extend camligo and ligo

This commit is contained in:
Galfour 2019-04-29 13:30:28 +00:00
parent c5f6fe670a
commit 6cb341b162
20 changed files with 269 additions and 63 deletions

View File

@ -17,7 +17,8 @@ let literal ppf (l:literal) = match l with
| Literal_unit -> fprintf ppf "Unit"
| Literal_bool b -> fprintf ppf "%b" b
| Literal_int n -> fprintf ppf "%d" n
| Literal_nat n -> fprintf ppf "%d" n
| Literal_nat n -> fprintf ppf "+%d" n
| Literal_tez n -> fprintf ppf "%dtz" n
| Literal_string s -> fprintf ppf "%S" s
| Literal_bytes b -> fprintf ppf "0x%s" @@ Bytes.to_string @@ Bytes.escaped b

View File

@ -77,6 +77,7 @@ let e_match_bool a b c : expression = e_match a (Match_bool {match_true = b ; ma
let e_accessor a b = E_accessor (a , b)
let e_accessor_props a b = e_accessor a (List.map (fun x -> Access_record x) b)
let e_variable v = E_variable v
let e_failwith v = E_failwith v
let e_a_unit : annotated_expression = make_e_a_full (e_unit ()) t_unit
let e_a_int n : annotated_expression = make_e_a_full (e_int n) t_int
@ -152,3 +153,13 @@ let ez_e_record (lst : (string * expression) list) : expression =
(* TODO: define a correct implementation of List.map
* (an implementation that does not fail with stack overflow) *)
e_record (List.map (fun (s,e) -> (s, make_e_a e)) lst)
let get_a_accessor = fun t ->
match t.expression with
| E_accessor (a , b) -> ok (a , b)
| _ -> simple_fail "not an accessor"
let assert_a_accessor = fun t ->
let%bind _ = get_a_accessor t in
ok ()

View File

@ -12,6 +12,9 @@ let assert_literal_eq (a, b : literal * literal) : unit result =
| Literal_nat a, Literal_nat b when a = b -> ok ()
| Literal_nat _, Literal_nat _ -> simple_fail "different nats"
| Literal_nat _, _ -> simple_fail "nat vs non-nat"
| Literal_tez a, Literal_tez b when a = b -> ok ()
| Literal_tez _, Literal_tez _ -> simple_fail "different tezs"
| Literal_tez _, _ -> simple_fail "tez vs non-tez"
| Literal_string a, Literal_string b when a = b -> ok ()
| Literal_string _, Literal_string _ -> simple_fail "different strings"
| Literal_string _, _ -> simple_fail "string vs non-string"

View File

@ -83,6 +83,7 @@ and literal =
| Literal_bool of bool
| Literal_int of int
| Literal_nat of int
| Literal_tez of int
| Literal_string of string
| Literal_bytes of bytes

View File

@ -58,7 +58,8 @@ and literal ppf (l:literal) : unit =
| Literal_unit -> fprintf ppf "unit"
| Literal_bool b -> fprintf ppf "%b" b
| Literal_int n -> fprintf ppf "%d" n
| Literal_nat n -> fprintf ppf "%d" n
| Literal_nat n -> fprintf ppf "+%d" n
| Literal_tez n -> fprintf ppf "%dtz" n
| Literal_string s -> fprintf ppf "%s" s
| Literal_bytes b -> fprintf ppf "0x%s" @@ Bytes.to_string @@ Bytes.escaped b

