported_proc_decl decl
and simpl_statement : Raw.statement -> (_ -> expression result) result =
fun s ->
@ -882,7 +849,7 @@ and simpl_cases : type a . (Raw.pattern * a) list -> a matching result = fun t -
| [] -> ok x'
| _ -> ok t
)
| _ -> fail @@ corner_case ~loc:__LOC__ "unexpected pattern" in
| pattern -> ok pattern in
let get_constr (t: Raw.pattern) =
match t with
| PConstr v -> (

View File

@ -6,14 +6,10 @@ open Ast_simplified
module Raw = Parser.Pascaligo.AST
module SMap = Map.String
module Errors : sig
module Errors :
sig
val bad_bytes : Location.t -> string -> unit -> error
val unsupported_arith_op : Raw.expr -> unit -> error
val unsupported_proc_calls : 'a Raw.reg -> unit -> error
end