ReasonLIGO type declaration improvements for tuples and function arguments.

CameLIGO tests for tuples and function arguments.
This commit is contained in:
Sander 2020-01-30 17:38:01 +00:00
parent 780e8e956c
commit 6551168a56
4 changed files with 193 additions and 18 deletions

View File

@ -24,6 +24,24 @@ type 'a sequence_or_record =
let (<@) f g x = f (g x) let (<@) f g x = f (g x)
(**
Covert nsepseq to a chain of TFun's.
Necessary to handle cases like:
`type foo = (int, int) => int;`
*)
let rec nsepseq_to_curry hd rest =
match hd, rest with
| hd, (sep, item) :: rest ->
let start = type_expr_to_region hd in
let stop = nsepseq_to_region type_expr_to_region (hd, rest) in
let region = cover start stop in
TFun {
value = hd, sep, (nsepseq_to_curry item rest);
region
}
| hd, [] -> hd
(* END HEADER *) (* END HEADER *)
%} %}
@ -159,24 +177,40 @@ type_decl:
type_expr: type_expr:
cartesian | sum_type | record_type { $1 } cartesian | sum_type | record_type { $1 }
cartesian: type_expr_func:
fun_type { $1 } "=>" cartesian {
| fun_type "," nsepseq(fun_type,",") { $1, $2
let value = Utils.nsepseq_cons $1 $2 $3 in }
let region = nsepseq_to_region type_expr_to_region value
in TProd {region; value} }
fun_type: cartesian:
core_type { $1 } core_type { $1 }
| core_type "=>" fun_type { | type_name type_expr_func {
let start = type_expr_to_region $1 let (arrow, c) = $2 in
and stop = type_expr_to_region $3 in let value = TVar $1, arrow, c in
let region = cover start stop in let region = cover $1.region (type_expr_to_region c) in
TFun {region; value=$1,$2,$3} } TFun { region; value }
}
| "(" cartesian ")" type_expr_func {
let (arrow, c) = $4 in
let value = $2, arrow, c in
let region = cover $1 (type_expr_to_region c) in
TFun { region; value }
}
| "(" cartesian "," nsepseq(cartesian,",") ")" type_expr_func? {
match $6 with
| Some (arrow, c) ->
let (hd, rest) = Utils.nsepseq_cons $2 $3 $4 in
let rest = rest @ [(arrow, c)] in
nsepseq_to_curry hd rest
| None ->
let value = Utils.nsepseq_cons $2 $3 $4 in
let region = cover $1 $5 in
TProd {region; value}
}
core_type: core_type:
type_name { TVar $1 } type_name { TVar $1 }
| par(type_expr) { TPar $1 } | par(cartesian) { TPar $1 }
| module_name "." type_name { | module_name "." type_name {
let module_name = $1.value in let module_name = $1.value in
let type_name = $3.value in let type_name = $3.value in
@ -471,17 +505,55 @@ fun_expr:
_} -> _} ->
(* ((foo:x, bar) : type) *) (* ((foo:x, bar) : type) *)
(arg_to_pattern fun_arg, []) (arg_to_pattern fun_arg, [])
| EPar {value = {inside = EFun {
value = {
binders = PTyped { value = { pattern; colon; type_expr }; region = fun_region }, [];
arrow;
body;
_
};
_
}; _ }; region} ->
let expr_to_type = function
| EVar v -> TVar v
| e -> let open! SyntaxError
in raise (Error (WrongFunctionArguments e))
in
let type_expr = (
match type_expr with
| TProd {value; _} ->
let (hd, rest) = value in
let rest = rest @ [(arrow, expr_to_type body)] in
nsepseq_to_curry hd rest
| e ->
TFun {
value = e, arrow, expr_to_type body;
region = fun_region
}
)
in
PTyped {
value = {
pattern;
colon;
type_expr
};
region;
}, []
| EPar {value = {inside = fun_arg; _ }; _} -> | EPar {value = {inside = fun_arg; _ }; _} ->
arg_to_pattern fun_arg, [] arg_to_pattern fun_arg, []
| EAnnot e -> | EAnnot _ as e ->
arg_to_pattern (EAnnot e), [] arg_to_pattern e, []
| ETuple {value = fun_args; _} -> | ETuple {value = fun_args; _} ->
let bindings = let bindings =
List.map (arg_to_pattern <@ snd) (snd fun_args) in List.map (arg_to_pattern <@ snd) (snd fun_args) in
List.iter Scoping.check_pattern bindings; List.iter Scoping.check_pattern bindings;
arg_to_pattern (fst fun_args), bindings arg_to_pattern (fst fun_args), bindings
| EUnit e -> | EUnit _ as e ->
arg_to_pattern (EUnit e), [] arg_to_pattern e, []
| EVar _ as e ->
arg_to_pattern e, []
| e -> let open! SyntaxError | e -> let open! SyntaxError
in raise (Error (WrongFunctionArguments e)) in raise (Error (WrongFunctionArguments e))
in in