View File

@ -10,13 +10,18 @@ let t_bool ?s () : type_value = make_t (T_constant ("bool", [])) s
let t_string ?s () : type_value = make_t (T_constant ("string", [])) s
let t_bytes ?s () : type_value = make_t (T_constant ("bytes", [])) s
let t_int ?s () : type_value = make_t (T_constant ("int", [])) s
let t_address ?s () : type_value = make_t (T_constant ("address", [])) s
let t_operation ?s () : type_value = make_t (T_constant ("operation", [])) s
let t_nat ?s () : type_value = make_t (T_constant ("nat", [])) s
let t_tez ?s () : type_value = make_t (T_constant ("tez", [])) s
let t_unit ?s () : type_value = make_t (T_constant ("unit", [])) s
let t_option o ?s () : type_value = make_t (T_constant ("option", [o])) s
let t_tuple lst ?s () : type_value = make_t (T_tuple lst) s
let t_list t ?s () : type_value = make_t (T_constant ("list", [t])) s
let t_contract t ?s () : type_value = make_t (T_constant ("contract", [t])) s
let t_pair a b ?s () = t_tuple [a ; b] ?s ()
let t_record m ?s () : type_value = make_t (T_record m) s
let make_t_ez_record (lst:(string * type_value) list) : type_value =
let aux prev (k, v) = SMap.add k v prev in
@ -43,6 +48,18 @@ let get_t_bool (t:type_value) : unit result = match t.type_value' with
| T_constant ("bool", []) -> ok ()
| _ -> simple_fail "not a bool"
let get_t_unit (t:type_value) : unit result = match t.type_value' with
| T_constant ("unit", []) -> ok ()
| _ -> simple_fail "not a unit"
let get_t_tez (t:type_value) : unit result = match t.type_value' with
| T_constant ("tez", []) -> ok ()
| _ -> simple_fail "not a tez"
let get_t_contract (t:type_value) : type_value result = match t.type_value' with
| T_constant ("contract", [x]) -> ok x
| _ -> simple_fail "not a contract"
let get_t_option (t:type_value) : type_value result = match t.type_value' with
| T_constant ("option", [o]) -> ok o
| _ -> simple_fail "not a option"
@ -80,6 +97,8 @@ let get_t_map (t:type_value) : (type_value * type_value) result =
| T_constant ("map", [k;v]) -> ok (k, v)
| _ -> simple_fail "get: not a map"
let assert_t_tez :type_value -> unit result = get_t_tez
let assert_t_map (t:type_value) : unit result =
match t.type_value' with
| T_constant ("map", [_ ; _]) -> ok ()
@ -107,6 +126,9 @@ let assert_t_nat : type_value -> unit result = fun t -> match t.type_value' with
| T_constant ("nat", []) -> ok ()
| _ -> simple_fail "not an nat"
let assert_t_bool : type_value -> unit result = fun v -> get_t_bool v
let assert_t_unit : type_value -> unit result = fun v -> get_t_unit v
let e_record map : expression = E_record map
let ez_e_record (lst : (string * ae) list) : expression =
let aux prev (k, v) = SMap.add k v prev in
@ -168,6 +190,12 @@ let get_a_bool (t:annotated_expression) =
| E_literal (Literal_bool b) -> ok b
| _ -> simple_fail "not a bool"
let get_a_record_accessor = fun t ->
match t.expression with
| E_record_accessor (a , b) -> ok (a , b)
| _ -> simple_fail "not an accessor"
let get_declaration_by_name : program -> string -> declaration result = fun p name ->
let aux : declaration -> bool = fun declaration ->
match declaration with

View File

@ -178,6 +178,9 @@ let assert_literal_eq (a, b : literal * literal) : unit result =
| Literal_nat a, Literal_nat b when a = b -> ok ()
| Literal_nat _, Literal_nat _ -> simple_fail "different nats"
| Literal_nat _, _ -> simple_fail "nat vs non-nat"
| Literal_tez a, Literal_tez b when a = b -> ok ()
| Literal_tez _, Literal_tez _ -> simple_fail "different tezs"
| Literal_tez _, _ -> simple_fail "tez vs non-tez"
| Literal_string a, Literal_string b when a = b -> ok ()
| Literal_string _, Literal_string _ -> simple_fail "different strings"
| Literal_string _, _ -> simple_fail "string vs non-string"

