Merge branch 'dev' into 'dev'

# Conflicts:
#   gitlab-pages/docs/advanced/entrypoints-contracts.md
#   gitlab-pages/docs/language-basics/boolean-if-else.md
#   gitlab-pages/docs/language-basics/functions.md
This commit is contained in:
Francis Brunelle 2020-01-29 16:31:09 +00:00
commit 562f7d1b10
86 changed files with 1939 additions and 785 deletions

View File

@ -11,6 +11,14 @@ stages:
- build_and_deploy_docker
- build_and_deploy_website
# TODO provide sensible CI for master
dont-merge-to-master:
stage: test
script:
- "false"
only:
- master
.build_binary: &build_binary
# To run in sequence and save CPU usage, use stage: build_and_package_binaries
stage: test
@ -95,6 +103,9 @@ local-dune-job:
artifacts:
paths:
- _coverage_all
only:
- merge_requests
- dev
# Run a docker build without publishing to the registry
build-current-docker-image:
@ -105,9 +116,8 @@ build-current-docker-image:
script:
- sh scripts/build_docker_image.sh
- sh scripts/test_cli.sh
except:
- master
- dev
only:
- merge_requests
# When a MR/PR is merged to dev
# take the previous build and publish it to Docker Hub
@ -135,6 +145,8 @@ build-and-package-debian-9:
target_os: "debian"
target_os_version: "9"
<<: *build_binary
only:
- dev
build-and-package-debian-10:
<<: *docker
@ -145,6 +157,12 @@ build-and-package-debian-10:
target_os: "debian"
target_os_version: "10"
<<: *build_binary
# this one is merge_requests and dev, because the debian 10 binary
# is used for build-current-docker-image and for
# build-and-publish-latest-docker-image
only:
- merge_requests
- dev
build-and-package-ubuntu-18-04:
<<: *docker
@ -155,6 +173,8 @@ build-and-package-ubuntu-18-04:
target_os: "ubuntu"
target_os_version: "18.04"
<<: *build_binary
only:
- dev
build-and-package-ubuntu-19-04:
<<: *docker
@ -165,11 +185,12 @@ build-and-package-ubuntu-19-04:
target_os: "ubuntu"
target_os_version: "19.04"
<<: *build_binary
only:
- dev
# Pages are deployed from both master & dev, be careful not to override 'next'
# Pages are deployed from dev, be careful not to override 'next'
# in case something gets merged into 'dev' while releasing.
pages:
<<: *website_build
only:
- master
- dev

View File

@ -5,64 +5,132 @@ title: Entrypoints, Contracts
## Entrypoints
Each LIGO smart contract is essentially a single function, that has the following *(pseudo)* type signature:
Each LIGO smart contract is essentially a single main function, referring to the following types:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```
(const parameter: my_type, const store: my_store_type): (list(operation), my_store_type)
```pascaligo group=a
type parameter_t is unit
type storage_t is unit
type return_t is (list(operation) * storage_t)
```
<!--CameLIGO-->
```
(parameter, store: my_type * my_store_type) : operation list * my_store_type
```cameligo group=a
type parameter_t = unit
type storage_t = unit
type return_t = (operation list * storage_t)
```
<!--ReasonLIGO-->
```reasonligo group=a
type parameter_t = unit;
type storage_t = unit;
type return_t = (list(operation) , storage_t);
```
(parameter_store: (my_type, my_store_type)) : (list(operation), my_store_type)
```
<!--END_DOCUSAURUS_CODE_TABS-->
This means that every smart contract needs at least one entrypoint function, here's an example:
Each main function receives two arguments:
- `parameter` - this is the parameter received in the invocation operation
- `storage` - this is the current (real) on-chain storage value
Storage can only be modified by running the smart contract entrypoint, which is responsible for returning a pair holding a list of operations, and a new storage.
