moving stuff around

This commit is contained in:
Galfour 2019-04-05 17:53:41 +00:00
parent aca086e5e7
commit 8657509bd7
57 changed files with 339 additions and 323 deletions

23
src/lib_utils/PP.ml Normal file
View File

@ -0,0 +1,23 @@
open Format
let string : formatter -> string -> unit = fun ppf s -> fprintf ppf "%s" s
let tag tag : formatter -> unit -> unit = fun ppf () -> fprintf ppf tag
let new_line : formatter -> unit -> unit = tag "@;"
let rec new_lines n ppf () =
match n with
| 0 -> new_line ppf ()
| n -> new_line ppf () ; new_lines (n-1) ppf ()
let const const : formatter -> unit -> unit = fun ppf () -> fprintf ppf "%s" const
let comment : formatter -> string -> unit = fun ppf s -> fprintf ppf "(* %s *)" s
let list_sep value separator = pp_print_list ~pp_sep:separator value
let ne_list_sep value separator ppf (hd, tl) =
value ppf hd ;
separator ppf () ;
pp_print_list ~pp_sep:separator value ppf tl
let pair_sep value sep ppf (a, b) = fprintf ppf "%a %s %a" value a sep value b
let smap_sep value sep ppf m =
let module SMap = X_map.String in
let aux k v prev = (k, v) :: prev in
let new_pp ppf (k, v) = fprintf ppf "%s -> %a" k value v in
let lst = List.rev @@ SMap.fold aux m [] in
fprintf ppf "%a" (list_sep new_pp sep) lst

View File

@ -0,0 +1,53 @@
open Trace
module type DICTIONARY = sig
type ('a, 'b) t
val get_exn : ('a, 'b) t -> 'a -> 'b
val get : ('a, 'b) t -> 'a -> 'b result
val set :
?equal:('a -> 'a -> bool) ->
('a, 'b) t -> 'a -> 'b -> ('a, 'b) t
val del :
?equal:('a -> 'a -> bool) ->
('a, 'b) t -> 'a -> ('a, 'b) t
val to_list : ('a, 'b) t -> ('a * 'b) list
end
module Assoc : DICTIONARY = struct
type ('a, 'b) t = ('a * 'b) list
let get_exn x y = List.assoc y x
let get x y = generic_try (simple_error "Dictionry.get") @@ fun () -> get_exn x y
let set ?equal lst a b =
let equal : 'a -> 'a -> bool =
Option.unopt
~default:(=) equal
in
let rec aux acc = function
| [] -> List.rev acc
| (key, _)::tl when equal key a -> aux ((key, b) :: acc) tl
| hd::tl -> aux (hd :: acc) tl
in
aux [] lst
let del ?equal lst a =
let equal : 'a -> 'a -> bool =
Option.unopt
~default:(=) equal
in
let rec aux acc = function
| [] -> List.rev acc
| (key, _)::tl when equal key a -> aux acc tl
| hd::tl -> aux (hd :: acc) tl
in
aux [] lst
let to_list x = x
end

0
src/lib_utils/ne_list.ml Normal file
View File

View File

@ -1,90 +1,20 @@
module Stdlib_unix = Tezos_stdlib_unix module Stdlib_unix = Tezos_stdlib_unix
module Crypto = Tezos_crypto
module Data_encoding = Tezos_data_encoding module Data_encoding = Tezos_data_encoding
module Error_monad = X_error_monad module Crypto = Tezos_crypto
module Signature = Tezos_base.TzPervasives.Signature module Signature = Tezos_base.TzPervasives.Signature
module Time = Tezos_base.TzPervasives.Time module Time = Tezos_base.TzPervasives.Time
module Memory_proto_alpha = X_memory_proto_alpha
module Micheline = X_tezos_micheline
module Error_monad = X_error_monad
module Trace = Trace
module PP = PP
module List = X_list module List = X_list
module Option = Tezos_base.TzPervasives.Option module Option = Tezos_base.TzPervasives.Option
module Cast = Cast module Cast = Cast
module Micheline = X_tezos_micheline
module Tuple = Tuple module Tuple = Tuple
module Map = X_map
module Memory_proto_alpha = struct module Dictionary = Dictionary
include Memory_proto_alpha module Environment = Environment
let init_environment = Init_proto_alpha.init_environment module Tree = Tree
let dummy_environment = Init_proto_alpha.dummy_environment
open X_error_monad
open Script_typed_ir
open Script_ir_translator
open Script_interpreter
let stack_ty_eq (type a b)
?(tezos_context = dummy_environment.tezos_context)
(a:a stack_ty) (b:b stack_ty) =
alpha_wrap (Script_ir_translator.stack_ty_eq tezos_context 0 a b) >>? fun (Eq, _) ->
ok Eq
let ty_eq (type a b)
?(tezos_context = dummy_environment.tezos_context)
(a:a ty) (b:b ty)
=
alpha_wrap (Script_ir_translator.ty_eq tezos_context a b) >>? fun (Eq, _) ->
ok Eq
let parse_michelson (type aft)
?(tezos_context = dummy_environment.tezos_context)
?(top_level = Lambda) (michelson:Micheline.Michelson.t)
(bef:'a Script_typed_ir.stack_ty) (aft:aft Script_typed_ir.stack_ty)
=
let michelson = Micheline.Michelson.strip_annots michelson in
let michelson = Micheline.Michelson.strip_nops michelson in
parse_instr
top_level tezos_context
michelson bef >>=?? fun (j, _) ->
match j with
| Typed descr -> (
Lwt.return (
alpha_wrap (Script_ir_translator.stack_ty_eq tezos_context 0 descr.aft aft) >>? fun (Eq, _) ->
let descr : (_, aft) Script_typed_ir.descr = {descr with aft} in
Ok descr
)
)
| _ -> Lwt.return @@ error_exn (Failure "Typing instr failed")
let parse_michelson_data
?(tezos_context = dummy_environment.tezos_context)
michelson ty =
let michelson = Micheline.Michelson.strip_annots michelson in
let michelson = Micheline.Michelson.strip_nops michelson in
parse_data tezos_context ty michelson >>=?? fun (data, _) ->
return data
let parse_michelson_ty
?(tezos_context = dummy_environment.tezos_context)
?(allow_big_map = true) ?(allow_operation = true)
michelson =
let michelson = Micheline.Michelson.strip_annots michelson in
let michelson = Micheline.Michelson.strip_nops michelson in
Lwt.return @@ parse_ty tezos_context ~allow_big_map ~allow_operation michelson >>=?? fun (ty, _) ->
return ty
let unparse_michelson_data
?(tezos_context = dummy_environment.tezos_context)
?mapper ty value : Micheline.Michelson.t tzresult Lwt.t =
Script_ir_translator.unparse_data tezos_context ?mapper
Readable ty value >>=?? fun (michelson, _) ->
return michelson
let interpret
?(tezos_context = dummy_environment.tezos_context)
?(source = (List.nth dummy_environment.identities 0).implicit_contract)
?(self = (List.nth dummy_environment.identities 0).implicit_contract)
?(payer = (List.nth dummy_environment.identities 1).implicit_contract)
?visitor
(instr:('a, 'b) descr) (bef:'a stack) : 'b stack tzresult Lwt.t =
Script_interpreter.step tezos_context ~source ~self ~payer ?visitor Alpha_context.Tez.one instr bef >>=??
fun (stack, _) -> return stack
end