View File

@ -98,6 +98,7 @@ and literal =
| Literal_bool of bool
| Literal_int of int
| Literal_nat of int
| Literal_tez of int
| Literal_string of string
| Literal_bytes of bytes

View File

@ -47,6 +47,7 @@ let rec translate_value (v:value) : michelson result = match v with
| D_bool b -> ok @@ prim (if b then D_True else D_False)
| D_int n -> ok @@ int (Z.of_int n)
| D_nat n -> ok @@ int (Z.of_int n)
| D_tez n -> ok @@ int (Z.of_int n)
| D_string s -> ok @@ string s
| D_bytes s -> ok @@ bytes (Tezos_stdlib.MBytes.of_bytes s)
| D_unit -> ok @@ prim D_Unit

View File

@ -0,0 +1,4 @@
type storage = int
let%entry main (p:int) storage =
(list [] : operation list , p + storage)

View File

@ -15,6 +15,7 @@ type param = {
let%entry attempt (p:param) storage =
if Crypto.hash (Bytes.pack p.attempt) <> Bytes.pack storage.challenge then failwith "Failed challenge" ;
let transfer : operation = Operation.transfer (sender , 10tz) in
let contract : unit contract = Operation.get_contract sender in
let transfer : operation = Operation.transaction (unit , contract , 10.00tz) in
let storage : storage = storage.challenge <- p.new_challenge in
((list [] : operation list), storage)

View File

@ -46,7 +46,8 @@ let environment ppf (x:environment) =
let rec value ppf : value -> unit = function
| D_bool b -> fprintf ppf "%b" b
| D_int n -> fprintf ppf "%d" n
| D_nat n -> fprintf ppf "%d" n
| D_nat n -> fprintf ppf "+%d" n
| D_tez n -> fprintf ppf "%dtz" n
| D_unit -> fprintf ppf " "
| D_string s -> fprintf ppf "\"%s\"" s
| D_bytes _ -> fprintf ppf "[bytes]"

View File

@ -41,6 +41,7 @@ type value =
| D_unit
| D_bool of bool
| D_nat of int
| D_tez of int
| D_int of int
| D_string of string
| D_bytes of bytes