Here is an example of a smart contract main function:
> 💡 The contract below literally does *nothing*
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=a
type parameter is unit;
type store is unit;
function main(const parameter: parameter; const store: store): (list(operation) * store) is
block { skip } with ((nil : list(operation)), store)
function main(const parameter: parameter_t; const store: storage_t): return_t is
((nil : list(operation)), store)
```
<!--CameLIGO-->
```cameligo group=a
type parameter = unit
type store = unit
let main (parameter, store: parameter * store) : operation list * store =
let main (parameter, store: parameter_t * storage_t) : return_t =
(([]: operation list), store)
```
<!--ReasonLIGO-->
```reasonligo group=a
type parameter = unit;
type store = unit;
let main = (parameter_store: (parameter, store)) : (list(operation), store) => {
let parameter, store = parameter_store;
let main = ((parameter, store): (parameter_t, storage_t)) : return_t => {
(([]: list(operation)), store);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
Each entrypoint function receives two arguments:
- `parameter` - this is the parameter received in the invocation operation
- `storage` - this is the current (real) on-chain storage value
A contract entrypoints are the constructors of the parameter type (variant) and you must use pattern matching (`case`, `match`, `switch`) on the parameter in order to associate each entrypoint to its corresponding handler.
Storage can only be modified by running the smart contract entrypoint, which is responsible for returning a list of operations, and a new storage at the end of its execution.
To access the 'entrypoints' of a contract, we define a main function whose parameter is a variant type with constructors for each entrypoint. This allows us to satisfy the requirement that LIGO contracts always begin execution from the same function. The main function simply takes this variant, pattern matches it to determine which entrypoint to dispatch the call to, then returns the result of executing that entrypoint with the projected arguments.
> The LIGO variant's are compiled to a Michelson annotated tree of union type.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=recordentry
type parameter_t is
| Entrypoint_a of int
| Entrypoint_b of string
type storage_t is unit
type return_t is (list(operation) * storage_t)
function handle_a (const p : int; const store : storage_t) : return_t is
((nil : list(operation)), store)
function handle_b (const p : string; const store : storage_t) : return_t is
((nil : list(operation)), store)
function main(const parameter: parameter_t; const store: storage_t): return_t is
case parameter of
| Entrypoint_a (p) -> handle_a(p,store)
| Entrypoint_b (p) -> handle_b(p,store)
end
```
<!--CameLIGO-->
```cameligo group=recordentry
type parameter_t =
| Entrypoint_a of int
| Entrypoint_b of string
type storage_t = unit
type return_t = (operation list * storage_t)
let handle_a (parameter, store: int * storage_t) : return_t =
(([]: operation list), store)
let handle_b (parameter, store: string * storage_t) : return_t =
(([]: operation list), store)
let main (parameter, store: parameter_t * storage_t) : return_t =
match parameter with
| Entrypoint_a p -> handle_a (p,store)
| Entrypoint_b p -> handle_b (p,store)
```
<!--ReasonLIGO-->
```reasonligo group=recordentry
type parameter_t =
| Entrypoint_a(int)
| Entrypoint_b(string);
type storage_t = unit;
type return_t = (list(operation) , storage_t);
let handle_a = ((parameter, store): (int, storage_t)) : return_t => {
(([]: list(operation)), store); };
let handle_b = ((parameter, store): (string, storage_t)) : return_t => {
(([]: list(operation)), store); };
let main = ((parameter, store): (parameter_t, storage_t)) : return_t => {
switch (parameter) {
| Entrypoint_a(p) => handle_a((p,store))
| Entrypoint_b(p) => handle_b((p,store))
}
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Built-in contract variables
@ -93,7 +161,7 @@ let main (p, s: unit * unit) : operation list * unit =
<!--ReasonLIGO-->
```reasonligo group=b
let main = (p_s: (unit, unit)) : (list(operation), unit) => {
let main = ((p,s): (unit, unit)) : (list(operation), unit) => {
if (amount > 0mutez) {
(failwith("This contract does not accept tez"): (list(operation), unit));
}
@ -131,7 +199,7 @@ let main (p,s: unit * unit) : operation list * unit =
<!--ReasonLIGO-->
```reasonligo group=c
let owner: address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address);
let main = (p_s: (unit, unit)) : (list(operation), unit) => {
let main = ((p,s): (unit, unit)) : (list(operation), unit) => {
if (source != owner) {
(failwith("This address can't call the contract"): (list(operation), unit));
}
@ -152,7 +220,7 @@ In our case, we have a `counter.ligo` contract that accepts a parameter of type
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
```pascaligo skip
// counter.ligo
type action is
| Increment of int
@ -230,10 +298,10 @@ type action =
let dest: address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3": address);
let proxy = (param_s: (action, unit)): (list(operation), unit) =>
let proxy = ((param, s): (action, unit)): (list(operation), unit) =>
let counter: contract(action) = Operation.get_contract(dest);
let op: operation = Operation.transaction(param_s[0], 0mutez, counter);
([op], param_s[1]);
let op: operation = Operation.transaction(param, 0mutez, counter);
([op], s);
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -4,6 +4,9 @@ title: Cheat Sheet
---
<div class="cheatsheet">
<!--
Note that this table is not compiled before production and currently needs to be managed manually.