View File

@ -0,0 +1,14 @@
let g (b: int) = b + 3
let f (b: int * int) : int -> int = g
let a (b: int * int -> int -> int) : int = (b (5,3)) 5
let test1 (_: int) =
a f
let n (a, b: int * int): int = a + b
let o (p: int * int -> int): int = p((3, 9))
let test2 (ignore: int) = o(n)

View File

@ -0,0 +1,49 @@
/*
The difference between tuples and arguments is subtle in ReasonLIGO.
`f(a, b);`
f is called with two arguments
`f((a, b));`
f is called with a tuple.
*/
type fun_type = (int, int) => int;
let arguments = (b: int, c: int) => {
b + c;
};
let arguments_type_def = (b: fun_type) => b(5, 3);
let arguments_test = (ignore: int) => arguments_type_def(arguments);
type tuple_type = ((int, int)) => int;
let tuple = ((a, b): (int, int)) => {
a + b;
};
let tuple_type_def = (b: tuple_type) => b((5, 3));
let tuple_test = (ignore: int) => tuple_type_def(tuple);
/* inline */
let arguments_inline = (b: int, c: int) => {
b + c;
};
let arguments_type_def_inline = (b: (int, int) => int) => b(5, 3);
let arguments_test_inline = (ignore: int) => arguments_type_def_inline(arguments_inline);
let tuple_inline = ((a, b): (int, int)) => {
a + b;
};
let tuple_type_def_inline = (b: ((int, int)) => int) => b((5, 3));
let tuple_test_inline = (ignore: int) => tuple_type_def_inline(tuple_inline);

View File

@ -2098,6 +2098,44 @@ let empty_case_religo () : unit result =
in in
ok () ok ()
let tuple_type_mligo () : unit result =
let%bind program = mtype_file "./contracts/tuple_type.mligo" in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 8 in
expect_eq_n program "test1" input expected
in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 12 in
expect_eq_n program "test2" input expected
in
ok ()
let tuple_type_religo () : unit result =
let%bind program = retype_file "./contracts/tuple_type.religo" in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 8 in
expect_eq_n program "arguments_test" input expected
in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 8 in
expect_eq_n program "tuple_test" input expected
in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 8 in
expect_eq_n program "arguments_test_inline" input expected
in
let%bind () =
let input _ = e_int 0 in
let expected _ = e_int 8 in
expect_eq_n program "tuple_test_inline" input expected
in
ok ()
let main = test_suite "Integration (End to End)" [ let main = test_suite "Integration (End to End)" [
test "bytes unpack" bytes_unpack ; test "bytes unpack" bytes_unpack ;
test "bytes unpack (mligo)" bytes_unpack_mligo ; test "bytes unpack (mligo)" bytes_unpack_mligo ;
@ -2258,4 +2296,6 @@ let main = test_suite "Integration (End to End)" [
test "empty case" empty_case ; test "empty case" empty_case ;
test "empty case (mligo)" empty_case_mligo ; test "empty case (mligo)" empty_case_mligo ;
test "empty case (religo)" empty_case_religo ; test "empty case (religo)" empty_case_religo ;
test "tuple type (mligo)" tuple_type_mligo ;
test "tuple type (religo)" tuple_type_religo ;
] ]