View File

@ -5,10 +5,14 @@ module Simplify = struct
let type_constants = [
("unit" , 0) ;
("string" , 0) ;
("bytes" , 0) ;
("nat" , 0) ;
("int" , 0) ;
("tez" , 0) ;
("bool" , 0) ;
("operation" , 0) ;
("address" , 0) ;
("contract" , 1) ;
("list" , 1) ;
("option" , 1) ;
("set" , 1) ;
@ -26,7 +30,11 @@ module Simplify = struct
let constants = [
("Bytes.pack" , 1) ;
("Crypto.hash" , 1) ;
("Operation.transfer" , 2) ;
("Operation.transaction" , 3) ;
("Operation.get_contract" , 1) ;
("sender" , 0) ;
("unit" , 0) ;
("source" , 0) ;
]
end
@ -71,6 +79,10 @@ module Typer = struct
let true_2 = predicate_2 (fun _ _ -> true)
let true_3 = predicate_3 (fun _ _ _ -> true)
let eq_1 : type_value -> typer_predicate = fun v ->
let aux = fun a -> type_value_eq (a, v) in
predicate_1 aux
let eq_2 : type_value -> typer_predicate = fun v ->
let aux = fun a b -> type_value_eq (a, v) && type_value_eq (b, v) in
predicate_2 aux
@ -85,6 +97,11 @@ module Typer = struct
| [ a ] -> f a
| _ -> simple_fail "!!!"
let typer'_1_opt : (type_value -> type_value option -> type_result result) -> typer' = fun f lst tv_opt ->
match lst with
| [ a ] -> f a tv_opt
| _ -> simple_fail "!!!"
let typer'_2 : (type_value -> type_value -> type_result result) -> typer' = fun f lst _ ->
match lst with
| [ a ; b ] -> f a b
@ -95,6 +112,8 @@ module Typer = struct
| [ a ; b ; c ] -> f a b c
| _ -> simple_fail "!!!"
let typer_constant cst : typer' = fun _ _ -> ok cst
let constant_2 : string -> type_value -> typer' = fun s tv ->
let aux = fun _ _ -> ok (s, tv) in
typer'_2 aux
@ -113,6 +132,7 @@ module Typer = struct
let comparator : string -> typer = fun s -> s , 2 , [
(eq_2 (t_int ()), constant_2 s (t_bool ())) ;
(eq_2 (t_nat ()), constant_2 s (t_bool ())) ;
(eq_2 (t_bytes ()), constant_2 s (t_bool ())) ;
]
let boolean_operator_2 : string -> typer = fun s -> very_same_2 s (t_bool ())
@ -162,11 +182,66 @@ module Typer = struct
]
let int : typer = "int" , 1 , [
(true_1, typer'_1 (fun t ->
let%bind () = assert_t_nat t in
ok ("INT", t_int ())))
(eq_1 (t_nat ()), typer_constant ("INT" , t_int ()))
]
let bytes_pack : typer = "Bytes.pack" , 1 , [
(true_1 , typer'_1 (fun _ -> ok ("PACK" , t_bytes ())))
]
let bytes_unpack = "Bytes.unpack" , 1 , [
eq_1 (t_bytes ()) , typer'_1_opt (fun _ tv_opt -> match tv_opt with
| None -> simple_fail "untyped UNPACK"
| Some t -> ok ("UNPACK", t))
]
let crypto_hash = "Crypto.hash" , 1 , [
eq_1 (t_bytes ()) , typer_constant ("HASH" , t_bytes ()) ;
]
let sender = "sender" , 0 , [
predicate_0 , typer_constant ("SENDER", t_address ())
]
let source = "source" , 0 , [
predicate_0 , typer_constant ("SOURCE", t_address ())
]
let unit = "unit" , 0 , [
predicate_0 , typer_constant ("UNIT", t_unit ())
]
let transaction = "Operation.transaction" , 3 , [
true_3 , typer'_3 (
fun param contract amount ->
let%bind () =
assert_t_tez amount in
let%bind contract_param =
get_t_contract contract in
let%bind () =
assert_type_value_eq (param , contract_param) in
ok ("TRANSFER_TOKENS" , t_operation ())
)
]
let get_contract = "Operation.get_contract" , 1 , [
eq_1 (t_address ()) , typer'_1_opt (
fun _ tv_opt ->
let%bind tv =
trace_option (simple_error "get_contract needs a type annotation") tv_opt in
let%bind tv' =
trace_strong (simple_error "get_contract has a not-contract annotation") @@
get_t_contract tv in
ok ("CONTRACT" , t_contract tv' ())
)
]
(* let record_assign = "RECORD_ASSIGN" , 2 , [
* true_2 , typer'_2 (fun path new_value ->
* let%bind (a , b) = get_a_record_accessor path in
* )
* ] *)
let constant_typers =
let typer_to_kv : typer -> (string * _) = fun (a, b, c) -> (a, (b, c)) in
Map.String.of_list
@ -184,6 +259,7 @@ module Typer = struct
none ;
some ;
comparator "EQ" ;
comparator "NEQ" ;
comparator "LT" ;
comparator "GT" ;
comparator "LE" ;
@ -195,6 +271,14 @@ module Typer = struct
int ;
size ;
get_force ;
bytes_pack ;
bytes_unpack ;
crypto_hash ;
sender ;
source ;
unit ;
transaction ;
get_contract ;
]
end