-->
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
@ -67,11 +70,42 @@ title: Cheat Sheet
|Variants|<pre><code>type action =<br/>&#124; Increment of int<br/>&#124; Decrement of int</code></pre>|
|Variant *(pattern)* matching|<pre><code>let a: action = Increment 5<br/>match a with<br/>&#124; Increment n -> n + 1<br/>&#124; Decrement n -> n - 1<br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int ;<br/>&nbsp;&nbsp;name: string ;<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age = 18;<br/>&nbsp;&nbsp;name = "John Doe";<br/>}<br/><br/>let name: string = john.name</code></pre>|
|Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/>&nbsp;&nbsp;(10n, 60mutez);<br/>&nbsp;&nbsp;(50n, 30mutez);<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find 50n prices<br/><br/>let prices: prices = Map.update 200n 5mutez prices</code></pre>|
|Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/>&nbsp;&nbsp;(10n, 60mutez);<br/>&nbsp;&nbsp;(50n, 30mutez);<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find_opt 50n prices<br/><br/>let prices: prices = Map.update 200n (Some 5mutez) prices</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Operation.get_contract destination_address</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, receiver, amount)</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction unit amount receiver</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`|
<!--ReasonLIGO-->
|Primitive |Example|
|--- |---|
|Strings | `"Tezos"`|
|Characters | `"t"`|
|Integers | `42`, `7`|
|Natural numbers | `42n`, `7n`|
|Unit| `unit`|
|Boolean|<pre><code>let has_drivers_license: bool = false;<br/>let adult: bool = true;</code></pre> |
|Boolean Logic|<pre><code>(not true) = false = (false && true) = (false &#124;&#124; false)</code></pre>|
|Mutez (micro tez)| `42mutez`, `7mutez` |
|Address | `("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)`, `("KT1JepfBfMSqkQyf9B1ndvURghGsSB8YCLMD": address)`|
|Addition |`3 + 4`, `3n + 4n`|
|Multiplication & Division| `3 * 4`, `3n * 4n`, `10 / 5`, `10n / 5n`|
|Modulo| `10 mod 3`|
|Tuples| <pre><code>type name = (string, string);<br/>let winner: name = ("John", "Doe");<br/>let first_name: string = winner[0];<br/>let last_name: string = winner[1];</code></pre>|
|Types|`type age = int;`, `type name = string;` |
|Includes|```#include "library.mligo"```|
|Functions |<pre><code>let add = (a: int, b: int) : int => a + b; </code></pre>|
| If Statement | <pre><code>let new_id: int = if (age < 16) {<br/> failwith("Too young to drive."); <br/> } else { prev_id + 1; }</code></pre>|
|Options|<pre><code>type middle_name = option(string);<br/>let middle_name : middle_name = Some("Foo");<br/>let middle_name : middle_name = None;</code></pre>|
|Variable Binding | ```let age: int = 5;```|
|Type Annotations| ```("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address)```|
|Variants|<pre><code>type action =<br/>&#124; Increment(int)<br/>&#124; Decrement(int);</code></pre>|
|Variant *(pattern)* matching|<pre><code>let a: action = Increment(5);<br/>switch(a) {<br/>&#124; Increment(n) => n + 1<br/>&#124; Decrement(n) => n - 1;<br/> } <br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int,<br/>&nbsp;&nbsp;name: string<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age: 18,<br/>&nbsp;&nbsp;name: "John Doe"<br/>};<br/><br/>let name: string = john.name;</code></pre>|
|Maps|<pre><code>type prices = map(nat, tez);<br/><br/>let prices : prices = Map.literal([<br/>&nbsp;&nbsp;(10n, 60mutez),<br/>&nbsp;&nbsp;(50n, 30mutez),<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]);<br/><br/>let price: option(tez) = Map.find_opt(50n, prices);<br/><br/>let prices: prices = Map.update(200n, Some (5mutez), prices);</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Operation.get_contract(destination_address);</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, amount, receiver);</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.");`|
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -107,8 +107,7 @@ type action =
| Decrement(int)
| Reset(unit);
let main = (p_s: (action, int)) : (list(operation), int) => {
let p, s = p_s;
let main = ((p,s): (action, int)) : (list(operation), int) => {
let result =
switch (p) {
| Increment(n) => s + n

View File

@ -139,21 +139,8 @@ Conditional logic is an important part of every real world program.