View File

@ -118,11 +118,11 @@ let bind_pair = bind_and
let bind_map_pair f (a, b) = let bind_map_pair f (a, b) =
bind_pair (f a, f b) bind_pair (f a, f b)
module AE = Tezos_utils.Memory_proto_alpha.Alpha_environment module AE = Memory_proto_alpha.Alpha_environment
module TP = Tezos_base__TzPervasives module TP = Tezos_base__TzPervasives
let of_tz_error (err:Tezos_utils.Error_monad.error) : error = let of_tz_error (err:X_error_monad.error) : error =
let str = Tezos_utils.Error_monad.(to_string err) in let str = X_error_monad.(to_string err) in
error "alpha error" str error "alpha error" str
let of_alpha_tz_error err = of_tz_error (AE.Ecoproto_error err) let of_alpha_tz_error err = of_tz_error (AE.Ecoproto_error err)

View File

@ -1,5 +1,16 @@
include Tezos_base.TzPervasives.List include Tezos_base.TzPervasives.List
let filter_map f =
let rec aux acc lst = match lst with
| [] -> List.rev acc
| hd :: tl -> aux (
match f hd with
| Some x -> x :: acc
| None -> acc
) tl
in
aux []
let range n = let range n =
let rec aux acc n = let rec aux acc n =
if n = 0 if n = 0
@ -53,3 +64,24 @@ let until n lst =
else aux ((hd lst) :: acc) (n - 1) (tl lst) else aux ((hd lst) :: acc) (n - 1) (tl lst)
in in
rev (aux [] n lst) rev (aux [] n lst)
module Ne = struct
type 'a t = 'a * 'a list
let of_list lst = List.(hd lst, tl lst)
let to_list (hd, tl : _ t) = hd :: tl
let iter f (hd, tl : _ t) = f hd ; List.iter f tl
let map f (hd, tl : _ t) = f hd, List.map f tl
let mapi f (hd, tl : _ t) =
let lst = List.mapi f (hd::tl) in
of_list lst
let concat (hd, tl : _ t) = hd @ List.concat tl
let rev (hd, tl : _ t) =
match tl with
| [] -> (hd, [])
| lst ->
let r = List.rev lst in
(List.hd r, List.tl r @ [hd])
end

View File

@ -1,4 +1,14 @@
module Make(Ord : Map.OrderedType) = struct module type OrderedType = Map.OrderedType
module type S = sig
include Map.S
val of_list : (key * 'a) list -> 'a t
val to_list : 'a t -> 'a list
val to_kv_list : 'a t -> (key * 'a) list
end
module Make(Ord : Map.OrderedType) : S with type key = Ord.t = struct
include Map.Make(Ord) include Map.Make(Ord)
let of_list (lst: (key * 'a) list) : 'a t = let of_list (lst: (key * 'a) list) : 'a t =

View File

@ -0,0 +1,77 @@
module Michelson = X_tezos_micheline.Michelson
include Memory_proto_alpha
let init_environment = Init_proto_alpha.init_environment
let dummy_environment = Init_proto_alpha.dummy_environment
open X_error_monad
open Script_typed_ir
open Script_ir_translator
open Script_interpreter
let stack_ty_eq (type a b)
?(tezos_context = dummy_environment.tezos_context)
(a:a stack_ty) (b:b stack_ty) =
alpha_wrap (Script_ir_translator.stack_ty_eq tezos_context 0 a b) >>? fun (Eq, _) ->
ok Eq
let ty_eq (type a b)
?(tezos_context = dummy_environment.tezos_context)
(a:a ty) (b:b ty)
=
alpha_wrap (Script_ir_translator.ty_eq tezos_context a b) >>? fun (Eq, _) ->
ok Eq
let parse_michelson (type aft)
?(tezos_context = dummy_environment.tezos_context)
?(top_level = Lambda) (michelson:Michelson.t)
(bef:'a Script_typed_ir.stack_ty) (aft:aft Script_typed_ir.stack_ty)
=
let michelson = Michelson.strip_annots michelson in
let michelson = Michelson.strip_nops michelson in
parse_instr
top_level tezos_context
michelson bef >>=?? fun (j, _) ->
match j with
| Typed descr -> (
Lwt.return (
alpha_wrap (Script_ir_translator.stack_ty_eq tezos_context 0 descr.aft aft) >>? fun (Eq, _) ->
let descr : (_, aft) Script_typed_ir.descr = {descr with aft} in
Ok descr
)
)
| _ -> Lwt.return @@ error_exn (Failure "Typing instr failed")
let parse_michelson_data
?(tezos_context = dummy_environment.tezos_context)
michelson ty =
let michelson = Michelson.strip_annots michelson in
let michelson = Michelson.strip_nops michelson in
parse_data tezos_context ty michelson >>=?? fun (data, _) ->
return data
let parse_michelson_ty
?(tezos_context = dummy_environment.tezos_context)
?(allow_big_map = true) ?(allow_operation = true)
michelson =
let michelson = Michelson.strip_annots michelson in
let michelson = Michelson.strip_nops michelson in
Lwt.return @@ parse_ty tezos_context ~allow_big_map ~allow_operation michelson >>=?? fun (ty, _) ->
return ty
let unparse_michelson_data
?(tezos_context = dummy_environment.tezos_context)
?mapper ty value : Michelson.t tzresult Lwt.t =
Script_ir_translator.unparse_data tezos_context ?mapper
Readable ty value >>=?? fun (michelson, _) ->
return michelson
let interpret
?(tezos_context = dummy_environment.tezos_context)
?(source = (List.nth dummy_environment.identities 0).implicit_contract)
?(self = (List.nth dummy_environment.identities 0).implicit_contract)
?(payer = (List.nth dummy_environment.identities 1).implicit_contract)
?visitor
(instr:('a, 'b) descr) (bef:'a stack) : 'b stack tzresult Lwt.t =
Script_interpreter.step tezos_context ~source ~self ~payer ?visitor Alpha_context.Tez.one instr bef >>=??
fun (stack, _) -> return stack