View File

@ -23,6 +23,7 @@ module Print_mly = struct
let tokens = fun ppf tokens ->
fprintf ppf "%%token EOF\n" ;
fprintf ppf "%%token <int> INT\n" ;
fprintf ppf "%%token <int> NAT\n" ;
fprintf ppf "%%token <int> TZ\n" ;
fprintf ppf "%%token <string> STRING\n" ;
fprintf ppf "%%token <string> NAME\n" ;
@ -58,8 +59,10 @@ rule token = parse
| '"' { string "" lexbuf }
| [' ' '\t']
{ token lexbuf }
| (['0'-'9']+ as i) 'p'
{ NAT (int_of_string i) }
| (['0'-'9']+ as n) '.' (['0'-'9']['0'-'9'] as d) "tz" { TZ ((int_of_string n) * 100 + (int_of_string d)) }
| (['0'-'9']+ as i) 'p'?
| (['0'-'9']+ as i)
{ INT (int_of_string i) }
|pre}
let post =
@ -108,6 +111,7 @@ let to_string : token -> string = function
| NAME _ -> "NAME s"
| CONSTRUCTOR_NAME _ -> "CONSTRUCTOR_NAME s"
| INT _ -> "INT n"
| NAT _ -> "NAT n"
| TZ _ -> "TZ n"
| EOF -> "EOF"
|pre}