```pascaligo group=e
const min_age: nat = 16n;
(*
This function is really obnoxious, but it showcases
how the if statement and its syntax can be used.
Normally, you'd use `with (age > min_age)` instead.
*)
function is_adult(const age: nat): bool is
block {
var is_adult: bool := False;
if (age > min_age) then begin
is_adult := True;
end else begin
is_adult := False;
end
} with is_adult
if (age > min_age) then True else False
```
> You can run the function above with

View File

@ -15,10 +15,10 @@ Each `block` needs to include at least one `instruction`, or a *placeholder* ins
```pascaligo skip
// shorthand syntax
block { skip }
block { a := a + 1 }
// verbose syntax
begin
skip
a := a + 1
end
```
@ -29,16 +29,17 @@ end
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
Functions in PascaLIGO are defined using the `function` keyword followed by their `name`, `parameters` and `return` type definitions.
Here's how you define a basic function that accepts two `ints` and returns a single `int`:
Functions in PascaLIGO are defined using the `function` keyword
followed by their `name`, `parameters` and `return` type definitions.
Here's how you define a basic function that accepts two `int`s and
returns a single `int`:
```pascaligo group=a
function add(const a: int; const b: int): int is
begin
const result: int = a + b;
end with result;
function add(const a: int; const b: int): int is
begin
const result: int = a + b;
end with result;
```
The function body consists of two parts:
@ -48,8 +49,10 @@ The function body consists of two parts:
#### Blockless functions
Functions that can contain all of their logic into a single instruction/expression, can be defined without the surrounding `block`.
Instead, you can inline the necessary logic directly, like this:
Functions that can contain all of their logic into a single
instruction/expression, can be defined without the surrounding
`block`. Instead, you can inline the necessary logic directly, like
this:
```pascaligo group=b
function add(const a: int; const b: int): int is a + b
@ -57,72 +60,78 @@ function add(const a: int; const b: int): int is a + b
<!--CameLIGO-->
Functions in CameLIGO are defined using the `let` keyword, like value bindings.
The difference is that after the value name a list of function parameters is provided,
along with a return type.
Functions in CameLIGO are defined using the `let` keyword, like value
bindings. The difference is that after the value name a list of
function parameters is provided, along with a return type.
CameLIGO is a little different from other syntaxes when it comes to function
parameters. In OCaml, functions can only take one parameter. To get functions
with multiple arguments like we're used to in traditional programming languages,
a technique called [currying](https://en.wikipedia.org/wiki/Currying) is used.
Currying essentially translates a function with multiple arguments into a series
of single argument functions, each returning a new function accepting the next
argument until every parameter is filled. This is useful because it means that
CameLIGO can support [partial application](https://en.wikipedia.org/wiki/Partial_application).
CameLIGO is a little different from other syntaxes when it comes to
function parameters. In OCaml, functions can only take one
parameter. To get functions with multiple arguments like we are used
to in traditional programming languages, a technique called
[currying](https://en.wikipedia.org/wiki/Currying) is used. Currying
essentially translates a function with multiple arguments into a
series of single argument functions, each returning a new function
accepting the next argument until every parameter is filled. This is
useful because it means that CameLIGO can support
[partial application](https://en.wikipedia.org/wiki/Partial_application).
Currying is however *not* the preferred way to pass function arguments in CameLIGO.
While this approach is faithful to the original OCaml, it is costlier in Michelson
than naive function execution accepting multiple arguments. Instead for most
functions with more than one parameter we should place the arguments in a
[tuple](language-basics/sets-lists-touples.md) and pass the tuple in as a single
parameter.
Currying is however *not* the preferred way to pass function arguments
in CameLIGO. While this approach is faithful to the original OCaml,
it's costlier in Michelson than naive function execution accepting
multiple arguments. Instead for most functions with more than one
parameter we should place the arguments in a
[tuple](language-basics/sets-lists-tuples.md) and pass the tuple in as
a single parameter.