View File

@ -1,4 +1,4 @@
module SMap = Ligo_helpers.X_map.String module SMap = Map.String
type name = string type name = string
type type_name = string type type_name = string
@ -116,19 +116,22 @@ let ae expression = {expression ; type_annotation = None}
let annotated_expression expression type_annotation = {expression ; type_annotation} let annotated_expression expression type_annotation = {expression ; type_annotation}
open Ligo_helpers.Trace open Trace
module PP = struct module PP = struct
open Ligo_helpers.PP open PP
open Format open Format
let list_sep_d x = list_sep x (const " , ")
let smap_sep_d x = smap_sep x (const " , ")
let rec type_expression ppf (te:type_expression) = match te with let rec type_expression ppf (te:type_expression) = match te with
| T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep type_expression) lst | T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d type_expression) lst
| T_sum m -> fprintf ppf "sum[%a]" (smap_sep type_expression) m | T_sum m -> fprintf ppf "sum[%a]" (smap_sep_d type_expression) m
| T_record m -> fprintf ppf "record[%a]" (smap_sep type_expression) m | T_record m -> fprintf ppf "record[%a]" (smap_sep_d type_expression) m
| T_function (p, r) -> fprintf ppf "%a -> %a" type_expression p type_expression r | T_function (p, r) -> fprintf ppf "%a -> %a" type_expression p type_expression r
| T_variable name -> fprintf ppf "%s" name | T_variable name -> fprintf ppf "%s" name
| T_constant (name, lst) -> fprintf ppf "%s(%a)" name (list_sep type_expression) lst | T_constant (name, lst) -> fprintf ppf "%s(%a)" name (list_sep_d type_expression) lst
let literal ppf (l:literal) = match l with let literal ppf (l:literal) = match l with
| Literal_unit -> fprintf ppf "Unit" | Literal_unit -> fprintf ppf "Unit"
@ -142,11 +145,11 @@ module PP = struct
| E_variable name -> fprintf ppf "%s" name | E_variable name -> fprintf ppf "%s" name
| E_application (f, arg) -> fprintf ppf "(%a)@(%a)" annotated_expression f annotated_expression arg | E_application (f, arg) -> fprintf ppf "(%a)@(%a)" annotated_expression f annotated_expression arg
| E_constructor (name, ae) -> fprintf ppf "%s(%a)" name annotated_expression ae | E_constructor (name, ae) -> fprintf ppf "%s(%a)" name annotated_expression ae
| E_constant (name, lst) -> fprintf ppf "%s(%a)" name (list_sep annotated_expression) lst | E_constant (name, lst) -> fprintf ppf "%s(%a)" name (list_sep_d annotated_expression) lst
| E_tuple lst -> fprintf ppf "tuple[%a]" (list_sep annotated_expression) lst | E_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d annotated_expression) lst
| E_accessor (ae, p) -> fprintf ppf "%a.%a" annotated_expression ae access_path p | E_accessor (ae, p) -> fprintf ppf "%a.%a" annotated_expression ae access_path p
| E_record m -> fprintf ppf "record[%a]" (smap_sep annotated_expression) m | E_record m -> fprintf ppf "record[%a]" (smap_sep_d annotated_expression) m
| E_map m -> fprintf ppf "map[%a]" (list_sep assoc_annotated_expression) m | E_map m -> fprintf ppf "map[%a]" (list_sep_d assoc_annotated_expression) m
| E_look_up (ds, ind) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression ind | E_look_up (ds, ind) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression ind
| E_lambda {binder;input_type;output_type;result;body} -> | E_lambda {binder;input_type;output_type;result;body} ->
fprintf ppf "lambda (%s:%a) : %a {%a} return %a" fprintf ppf "lambda (%s:%a) : %a {%a} return %a"
@ -164,7 +167,7 @@ module PP = struct
| Access_record s -> fprintf ppf "%s" s | Access_record s -> fprintf ppf "%s" s
and access_path ppf (p:access_path) = and access_path ppf (p:access_path) =
fprintf ppf "%a" (list_sep ~pp_sep:(const ".") access) p fprintf ppf "%a" (list_sep access (const ".")) p
and type_annotation ppf (ta:type_expression option) = match ta with and type_annotation ppf (ta:type_expression option) = match ta with
| None -> fprintf ppf "" | None -> fprintf ppf ""
@ -174,7 +177,7 @@ module PP = struct
| None -> fprintf ppf "%a" expression ae.expression | None -> fprintf ppf "%a" expression ae.expression
| Some t -> fprintf ppf "(%a) : %a" expression ae.expression type_expression t | Some t -> fprintf ppf "(%a) : %a" expression ae.expression type_expression t
and block ppf (b:block) = (list_sep instruction) ppf b and block ppf (b:block) = (list_sep_d instruction) ppf b
and single_record_patch ppf ((p, ae) : string * ae) = and single_record_patch ppf ((p, ae) : string * ae) =
fprintf ppf "%s <- %a" p annotated_expression ae fprintf ppf "%s <- %a" p annotated_expression ae
@ -182,7 +185,7 @@ module PP = struct
and matching : type a . (formatter -> a -> unit) -> formatter -> a matching -> unit = and matching : type a . (formatter -> a -> unit) -> formatter -> a matching -> unit =
fun f ppf m -> match m with fun f ppf m -> match m with
| Match_tuple (lst, b) -> | Match_tuple (lst, b) ->
fprintf ppf "let (%a) = %a" (list_sep (fun ppf -> fprintf ppf "%s")) lst f b fprintf ppf "let (%a) = %a" (list_sep_d string) lst f b
| Match_bool {match_true ; match_false} -> | Match_bool {match_true ; match_false} ->
fprintf ppf "| True -> %a @.| False -> %a" f match_true f match_false fprintf ppf "| True -> %a @.| False -> %a" f match_true f match_false
| Match_list {match_nil ; match_cons = (hd, tl, match_cons)} -> | Match_list {match_nil ; match_cons = (hd, tl, match_cons)} ->
@ -193,7 +196,7 @@ module PP = struct
and instruction ppf (i:instruction) = match i with and instruction ppf (i:instruction) = match i with
| I_skip -> fprintf ppf "skip" | I_skip -> fprintf ppf "skip"
| I_fail ae -> fprintf ppf "fail with (%a)" annotated_expression ae | I_fail ae -> fprintf ppf "fail with (%a)" annotated_expression ae
| I_record_patch (name, path, lst) -> fprintf ppf "%s.%a[%a]" name access_path path (list_sep single_record_patch) lst | I_record_patch (name, path, lst) -> fprintf ppf "%s.%a[%a]" name access_path path (list_sep_d single_record_patch) lst
| I_loop (cond, b) -> fprintf ppf "while (%a) { %a }" annotated_expression cond block b | I_loop (cond, b) -> fprintf ppf "while (%a) { %a }" annotated_expression cond block b
| I_assignment {name;annotated_expression = ae} -> | I_assignment {name;annotated_expression = ae} ->
fprintf ppf "%s := %a" name annotated_expression ae fprintf ppf "%s := %a" name annotated_expression ae
@ -207,7 +210,7 @@ module PP = struct
fprintf ppf "const %s = %a" name annotated_expression ae fprintf ppf "const %s = %a" name annotated_expression ae
let program ppf (p:program) = let program ppf (p:program) =
fprintf ppf "%a" (list_sep declaration) p fprintf ppf "%a" (list_sep_d declaration) p
end end
module Rename = struct module Rename = struct