View File

@ -35,7 +35,6 @@ let get_unrestricted_pattern : I.restricted_pattern -> I.pattern Location.wrap r
error title content in
fail error
let get_p_type_annotation : I.pattern -> (I.pattern Location.wrap * I.restricted_type_expression Location.wrap) result = fun p ->
match p with
| I.P_type_annotation pta -> ok pta
@ -195,14 +194,17 @@ and expression_last_instruction : I.expression -> lir result = fun e ->
| I.E_let_in l -> let_in_last_instruction l
| I.E_sequence s -> sequence_last_instruction s
| I.E_fun _|I.E_record _|I.E_ifthenelse _
|I.E_ifthen _|I.E_match _|I.E_main _ -> (
| I.E_ifthen _|I.E_match _|I.E_main _ -> (
let%bind result' = expression e in
ok ([] , result')
)
and expression_sequence : I.expression -> O.instruction result = fun e ->
let%bind e' = expression e in
ok @@ O.I_do e'
match e with
| _ -> (
let%bind e' = expression e in
ok @@ O.I_do e'
)
and let_in_last_instruction :
I.pattern Location.wrap * I.expression Location.wrap * I.expression Location.wrap -> lir result
@ -211,7 +213,9 @@ and let_in_last_instruction :
let%bind (var , ty) = get_p_typed_variable (unwrap pat) in
let%bind ty' = type_expression @@ of_restricted_type_expression (unwrap ty) in
let%bind expr' = expression (unwrap expr) in
let%bind uexpr' = get_untyped_expression expr' in
let%bind uexpr' =
trace_strong (simple_error "no annotation on let bodies") @@
get_untyped_expression expr' in
let%bind (body' , last') = expression_last_instruction (unwrap body) in
let assignment = O.(i_assignment @@ named_typed_expression (unwrap var) uexpr' ty') in
ok (assignment :: body' , last')
@ -277,20 +281,23 @@ and expression_main : I.expression_main Location.wrap -> O.annotated_expression
let simple_binop name ab =
let%bind (a' , b') = bind_map_pair expression_main ab in
return @@ E_constant (name, [a' ; b']) in
trace (
let error_main =
let title () = "simplifying main_expression" in
let content () = Format.asprintf "%a" I.pp_expression_main (unwrap em) in
error title content
) @@
in
trace error_main @@
match (unwrap em) with
| Eh_tuple lst ->
let%bind lst' = bind_map_list expression_main lst in
return @@ E_tuple lst'
| Eh_module_ident (lst , v) -> identifier_application (lst , v) None
| Eh_variable v -> identifier_application ([] , v) None
| Eh_application (f , arg) -> (
let%bind arg' = expression_main arg in
match unwrap f with
| Eh_variable v -> identifier ([] , v) arg'
| Eh_module_ident (lst , v) -> identifier (lst , v) arg'
| Eh_variable v -> identifier_application ([] , v) (Some arg')
| Eh_module_ident (lst , v) -> identifier_application (lst , v) (Some arg')
| _ -> (
let%bind f' = expression_main f in
return @@ E_application (f' , arg')
@ -328,16 +335,8 @@ and expression_main : I.expression_main Location.wrap -> O.annotated_expression
return @@ E_literal (Literal_string (unwrap s))
| Eh_unit _ ->
return @@ E_literal Literal_unit
| Eh_tz _ ->
simple_fail "tz literals not supported yet"
| Eh_module_ident _ ->
let error =
let title () = "modules not supported yet" in
let content () = Format.asprintf "%a" I.pp_expression_main (unwrap em) in
error title content in
fail error
| Eh_variable v ->
return @@ E_variable (unwrap v)
| Eh_tz n ->
return @@ E_literal (Literal_tez (unwrap n))
| Eh_constructor _ ->
simple_fail "constructor without parameter"
| Eh_data_structure (kind , content) -> (
@ -363,10 +362,18 @@ and expression_main : I.expression_main Location.wrap -> O.annotated_expression
| Eh_bottom e ->
expression (unwrap e)
and identifier : (string Location.wrap) list * string Location.wrap -> _ -> _ result = fun (lst , v) param ->
and identifier_application : (string Location.wrap) list * string Location.wrap -> O.value option -> _ result = fun (lst , v) param_opt ->
let constant_name = String.concat "." ((List.map unwrap lst) @ [unwrap v]) in
match List.assoc_opt constant_name constants with
| Some n -> (
match List.assoc_opt constant_name constants , param_opt with
| Some 0 , None ->
ok O.(untyped_expression @@ E_constant (constant_name , []))
| Some _ , None ->
simple_fail "n-ary constant without parameter"
| Some 0 , Some _ -> simple_fail "applying to nullary constant"
| Some 1 , Some param -> (
ok O.(untyped_expression @@ E_constant (constant_name , [param]))
)
| Some n , Some param -> (
let params =
match get_expression param with
| E_tuple lst -> lst
@ -376,7 +383,7 @@ and identifier : (string Location.wrap) list * string Location.wrap -> _ -> _ re
Assert.assert_list_size params n in
ok O.(untyped_expression @@ E_constant (constant_name , params))
)
| None ->
| None , param_opt -> (
let%bind () =
let error =
let title () = "no module identifiers yet" in
@ -384,8 +391,11 @@ and identifier : (string Location.wrap) list * string Location.wrap -> _ -> _ re
error title content in
trace_strong error @@
Assert.assert_list_empty lst in
ok O.(untyped_expression @@ E_application (untyped_expression @@ E_variable (unwrap v) , param))
match constant_name , param_opt with
| "failwith" , Some param -> ok O.(untyped_expression @@ e_failwith param)
| _ , Some param -> ok O.(untyped_expression @@ E_application (untyped_expression @@ E_variable (unwrap v) , param))
| _ , None -> ok O.(untyped_expression @@ e_variable (unwrap v))
)
let let_content : I.let_content -> _ result = fun l ->
match l with