Here's how you define a basic function that accepts two `ints` and returns an `int` as well:
Here is how you define a basic function that accepts two `ints` and
returns an `int` as well:
```cameligo group=b
let add (a,b: int * int) : int = a + b
let add_curry (a: int) (b: int) : int = a + b
```
The function body is a series of expressions, which are evaluated to give the return
value.
The function body is a series of expressions, which are evaluated to
give the return value.
<!--ReasonLIGO-->
Functions in ReasonLIGO are defined using the `let` keyword, like value bindings.
The difference is that after the value name a list of function parameters is provided,
along with a return type.
Functions in ReasonLIGO are defined using the `let` keyword, like
value bindings. The difference is that after the value name a list of
function parameters is provided, along with a return type.
Here's how you define a basic function that accepts two `ints` and returns an `int` as well:
Here is how you define a basic function that accepts two `int`s and
returns an `int` as well:
```reasonligo group=b
let add = (a: int, b: int) : int => a + b;
let add = ((a,b): (int, int)) : int => a + b;
```
The function body is a series of expressions, which are evaluated to give the return
value.
The function body is a series of expressions, which are evaluated to
give the return value.
<!--END_DOCUSAURUS_CODE_TABS-->
## Anonymous functions
Functions without a name, also known as anonymous functions are useful in cases when you want to pass the function as an argument or assign it to a key in a record/map.
Functions without a name, also known as anonymous functions are useful
in cases when you want to pass the function as an argument or assign
it to a key in a record or a map.
Here's how to define an anonymous function assigned to a variable `increment`, with its appropriate function type signature.
Here's how to define an anonymous function assigned to a variable
`increment`, with it is appropriate function type signature.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=c
const increment : (int -> int) = (function (const i : int) : int is i + 1);
const increment : int -> int = function (const i : int) : int is i + 1;
// a = 2
const a: int = increment(1);
const a: int = increment (1);
```
<!--CameLIGO-->
```cameligo group=c
let increment : (int -> int) = fun (i: int) -> i + 1
let increment : int -> int = fun (i: int) -> i + 1
```
<!--ReasonLIGO-->

View File

@ -3,19 +3,22 @@ id: maps-records
title: Maps, Records
---
So far we've seen pretty basic data types. LIGO also offers more complex built-in constructs, such as Maps and Records.
So far we have seen pretty basic data types. LIGO also offers more
complex built-in constructs, such as maps and records.
## Maps
Maps are natively available in Michelson, and LIGO builds on top of them. A requirement for a Map is that its keys be of the same type, and that type must be comparable.
Maps are natively available in Michelson, and LIGO builds on top of
them. A requirement for a map is that its keys be of the same type,
and that type must be comparable.
Here's how a custom map type is defined:
Here is how a custom map type is defined:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
type move is (int * int);
type moveset is map(address, move);
type move is int * int
type moveset is map(address, move)
```
<!--CameLIGO-->
@ -32,7 +35,7 @@ type moveset = map(address, move);
<!--END_DOCUSAURUS_CODE_TABS-->
And here's how a map value is populated:
And here is how a map value is populated:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -77,7 +80,10 @@ let moves : moveset =
### Accessing map values by key
If we want to access a move from our moveset above, we can use the `[]` operator/accessor to read the associated `move` value. However, the value we'll get will be wrapped as an optional; in our case `option(move)`. Here's an example:
If we want to access a move from our moveset above, we can use the
`[]` operator/accessor to read the associated `move` value. However,
the value we will get will be wrapped as an optional; in our case
`option(move)`. Here is an example:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -175,21 +181,21 @@ otherwise.