View File

@ -1,6 +1,6 @@
module S = Ast_simplified module S = Ast_simplified
module SMap = Ligo_helpers.X_map.String module SMap = Map.String
type name = string type name = string
type type_name = string type type_name = string
@ -109,7 +109,7 @@ and matching_instr = b matching
and matching_expr = ae matching and matching_expr = ae matching
open! Ligo_helpers.Trace open! Trace
let type_value type_value simplified = { type_value ; simplified } let type_value type_value simplified = { type_value ; simplified }
@ -135,16 +135,20 @@ let get_functional_entry (p:program) (entry : string) : (lambda * type_value) re
module PP = struct module PP = struct
open Format open Format
open Ligo_helpers.PP open PP
let list_sep_d x = list_sep x (const " , ")
let smap_sep_d x = smap_sep x (const " , ")
let rec type_value' ppf (tv':type_value') : unit = let rec type_value' ppf (tv':type_value') : unit =
match tv' with match tv' with
| T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep type_value) lst | T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d type_value) lst
| T_sum m -> fprintf ppf "sum[%a]" (smap_sep type_value) m | T_sum m -> fprintf ppf "sum[%a]" (smap_sep_d type_value) m
| T_record m -> fprintf ppf "record[%a]" (smap_sep type_value) m | T_record m -> fprintf ppf "record[%a]" (smap_sep_d type_value) m
| T_function (a, b) -> fprintf ppf "%a -> %a" type_value a type_value b | T_function (a, b) -> fprintf ppf "%a -> %a" type_value a type_value b
| T_constant (c, []) -> fprintf ppf "%s" c | T_constant (c, []) -> fprintf ppf "%s" c
| T_constant (c, n) -> fprintf ppf "%s(%a)" c (list_sep type_value) n | T_constant (c, n) -> fprintf ppf "%s(%a)" c (list_sep_d type_value) n
and type_value ppf (tv:type_value) : unit = and type_value ppf (tv:type_value) : unit =
type_value' ppf tv.type_value type_value' ppf tv.type_value
@ -157,19 +161,19 @@ module PP = struct
and expression ppf (e:expression) : unit = and expression ppf (e:expression) : unit =
match e with match e with
| E_literal l -> literal ppf l | E_literal l -> literal ppf l
| E_constant (c, lst) -> fprintf ppf "%s(%a)" c (list_sep annotated_expression) lst | E_constant (c, lst) -> fprintf ppf "%s(%a)" c (list_sep_d annotated_expression) lst
| E_constructor (c, lst) -> fprintf ppf "%s(%a)" c annotated_expression lst | E_constructor (c, lst) -> fprintf ppf "%s(%a)" c annotated_expression lst
| E_variable a -> fprintf ppf "%s" a | E_variable a -> fprintf ppf "%s" a
| E_application (f, arg) -> fprintf ppf "(%a) (%a)" annotated_expression f annotated_expression arg | E_application (f, arg) -> fprintf ppf "(%a) (%a)" annotated_expression f annotated_expression arg
| E_tuple lst -> fprintf ppf "tuple[%a]" (list_sep annotated_expression) lst | E_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d annotated_expression) lst
| E_lambda {binder;input_type;output_type;result;body} -> | E_lambda {binder;input_type;output_type;result;body} ->
fprintf ppf "lambda (%s:%a) : %a {%a} return %a" fprintf ppf "lambda (%s:%a) : %a {%a} return %a"
binder type_value input_type type_value output_type binder type_value input_type type_value output_type
block body annotated_expression result block body annotated_expression result
| E_tuple_accessor (ae, i) -> fprintf ppf "%a.%d" annotated_expression ae i | E_tuple_accessor (ae, i) -> fprintf ppf "%a.%d" annotated_expression ae i
| E_record_accessor (ae, s) -> fprintf ppf "%a.%s" annotated_expression ae s | E_record_accessor (ae, s) -> fprintf ppf "%a.%s" annotated_expression ae s
| E_record m -> fprintf ppf "record[%a]" (smap_sep annotated_expression) m | E_record m -> fprintf ppf "record[%a]" (smap_sep_d annotated_expression) m
| E_map m -> fprintf ppf "map[%a]" (list_sep assoc_annotated_expression) m | E_map m -> fprintf ppf "map[%a]" (list_sep_d assoc_annotated_expression) m
| E_look_up (ds, i) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression i | E_look_up (ds, i) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression i
| E_matching (ae, m) -> | E_matching (ae, m) ->
fprintf ppf "match %a with %a" annotated_expression ae (matching annotated_expression) m fprintf ppf "match %a with %a" annotated_expression ae (matching annotated_expression) m
@ -186,14 +190,14 @@ module PP = struct
| Literal_string s -> fprintf ppf "%s" s | Literal_string s -> fprintf ppf "%s" s
| Literal_bytes b -> fprintf ppf "0x%s" @@ Bytes.to_string @@ Bytes.escaped b | Literal_bytes b -> fprintf ppf "0x%s" @@ Bytes.to_string @@ Bytes.escaped b
and block ppf (b:block) = (list_sep instruction) ppf b and block ppf (b:block) = (list_sep_d instruction) ppf b
and single_record_patch ppf ((s, ae) : string * ae) = and single_record_patch ppf ((s, ae) : string * ae) =
fprintf ppf "%s <- %a" s annotated_expression ae fprintf ppf "%s <- %a" s annotated_expression ae
and matching : type a . (formatter -> a -> unit) -> _ -> a matching -> unit = fun f ppf m -> match m with and matching : type a . (formatter -> a -> unit) -> _ -> a matching -> unit = fun f ppf m -> match m with
| Match_tuple (lst, b) -> | Match_tuple (lst, b) ->
fprintf ppf "let (%a) = %a" (list_sep (fun ppf -> fprintf ppf "%s")) lst f b fprintf ppf "let (%a) = %a" (list_sep_d (fun ppf -> fprintf ppf "%s")) lst f b
| Match_bool {match_true ; match_false} -> | Match_bool {match_true ; match_false} ->
fprintf ppf "| True -> %a @.| False -> %a" f match_true f match_false fprintf ppf "| True -> %a @.| False -> %a" f match_true f match_false
| Match_list {match_nil ; match_cons = (hd, tl, match_cons)} -> | Match_list {match_nil ; match_cons = (hd, tl, match_cons)} ->
@ -216,7 +220,7 @@ module PP = struct
fprintf ppf "const %s = %a" name annotated_expression ae fprintf ppf "const %s = %a" name annotated_expression ae
let program ppf (p:program) = let program ppf (p:program) =
fprintf ppf "%a" (list_sep declaration) p fprintf ppf "%a" (list_sep_d declaration) p
end end