View File

@ -4,6 +4,12 @@ open Test_helpers
open Ast_simplified.Combinators
let mtype_file path : Ast_typed.program result =
let%bind raw = Parser.Camligo.User.parse_file path in
let%bind simpl = Simplify.Camligo.main raw in
let%bind typed = Ligo.Typer.type_program (Location.unwrap simpl) in
ok typed
let function_ () : unit result =
let%bind program = type_file "./contracts/function.ligo" in
let make_expect = fun n -> n in
@ -341,6 +347,23 @@ let super_counter_contract () : unit result =
e_a_pair (e_a_list [] t_operation) (e_a_int (op 42 n)) in
expect_n program "main" make_input make_expected
let basic_mligo () : unit result =
let%bind typed = mtype_file "./contracts/basic.mligo" in
let%bind result = Ligo.easy_evaluate_typed "foo" typed in
Ligo.AST_Typed.assert_value_eq (Ligo.AST_Typed.Combinators.e_a_empty_int (42 + 127), result)
let counter_mligo () : unit result =
let%bind program = mtype_file "./contracts/counter.mligo" in
let make_input = fun n-> e_a_pair (e_a_int n) (e_a_int 42) in
let make_expected = fun n -> e_a_pair (e_a_list [] t_operation) (e_a_int (42 + n)) in
expect_n program "main" make_input make_expected
let guess_the_hash_mligo () : unit result =
let%bind program = mtype_file "./contracts/new-syntax.mligo" in
let make_input = fun n-> e_a_pair (e_a_int n) (e_a_int 42) in
let make_expected = fun n -> e_a_pair (e_a_list [] t_operation) (e_a_int (42 + n)) in
expect_n program "main" make_input make_expected
let main = "Integration (End to End)", [
test "function" function_ ;
test "complex function" complex_function ;
@ -368,4 +391,7 @@ let main = "Integration (End to End)", [
test "counter contract" counter_contract ;
test "super counter contract" super_counter_contract ;
test "higher order" higher_order ;
test "basic mligo" basic_mligo ;
test "counter contract mligo" counter_mligo ;
test "guess the hash mligo" guess_the_hash_mligo ;
]

View File

@ -11,15 +11,7 @@ let simplify () : unit result =
let%bind _simpl = Simplify.Camligo.main raw in
ok ()
let integration () : unit result =
let%bind raw = User.parse_file "./contracts/basic.mligo" in
let%bind simpl = Simplify.Camligo.main raw in
let%bind typed = Ligo.Typer.type_program (Location.unwrap simpl) in
let%bind result = Ligo.easy_evaluate_typed "foo" typed in
Ligo.AST_Typed.assert_value_eq (Ligo.AST_Typed.Combinators.e_a_empty_int (42 + 127), result)
let main = "Multifix", [
test "basic" basic ;
test "simplify" simplify ;
test "integration" integration ;
]

View File

@ -178,6 +178,7 @@ and translate_literal : AST.literal -> value = fun l -> match l with
| Literal_bool b -> D_bool b
| Literal_int n -> D_int n
| Literal_nat n -> D_nat n
| Literal_tez n -> D_tez n
| Literal_bytes s -> D_bytes s
| Literal_string s -> D_string s
| Literal_unit -> D_unit