function iter_op (const m : moveset) : unit is
block {
function aggregate (const i : address ; const j : move) : unit is block
{ if (j.1 > 1) then skip else failwith("fail") } with unit ;
} with map_iter(aggregate, m) ;
{ if j.1 > 1 then skip else failwith("fail") } with unit
} with map_iter(aggregate, m);
```
<!--CameLIGO-->
```cameligo
let iter_op (m : moveset) : unit =
let assert_eq = fun (i: address * move) -> assert (i.1.0 > 1)
let assert_eq = fun (i,j: address * move) -> assert (j.0 > 1)
in Map.iter assert_eq m
```
<!--ReasonLIGO-->
```reasonligo
let iter_op = (m: moveset): unit => {
let assert_eq = (i: (address, move)) => assert(i[1][0] > 1);
let assert_eq = ((i,j): (address, move)) => assert (j[0] > 1);
Map.iter(assert_eq, m);
};
```
@ -202,55 +208,56 @@ let iter_op = (m: moveset): unit => {
```pascaligo
function map_op (const m : moveset) : moveset is
block {
function increment (const i : address ; const j : move) : move is block { skip } with (j.0, j.1 + 1) ;
} with map_map(increment, m) ;
function increment (const i : address ; const j : move) : move is (j.0, j.1 + 1);
} with map_map (increment, m);
```
<!--CameLIGO-->
```cameligo
let map_op (m : moveset) : moveset =
let increment = fun (i: address * move) -> (i.1.0, i.1.1 + 1)
let increment = fun (i,j: address * move) -> (j.0, j.1 + 1)
in Map.map increment m
```
<!--ReasonLIGO-->
```reasonligo
let map_op = (m: moveset): moveset => {
let increment = (i: (address, move)) => (i[1][0], i[1][1] + 1);
let increment = ((i,j): (address, move)) => (j[0], j[1] + 1);
Map.map(increment, m);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
`fold` is an aggregation function that return the combination of a maps contents.
`fold` is an aggregation function that return the combination of a
maps contents.
The fold is a loop which extracts an element of the map on each iteration. It then
provides this element and an existing value to a folding function which combines them.
On the first iteration, the existing value is an initial expression given by the
programmer. On each subsequent iteration it is the result of the previous iteration.
The fold is a loop which extracts an element of the map on each
iteration. It then provides this element and an existing value to a
folding function which combines them. On the first iteration, the
existing value is an initial expression given by the programmer. On
each subsequent iteration it is the result of the previous iteration.
It eventually returns the result of combining all the elements.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
function fold_op (const m : moveset) : int is
block {
function aggregate (const j : int ; const cur : (address * (int * int))) : int is j + cur.1.1 ;
} with map_fold(aggregate, m , 5)
function aggregate (const j : int; const cur : address * (int * int)) : int is j + cur.1.1
} with map_fold(aggregate, m, 5)
```
<!--CameLIGO-->
```cameligo
let fold_op (m : moveset) : moveset =
let aggregate = fun (i: int * (address * (int * int))) -> i.0 + i.1.1.1 in
Map.fold aggregate m 5
let aggregate = fun (i,j: int * (address * (int * int))) -> i + j.1.1
in Map.fold aggregate m 5
```
<!--ReasonLIGO-->
```reasonligo
let fold_op = (m: moveset): moveset => {
let aggregate = (i: (int, (address, (int,int)))) => i[0] + i[1][1][1];
let aggregate = ((i,j): (int, (address, (int,int)))) => i + j[1][1];
Map.fold(aggregate, m, 5);
};
@ -268,13 +275,13 @@ too expensive were it not for big maps. Big maps are a data structure offered by
Tezos which handles the scaling concerns for us. In LIGO, the interface for big
maps is analogous to the one used for ordinary maps.
Here's how we define a big map:
Here is how we define a big map:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
type move is (int * int);
type moveset is big_map(address, move);
type move is (int * int)
type moveset is big_map (address, move)
```
<!--CameLIGO-->
@ -291,16 +298,17 @@ type moveset = big_map(address, move);
<!--END_DOCUSAURUS_CODE_TABS-->
And here's how a map value is populated:
And here is how a map value is populated:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const moves: moveset = big_map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1, 2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0, 3);
end
const moves: moveset =
big_map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
end
```
> Notice the `->` between the key and its value and `;` to separate individual map entries.
>
@ -309,45 +317,51 @@ end
<!--CameLIGO-->
```cameligo
let moves: moveset = Big_map.literal
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ;
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0, 3)) ;
let moves: moveset =
Big_map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
]
```
> Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`.
> Note also the `;` to separate individual map entries.
>
> `("<string value>": address)` means that we type-cast a string into an address.
> `("<string value>": address)` means that we cast a string into an address.
<!--ReasonLIGO-->
```reasonligo
let moves: moveset =
Big_map.literal([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1, 2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0, 3)),
Big_map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0,3)),
]);
```
> Big_map.literal constructs the map from a list of key-value pair tuples, `(<key>, <value>)`.
>
> `("<string value>": address)` means that we type-cast a string into an address.
> `("<string value>": address)` means that we cast a string into an address.