View File

@ -1,6 +1,9 @@
(executable (executable
(name cli) (name cli)
(public_name ligo) (public_name ligo)
(libraries
tezos-utils
)
(package ligo) (package ligo)
(preprocess (preprocess
(pps ppx_let) (pps ppx_let)

View File

@ -1,18 +1,25 @@
(env
(dev
(flags (:standard -w +1..62-4-9-44-40-42-48@39@33 -open Tezos_utils ))
)
(release
(flags (:standard -w +1..62-4-9-44-40-42-48@39@33 -open Tezos_utils ))
)
)
(library (library
(name ligo) (name ligo)
(public_name ligo) (public_name ligo)
(libraries (libraries
tezos-utils tezos-utils
tezos-micheline tezos-micheline
meta-michelson meta_michelson
ligo_helpers
ligo_parser ligo_parser
multifix multifix
) )
(preprocess (preprocess
(pps ppx_let) (pps ppx_let)
) )
(flags (:standard -w +1..62-4-9-44-40-42-48@39@33 ))
) )
(alias (alias

View File

@ -9,7 +9,7 @@ module Mini_c = Mini_c
module Typer = Typer module Typer = Typer
module Transpiler = Transpiler module Transpiler = Transpiler
open Ligo_helpers.Trace open Trace
let parse_file (source: string) : AST_Raw.t result = let parse_file (source: string) : AST_Raw.t result =
let pp_input = let pp_input =

View File

@ -1,15 +0,0 @@
open Format
module SMap = X_map.String
let const s ppf () = pp_print_string ppf s
let list_sep ?(pp_sep = const " ; ") pp =
pp_print_list ~pp_sep pp
let pair_sep pp ppf (a, b) = fprintf ppf "(%a, %a)" pp a pp b
let smap_sep pp ppf m =
let aux k v prev = (k, v) :: prev in
let new_pp ppf (k, v) = fprintf ppf "%s -> %a" k pp v in
let lst = List.rev @@ SMap.fold aux m [] in
fprintf ppf "%a" (list_sep new_pp) lst

View File

@ -1,33 +0,0 @@
open Trace
type ('a, 'b) t = ('a * 'b) list
let get_exn x y = List.assoc y x
let get x y = generic_try (simple_error "Dictionry.get") @@ fun () -> get_exn x y
let set ?equal lst a b =
let equal : 'a -> 'a -> bool =
Option.unopt
~default:(=) equal
in
let rec aux acc = function
| [] -> List.rev acc
| (key, _)::tl when equal key a -> aux ((key, b) :: acc) tl
| hd::tl -> aux (hd :: acc) tl
in
aux [] lst
let del ?equal lst a =
let equal : 'a -> 'a -> bool =
Option.unopt
~default:(=) equal
in
let rec aux acc = function
| [] -> List.rev acc
| (key, _)::tl when equal key a -> aux acc tl
| hd::tl -> aux (hd :: acc) tl
in
aux [] lst
let to_list x = x

View File

@ -1,16 +0,0 @@
open Trace
type ('a, 'b) t
val get_exn : ('a, 'b) t -> 'a -> 'b
val get : ('a, 'b) t -> 'a -> 'b result
val set :
?equal:('a -> 'a -> bool) ->
('a, 'b) t -> 'a -> 'b -> ('a, 'b) t
val del :
?equal:('a -> 'a -> bool) ->
('a, 'b) t -> 'a -> ('a, 'b) t
val to_list : ('a, 'b) t -> ('a * 'b) list

View File

@ -1,9 +0,0 @@
(library
(name ligo_helpers)
(public_name ligo.helpers)
(libraries
tezos-base
tezos-utils
)
;; (modules x_map option wrap tree location environment dictionary PP trace)
)

View File

@ -10,7 +10,15 @@
(name ligo_parser) (name ligo_parser)
(public_name ligo.parser) (public_name ligo.parser)
(modules_without_implementation Error) (modules_without_implementation Error)
(libraries getopt hex str uutf zarith)) (libraries
getopt
hex
str
uutf
zarith
tezos-utils
)
)
;; Les deux directives (rule) qui suivent sont pour le dev local. ;; Les deux directives (rule) qui suivent sont pour le dev local.
;; Il suffit de faire "dune build Parser.exe" pour avoir un Parser.exe dans le dossier. ;; Il suffit de faire "dune build Parser.exe" pour avoir un Parser.exe dans le dossier.