View File

@ -94,6 +94,9 @@ and type_instruction (e:environment) : I.instruction -> (environment * O.instruc
| I_skip -> return O.I_skip
| I_do x ->
let%bind expression = type_annotated_expression e x in
let%bind () =
trace_strong (simple_error "do without unit") @@
Ast_typed.assert_type_value_eq (get_type_annotation expression , t_unit ()) in
return @@ O.I_do expression
| I_loop (cond, body) ->
let%bind cond = type_annotated_expression e cond in
@ -277,6 +280,11 @@ and type_annotated_expression : environment -> I.annotated_expression -> O.annot
let return expr tv =
let%bind type_annotation = check tv in
ok @@ make_a_e expr type_annotation e in
let main_error =
let title () = "typing annotated_expression" in
let content () = Format.asprintf "%a" I.PP.annotated_expression ae in
error title content in
trace main_error @@
match ae.expression with
(* Basic *)
| E_failwith _ -> simple_fail "can't type failwith in isolation"
@ -297,6 +305,8 @@ and type_annotated_expression : environment -> I.annotated_expression -> O.annot
return (E_literal (Literal_int n)) (t_int ())
| E_literal (Literal_nat n) ->
return (E_literal (Literal_nat n)) (t_nat ())
| E_literal (Literal_tez n) ->
return (E_literal (Literal_tez n)) (t_tez ())
(* Tuple *)
| E_tuple lst ->
let%bind lst' = bind_list @@ List.map (type_annotated_expression e) lst in
@ -431,27 +441,48 @@ and type_annotated_expression : environment -> I.annotated_expression -> O.annot
(* Advanced *)
| E_matching (ex, m) -> (
let%bind ex' = type_annotated_expression e ex in
let%bind m' = type_match type_annotated_expression e ex'.type_annotation m in
let tvs =
let aux (cur:O.value O.matching) =
match cur with
| Match_bool { match_true ; match_false } -> [ match_true ; match_false ]
| Match_list { match_nil ; match_cons = (_ , _ , match_cons) } -> [ match_nil ; match_cons ]
| Match_option { match_none ; match_some = (_ , match_some) } -> [ match_none ; match_some ]
| Match_tuple (_ , match_tuple) -> [ match_tuple ]
| Match_variant (lst , _) -> List.map snd lst in
List.map get_type_annotation @@ aux m' in
let aux prec cur =
let%bind () =
match prec with
| None -> ok ()
| Some cur' -> Ast_typed.assert_type_value_eq (cur , cur') in
ok (Some cur) in
let%bind tv_opt = bind_fold_list aux None tvs in
let%bind tv =
trace_option (simple_error "empty matching") @@
tv_opt in
return (O.E_matching (ex', m')) tv
match m with
(* Special case for assert-like failwiths. TODO: CLEAN THIS. *)
| I.Match_bool { match_false ; match_true = { expression = E_failwith fw } } -> (
let%bind fw' = type_annotated_expression e fw in
let%bind mf' = type_annotated_expression e match_false in
let%bind () =
trace_strong (simple_error "Matching bool on not-a-bool")
@@ assert_t_bool (get_type_annotation ex') in
let%bind () =
trace_strong (simple_error "Matching not-unit on an assert")
@@ assert_t_unit (get_type_annotation mf') in
let mt' = make_a_e
(E_failwith fw')
(t_unit ())
e
in
let m' = O.Match_bool { match_true = mt' ; match_false = mf' } in
return (O.E_matching (ex' , m')) (t_unit ())
)
| _ -> (
let%bind m' = type_match type_annotated_expression e ex'.type_annotation m in
let tvs =
let aux (cur:O.value O.matching) =
match cur with
| Match_bool { match_true ; match_false } -> [ match_true ; match_false ]
| Match_list { match_nil ; match_cons = (_ , _ , match_cons) } -> [ match_nil ; match_cons ]
| Match_option { match_none ; match_some = (_ , match_some) } -> [ match_none ; match_some ]
| Match_tuple (_ , match_tuple) -> [ match_tuple ]
| Match_variant (lst , _) -> List.map snd lst in
List.map get_type_annotation @@ aux m' in
let aux prec cur =
let%bind () =
match prec with
| None -> ok ()
| Some cur' -> Ast_typed.assert_type_value_eq (cur , cur') in
ok (Some cur) in
let%bind tv_opt = bind_fold_list aux None tvs in
let%bind tv =
trace_option (simple_error "empty matching") @@
tv_opt in
return (O.E_matching (ex', m')) tv
)
)
and type_constant (name:string) (lst:O.type_value list) (tv_opt:O.type_value option) : (string * O.type_value) result =
@ -497,6 +528,7 @@ let untype_literal (l:O.literal) : I.literal result =
| Literal_unit -> ok Literal_unit
| Literal_bool b -> ok (Literal_bool b)
| Literal_nat n -> ok (Literal_nat n)
| Literal_tez n -> ok (Literal_tez n)
| Literal_int n -> ok (Literal_int n)
| Literal_string s -> ok (Literal_string s)
| Literal_bytes b -> ok (Literal_bytes b)