<!--END_DOCUSAURUS_CODE_TABS-->
### Accessing map values by key
If we want to access a move from our moveset above, we can use the `[]` operator/accessor to read the associated `move` value. However, the value we'll get will be wrapped as an optional; in our case `option(move)`. Here's an example:
If we want to access a move from our moveset above, we can use the
`[]` operator/accessor to read the associated `move` value. However,
the value we will get will be wrapped as an optional; in our case
`option(move)`. Here is an example:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : option(move) = moves[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)];
const my_balance : option(move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)]
```
<!--CameLIGO-->
```cameligo
let my_balance : move option = Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
let my_balance : move option =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
<!--ReasonLIGO-->
@ -360,24 +374,28 @@ let my_balance : option(move) =
#### Obtaining a map value forcefully
Accessing a value in a map yields an option, however you can also get the value directly:
Accessing a value in a map yields an option, however you can also get
the value directly:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : move = get_force(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
const my_balance : move =
get_force (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
```
<!--CameLIGO-->
```cameligo
let my_balance : move = Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
<!--ReasonLIGO-->
```reasonligo
let my_balance : move = Big_map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -388,19 +406,21 @@ let my_balance : move = Big_map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": add
<!--Pascaligo-->
The values of a PascaLIGO big map can be updated using the ordinary assignment syntax:
The values of a PascaLIGO big map can be updated using the ordinary
assignment syntax:
```pascaligo
function set_ (var m : moveset) : moveset is
block {
m[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
} with m
```
<!--Cameligo-->
We can update a big map in CameLIGO using the `Big_map.update` built-in:
We can update a big map in CameLIGO using the `Big_map.update`
built-in:
```cameligo
@ -410,10 +430,11 @@ let updated_map : moveset =
<!--Reasonligo-->
We can update a big map in ReasonLIGO using the `Big_map.update` built-in:
We can update a big map in ReasonLIGO using the `Big_map.update`
built-in:
```reasonligo
let updated_map: moveset =
let updated_map : moveset =
Big_map.update(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
```
@ -421,75 +442,79 @@ let updated_map: moveset =
## Records
Records are a construct introduced in LIGO, and are not natively available in Michelson. The LIGO compiler translates records into Michelson `Pairs`.
Records are a construct introduced in LIGO, and are not natively
available in Michelson. The LIGO compiler translates records into
Michelson `Pairs`.
Here's how a custom record type is defined:
Here is how a custom record type is defined:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
type user is record
id: nat;
is_admin: bool;
name: string;
end
type user is
record
id : nat;
is_admin : bool;
name : string
end
```
<!--CameLIGO-->
```cameligo
type user = {
id: nat;
is_admin: bool;
name: string;
id : nat;
is_admin : bool;
name : string
}
```
<!--ReasonLIGO-->
```reasonligo
type user = {
id: nat,
is_admin: bool,
name: string
id : nat,
is_admin : bool,
name : string
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
And here's how a record value is populated:
And here is how a record value is populated:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const user: user = record
id = 1n;
const user : user =
record
id = 1n;
is_admin = True;
name = "Alice";
end
name = "Alice"
end
```
<!--CameLIGO-->
```cameligo
let user: user = {
id = 1n;
let user : user = {
id = 1n;
is_admin = true;
name = "Alice";
name = "Alice"
}
```
<!--ReasonLIGO-->
```reasonligo
let user: user = {
id: 1n,
is_admin: true,
name: "Alice"
let user : user = {
id : 1n,
is_admin : true,
name : "Alice"
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Accessing record keys by name
If we want to obtain a value from a record for a given key, we can do the following:
If we want to obtain a value from a record for a given key, we can do
the following:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -506,5 +531,4 @@ let is_admin : bool = user.is_admin
```reasonligo
let is_admin: bool = user.is_admin;
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -200,6 +200,18 @@ const a: int = int(1n);
const b: nat = abs(1);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Check if a value is a `nat`
You can check if a value is a `nat`, by using a syntax specific built-in function, which accepts an `int` and returns an `option(nat)`, more specifically `Some(nat)` if the provided integer is a natural number, and `None` otherwise:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const its_a_nat: option(nat) = is_nat(1)
```
<!--ReasonLIGO-->
```reasonligo group=e
let a: int = int(1n);

View File

@ -3,39 +3,37 @@ id: sets-lists-tuples
title: Sets, Lists, Tuples
---
Apart from complex data types such as `maps` and `records`, ligo also exposes `sets`, `lists` and `tuples`.