View File

@ -1,21 +0,0 @@
name: "meta-michelson"
opam-version: "2.0"
version: "1.0"
maintainer: "gabriel.alfour@gmail.com"
authors: [ "Galfour" ]
homepage: "https://gitlab.com/gabriel.alfour/tezos"
bug-reports: "https://gitlab.com/gabriel.alfour/tezos/issues"
dev-repo: "git+https://gitlab.com/gabriel.alfour/tezos.git"
license: "MIT"
depends: [
"ocamlfind" { build }
"dune" { build & >= "1.0.1" }
"tezos-utils"
"michelson-parser"
]
build: [
[ "dune" "build" "-p" name "-j" jobs ]
]
url {
src: "https://gitlab.com/gabriel.alfour/tezos/-/archive/master/tezos.tar.gz"
}

View File

@ -1,6 +1,6 @@
(library (library
(name meta_michelson) (name meta_michelson)
(public_name meta-michelson) (public_name ligo.meta_michelson)
(libraries (libraries
tezos-utils tezos-utils
michelson-parser michelson-parser

View File

@ -1,4 +1,3 @@
open Ligo_helpers
open! Trace open! Trace
open Tezos_utils.Memory_proto_alpha open Tezos_utils.Memory_proto_alpha
@ -114,7 +113,9 @@ and program = toplevel_statement list
module PP = struct module PP = struct
open Format open Format
open Ligo_helpers.PP open PP
let list_sep_d x = list_sep x (const " , ")
let space_sep ppf () = fprintf ppf " " let space_sep ppf () = fprintf ppf " "
@ -144,14 +145,14 @@ module PP = struct
and environment_small' ppf e' = let open Append_tree in and environment_small' ppf e' = let open Append_tree in
let lst = to_list' e' in let lst = to_list' e' in
fprintf ppf "S[%a]" (list_sep environment_element) lst fprintf ppf "S[%a]" (list_sep_d environment_element) lst
and environment_small ppf e = let open Append_tree in and environment_small ppf e = let open Append_tree in
let lst = to_list e in let lst = to_list e in
fprintf ppf "S[%a]" (list_sep environment_element) lst fprintf ppf "S[%a]" (list_sep_d environment_element) lst
let environment ppf (x:environment) = let environment ppf (x:environment) =
fprintf ppf "Env[%a]" (list_sep environment_small) x fprintf ppf "Env[%a]" (list_sep_d environment_small) x
let rec value ppf : value -> unit = function let rec value ppf : value -> unit = function
| D_bool b -> fprintf ppf "%b" b | D_bool b -> fprintf ppf "%b" b
@ -166,7 +167,7 @@ module PP = struct
| D_function x -> function_ ppf x.content | D_function x -> function_ ppf x.content
| D_none -> fprintf ppf "None" | D_none -> fprintf ppf "None"
| D_some s -> fprintf ppf "Some (%a)" value s | D_some s -> fprintf ppf "Some (%a)" value s
| D_map m -> fprintf ppf "Map[%a]" (list_sep value_assoc) m | D_map m -> fprintf ppf "Map[%a]" (list_sep_d value_assoc) m
and value_assoc ppf : (value * value) -> unit = fun (a, b) -> and value_assoc ppf : (value * value) -> unit = fun (a, b) ->
fprintf ppf "%a -> %a" value a value b fprintf ppf "%a -> %a" value a value b

View File

@ -43,6 +43,7 @@
(name generator) (name generator)
(libraries (libraries
ocamlgraph ocamlgraph
tezos-utils
lex lex
) )
(modules generator) (modules generator)

View File

@ -1,61 +1,12 @@
module N = struct type 'a name = {
type 'a t = { content : 'a ;
content : 'a ; name : string ;
name : string ; }
}
let name name content = { name ; content } let make_name name content = { name ; content }
let destruct {name ; content} = (name, content) let destruct {name ; content} = (name, content)
let get_name x = x.name let get_name x = x.name
let get_content x = x.content let get_content x = x.content
end
let list_filter_map f =
let rec aux acc lst = match lst with
| [] -> List.rev acc
| hd :: tl -> aux (
match f hd with
| Some x -> x :: acc
| None -> acc
) tl
in
aux []
module Ne_list = struct
type 'a t = 'a * 'a list
let of_list lst = List.(hd lst, tl lst)
let iter f (hd, tl : _ t) = f hd ; List.iter f tl
let map f (hd, tl : _ t) = f hd, List.map f tl
let mapi f (hd, tl : _ t) =
let lst = List.mapi f (hd::tl) in
of_list lst
let concat (hd, tl : _ t) = hd @ List.concat tl
let rev (hd, tl : _ t) =
match tl with
| [] -> (hd, [])
| lst ->
let r = List.rev lst in
(List.hd r, List.tl r @ [hd])
end
module PP = struct
open Format
let string : formatter -> string -> unit = fun ppf s -> fprintf ppf "%s" s
let tag tag : formatter -> unit -> unit = fun ppf () -> fprintf ppf tag
let new_line : formatter -> unit -> unit = tag "@;"
let rec new_lines n ppf () =
match n with
| 0 -> new_line ppf ()
| n -> new_line ppf () ; new_lines (n-1) ppf ()
let const const : formatter -> unit -> unit = fun ppf () -> fprintf ppf "%s" const
let comment : formatter -> string -> unit = fun ppf s -> fprintf ppf "(* %s *)" s
let list_sep value separator = pp_print_list ~pp_sep:separator value
let ne_list_sep value separator ppf (hd, tl) =
value ppf hd ;
separator ppf () ;
pp_print_list ~pp_sep:separator value ppf tl
end
module Token = Lex.Token module Token = Lex.Token
type token = Token.token type token = Token.token
@ -70,13 +21,13 @@ module O = struct
| Lower (* Lower precedence *) | Lower (* Lower precedence *)
type operator = element list type operator = element list
type n_operator = operator N.t type n_operator = operator name
type n_operators = n_operator list type n_operators = n_operator list
type level = n_operators N.t type level = n_operators name
type hierarchy = level Ne_list.t type hierarchy = level List.Ne.t
type n_hierarchy = hierarchy N.t type n_hierarchy = hierarchy name
type singleton = { type singleton = {
type_name : string ; type_name : string ;
@ -91,17 +42,17 @@ module O = struct
hierarchies : n_hierarchy list ; hierarchies : n_hierarchy list ;
} }
let get_op : n_operator -> operator = N.get_content let get_op : n_operator -> operator = get_content
let singleton type_name type_expression menhir_rule menhir_code = let singleton type_name type_expression menhir_rule menhir_code =
{type_name ; type_expression ; menhir_rule ; menhir_code} {type_name ; type_expression ; menhir_rule ; menhir_code}
let language entry_point singletons hierarchies = {entry_point ; singletons ; hierarchies} let language entry_point singletons hierarchies = {entry_point ; singletons ; hierarchies}
let name_hierarchy name : n_operators list -> n_hierarchy = fun nopss -> let name_hierarchy name : n_operators list -> n_hierarchy = fun nopss ->
let nopss' = Ne_list.of_list nopss in let nopss' = List.Ne.of_list nopss in
let name_i = fun i x -> N.name (name ^ "_" ^ (string_of_int i)) x in let name_i = fun i x -> make_name (name ^ "_" ^ (string_of_int i)) x in
let levels : hierarchy = Ne_list.mapi name_i nopss' in let levels : hierarchy = List.Ne.mapi name_i nopss' in
N.name name levels make_name name levels
end end
@ -120,15 +71,15 @@ module Check = struct
in in
(if (List.length es < 2) then raise (Failure "operator is too short")) ; (if (List.length es < 2) then raise (Failure "operator is too short")) ;
aux es in aux es in
let op : n_operator -> unit = fun x -> elements @@ N.get_content x in let op : n_operator -> unit = fun x -> elements @@ get_content x in
let level : level -> unit = fun l -> List.iter op @@ N.get_content l in let level : level -> unit = fun l -> List.iter op @@ get_content l in
let hierarchy : n_hierarchy -> unit = fun h -> Ne_list.iter level @@ N.get_content h in let hierarchy : n_hierarchy -> unit = fun h -> List.Ne.iter level @@ get_content h in
List.iter hierarchy l.hierarchies List.iter hierarchy l.hierarchies
let associativity : language -> unit = fun l -> let associativity : language -> unit = fun l ->
let level : level -> unit = fun l -> let level : level -> unit = fun l ->
let aux : ([`Left | `Right | `None] as 'a) -> n_operator -> 'a = fun ass nop -> let aux : ([`Left | `Right | `None] as 'a) -> n_operator -> 'a = fun ass nop ->
let op = N.get_content nop in let op = get_content nop in
match ass, List.hd op, List.nth op (List.length op - 1) with match ass, List.hd op, List.nth op (List.length op - 1) with
| _, Lower, Lower -> raise (Failure "double assoc") | _, Lower, Lower -> raise (Failure "double assoc")
| `None, Lower, _ -> `Left | `None, Lower, _ -> `Left
@ -137,11 +88,11 @@ module Check = struct
| `Right, Lower, _ -> raise (Failure "different assocs") | `Right, Lower, _ -> raise (Failure "different assocs")
| m, _, _ -> m | m, _, _ -> m
in in
let _assert = List.fold_left aux `None (N.get_content l) in let _assert = List.fold_left aux `None (get_content l) in
() ()
in in
let hierarchy : n_hierarchy -> unit = fun h -> let hierarchy : n_hierarchy -> unit = fun h ->
Ne_list.iter level (N.get_content h) in List.Ne.iter level (get_content h) in
List.iter hierarchy l.hierarchies List.iter hierarchy l.hierarchies
end end
@ -161,16 +112,16 @@ module Print_AST = struct
| List _ -> Some ("(" ^ level_name ^ " Location.wrap list)") | List _ -> Some ("(" ^ level_name ^ " Location.wrap list)")
| Token _ -> None | Token _ -> None
| Current | Lower -> Some (level_name ^ " Location.wrap") in | Current | Lower -> Some (level_name ^ " Location.wrap") in
list_filter_map aux (N.get_content nop) in List.filter_map aux (get_content nop) in
let type_element = fun ppf te -> fprintf ppf "%s" te in let type_element = fun ppf te -> fprintf ppf "%s" te in
fprintf ppf "| %s of (%a)" fprintf ppf "| %s of (%a)"
(N.get_name nop) (get_name nop)
PP.(list_sep type_element (const " * ")) type_elements PP.(list_sep type_element (const " * ")) type_elements
let n_hierarchy : _ -> O.n_hierarchy -> _ = fun ppf nh -> let n_hierarchy : _ -> O.n_hierarchy -> _ = fun ppf nh ->
let levels = Ne_list.map N.get_content (N.get_content nh) in let levels = List.Ne.map get_content (get_content nh) in
let nops = Ne_list.concat levels in let nops = List.Ne.concat levels in
let name = N.get_name nh in let name = get_name nh in
fprintf ppf "type %s =@.@[%a@]" fprintf ppf "type %s =@.@[%a@]"
name name
PP.(list_sep (n_operator name) new_line) nops PP.(list_sep (n_operator name) new_line) nops
@ -214,10 +165,10 @@ module Print_Grammar = struct
) ; ) ;
i := !i + 1 i := !i + 1
in in
PP.(list_sep element (const " ")) ppf (N.get_content nop) PP.(list_sep element (const " ")) ppf (get_content nop)
let n_operator_code : _ -> O.n_operator -> _ = fun ppf nop -> let n_operator_code : _ -> O.n_operator -> _ = fun ppf nop ->
let (name, elements) = N.destruct nop in let (name, elements) = destruct nop in
let elements' = let elements' =
let i = ref 0 in let i = ref 0 in
let aux : O.element -> _ = fun e -> let aux : O.element -> _ = fun e ->
@ -227,39 +178,39 @@ module Print_Grammar = struct
| List _ | Named _ | Current | Lower -> Some letters.(!i) | List _ | Named _ | Current | Lower -> Some letters.(!i)
in i := !i + 1 ; r in i := !i + 1 ; r
in in
list_filter_map aux elements in List.filter_map aux elements in
fprintf ppf "%s (%a)" name PP.(list_sep string (const " , ")) elements' fprintf ppf "%s (%a)" name PP.(list_sep string (const " , ")) elements'
let n_operator prev_lvl_name cur_lvl_name : _ -> O.n_operator -> _ = fun ppf nop -> let n_operator prev_lvl_name cur_lvl_name : _ -> O.n_operator -> _ = fun ppf nop ->
let name = N.get_name nop in let name = get_name nop in
fprintf ppf "%a@;| %a@; @[<v>{@; @[let loc = Location.make $startpos $endpos in@;Location.wrap ~loc %@%@ %a@]@;}@]" PP.comment name fprintf ppf "%a@;| %a@; @[<v>{@; @[let loc = Location.make $startpos $endpos in@;Location.wrap ~loc %@%@ %a@]@;}@]" PP.comment name
(n_operator_rule prev_lvl_name cur_lvl_name) nop (n_operator_rule prev_lvl_name cur_lvl_name) nop
n_operator_code nop n_operator_code nop
let level prev_lvl_name : _ -> O.level -> _ = fun ppf l -> let level prev_lvl_name : _ -> O.level -> _ = fun ppf l ->
let name = N.get_name l in let name = get_name l in
match prev_lvl_name with match prev_lvl_name with
| "" -> ( | "" -> (
fprintf ppf "%s :@. @[<v>%a@]" name fprintf ppf "%s :@. @[<v>%a@]" name
PP.(list_sep (n_operator prev_lvl_name name) new_line) (N.get_content l) ; PP.(list_sep (n_operator prev_lvl_name name) new_line) (get_content l) ;
) )
| _ -> ( | _ -> (
fprintf ppf "%s :@. @[<v>%a@;| %s { $1 }@]" name fprintf ppf "%s :@. @[<v>%a@;| %s { $1 }@]" name
PP.(list_sep (n_operator prev_lvl_name name) new_line) (N.get_content l) PP.(list_sep (n_operator prev_lvl_name name) new_line) (get_content l)
prev_lvl_name prev_lvl_name
) )
let n_hierarchy : _ -> O.n_hierarchy -> _ = fun ppf nh -> let n_hierarchy : _ -> O.n_hierarchy -> _ = fun ppf nh ->
let name = N.get_name nh in let name = get_name nh in
fprintf ppf "%a@.%%inline %s : %s_0 { $1 }@.@;" PP.comment ("Top-level for " ^ name) name name; fprintf ppf "%a@.%%inline %s : %s_0 { $1 }@.@;" PP.comment ("Top-level for " ^ name) name name;
let (hd, tl) = Ne_list.rev @@ N.get_content nh in let (hd, tl) = List.Ne.rev @@ get_content nh in
fprintf ppf "%a" (level "") hd ; fprintf ppf "%a" (level "") hd ;
let aux prev_name lvl = let aux prev_name lvl =
PP.new_lines 2 ppf () ; PP.new_lines 2 ppf () ;
fprintf ppf "%a" (level prev_name) lvl ; fprintf ppf "%a" (level prev_name) lvl ;
N.get_name lvl get_name lvl
in in
let _last_name = List.fold_left aux (N.get_name hd) tl in let _last_name = List.fold_left aux (get_name hd) tl in
() ()
let language : _ -> O.language -> _ = fun ppf l -> let language : _ -> O.language -> _ = fun ppf l ->
@ -277,14 +228,14 @@ let variable = O.singleton "variable" "string" "NAME" "$1"
let infix : string -> [`Left | `Right] -> token -> O.n_operator = fun name assoc t -> let infix : string -> [`Left | `Right] -> token -> O.n_operator = fun name assoc t ->
let open O in let open O in
match assoc with match assoc with
| `Left -> N.name name [Current ; Token t ; Lower] | `Left -> make_name name [Current ; Token t ; Lower]
| `Right -> N.name name [Current ; Token t ; Lower] | `Right -> make_name name [Current ; Token t ; Lower]
let list = N.name "List" [ let list = make_name "List" [
O.Token Token.LIST ; List (`Lead, Token.LSQUARE, Token.SEMICOLON, Token.RSQUARE) ; O.Token Token.LIST ; List (`Lead, Token.LSQUARE, Token.SEMICOLON, Token.RSQUARE) ;
] ]
let let_in : O.n_operator = N.name "Let_in" [ let let_in : O.n_operator = make_name "Let_in" [
O.Token Token.LET ; Named "variable" ; O.Token Token.LET ; Named "variable" ;
O.Token Token.EQUAL ; Current ; O.Token Token.EQUAL ; Current ;
O.Token Token.IN ; Current ; O.Token Token.IN ; Current ;
@ -296,7 +247,7 @@ let substraction = infix "Substraction" `Left Token.MINUS
let multiplication = infix "Multiplication" `Left Token.TIMES let multiplication = infix "Multiplication" `Left Token.TIMES
let division = infix "Division" `Left Token.DIV let division = infix "Division" `Left Token.DIV
let arith_variable : O.n_operator = N.name "Arith_variable" [ O.Named "variable" ] let arith_variable : O.n_operator = make_name "Arith_variable" [ O.Named "variable" ]
let arith = O.name_hierarchy "arith" [ let arith = O.name_hierarchy "arith" [
[let_in] ; [let_in] ;

View File

@ -1,6 +1,9 @@
(library (library
(name lex) (name lex)
(public_name ligo.multifix.lex) (public_name ligo.multifix.lex)
(libraries
tezos-utils
)
(modules token token_type lexer) (modules token token_type lexer)
) )

View File

@ -1,4 +1,4 @@
open Ligo_helpers.Trace open Trace
open Ast_simplified open Ast_simplified
module Raw = Ligo_parser.AST module Raw = Ligo_parser.AST

View File

@ -0,0 +1,2 @@
(* open Trace
* open Multifix.User *)

View File

@ -1,12 +1,12 @@
open! Ligo_helpers.Trace open! Trace
open Mini_c open Mini_c
open Combinators open Combinators
module AST = Ast_typed module AST = Ast_typed
open AST.Combinators open AST.Combinators
let list_of_map m = List.rev @@ Ligo_helpers.X_map.String.fold (fun _ v prev -> v :: prev) m [] let list_of_map m = List.rev @@ Map.String.fold (fun _ v prev -> v :: prev) m []
let kv_list_of_map m = List.rev @@ Ligo_helpers.X_map.String.fold (fun k v prev -> (k, v) :: prev) m [] let kv_list_of_map m = List.rev @@ Map.String.fold (fun k v prev -> (k, v) :: prev) m []
let map_of_kv_list lst = let map_of_kv_list lst =
let open AST.SMap in let open AST.SMap in
List.fold_left (fun prev (k, v) -> add k v prev) empty lst List.fold_left (fun prev (k, v) -> add k v prev) empty lst

View File

@ -1,4 +1,4 @@
open Ligo_helpers.Trace open Trace
module I = Ast_simplified module I = Ast_simplified
module O = Ast_typed module O = Ast_typed
@ -38,15 +38,17 @@ module Environment = struct
module PP = struct module PP = struct
open Format open Format
open Ligo_helpers.PP open PP
let list_sep_d x = list_sep x (const " , ")
let value ppf (e:t) = let value ppf (e:t) =
let pp ppf (s, e) = fprintf ppf "%s -> %a" s O.PP.type_value e in let pp ppf (s, e) = fprintf ppf "%s -> %a" s O.PP.type_value e in
fprintf ppf "ValueEnv[%a]" (list_sep pp) e.environment fprintf ppf "ValueEnv[%a]" (list_sep_d pp) e.environment
let type_ ppf e = let type_ ppf e =
let pp ppf (s, e) = fprintf ppf "%s -> %a" s O.PP.type_value e in let pp ppf (s, e) = fprintf ppf "%s -> %a" s O.PP.type_value e in
fprintf ppf "TypeEnv[%a]" (list_sep pp) e.type_environment fprintf ppf "TypeEnv[%a]" (list_sep_d pp) e.type_environment
let full ppf e = let full ppf e =
fprintf ppf "%a\n%a" value e type_ e fprintf ppf "%a\n%a" value e type_ e