Apart from complex data types such as `maps` and `records`, ligo also
exposes `sets`, `lists` and `tuples`.
> ⚠️ Make sure to pick the appropriate data type for your use case; it carries not only semantic but also gas related costs.
## Sets
Sets are similar to lists. The main difference is that elements of a `set` must be *unique*.
Sets are similar to lists. The main difference is that elements of a
`set` must be *unique*.
### Defining a set
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=a
type int_set is set(int);
const my_set: int_set = set
1;
2;
3;
end
type int_set is set (int);
const my_set : int_set = set 1; 2; 3 end
```
<!--CameLIGO-->
```cameligo group=a
type int_set = int set
let my_set: int_set =
let my_set : int_set =
Set.add 3 (Set.add 2 (Set.add 1 (Set.empty: int set)))
```
<!--ReasonLIGO-->
```reasonligo group=a
type int_set = set(int);
let my_set: int_set =
Set.add(3, Set.add(2, Set.add(1, Set.empty: set(int))));
type int_set = set (int);
let my_set : int_set =
Set.add (3, Set.add (2, Set.add (1, Set.empty: set (int))));
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -45,8 +43,8 @@ let my_set: int_set =
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=a
const my_set: int_set = set end;
const my_set_2: int_set = set_empty;
const my_set: int_set = set end
const my_set_2: int_set = set_empty
```
<!--CameLIGO-->
```cameligo group=a
@ -54,7 +52,7 @@ let my_set: int_set = (Set.empty: int set)
```
<!--ReasonLIGO-->
```reasonligo group=a
let my_set: int_set = (Set.empty: set(int));
let my_set: int_set = (Set.empty: set (int));
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -63,9 +61,9 @@ let my_set: int_set = (Set.empty: set(int));
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=a
const contains_three: bool = my_set contains 3;
const contains_three : bool = my_set contains 3
// or alternatively
const contains_three_fn: bool = set_mem(3, my_set);
const contains_three_fn: bool = set_mem (3, my_set);
```
<!--CameLIGO-->
@ -84,7 +82,7 @@ let contains_three: bool = Set.mem(3, my_set);
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=a
const set_size: nat = size(my_set);
const set_size: nat = size (my_set)
```
<!--CameLIGO-->
@ -94,7 +92,7 @@ let set_size: nat = Set.size my_set
<!--ReasonLIGO-->
```reasonligo group=a
let set_size: nat = Set.size(my_set);
let set_size: nat = Set.size (my_set);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -257,7 +255,7 @@ let sum_of_a_list: int = List.fold sum my_list 0
<!--ReasonLIGO-->
```reasonligo group=b
let sum = (result_i: (int, int)): int => result_i[0] + result_i[1];
let sum = ((result, i): (int, int)): int => result + i;
(* Outputs 6 *)
let sum_of_a_list: int = List.fold(sum, my_list, 0);
```

View File

@ -0,0 +1,4 @@
const min_age: nat = 16n;
function is_adult(const age: nat): bool is
if (age > min_age) then True else False

View File

@ -0,0 +1 @@
const its_a_nat: option(nat) = is_nat(1)

View File

@ -0,0 +1,4 @@
type int_map is map(int, int);
function get_first(const int_map: int_map): option(int) is int_map[1]
// empty map needs a type annotation
const first: option(int) = get_first(((map end) : int_map ));

View File

@ -69,8 +69,7 @@ let check_hash_key (kh1, k2: key_hash * key) : bool * key_hash =
<!--ReasonLIGO-->
```reasonligo
let check_hash_key = (kh1_k2: (key_hash, key)) : (bool, key_hash) => {
let kh1, k2 = kh1_k2;
let check_hash_key = ((kh1, k2): (key_hash, key)) : (bool, key_hash) => {
let kh2 : key_hash = Crypto.hash_key(k2);
if (kh1 == kh2) {
(true, kh2);
@ -111,8 +110,7 @@ let check_signature (pk, signed, msg: key * signature * bytes) : bool =
<!--ReasonLIGO-->
```reasonligo
let check_signature = (param: (key, signature, bytes)) : bool => {
let pk, signed, msg = param;
let check_signature = ((pk, signed, msg): (key, signature, bytes)) : bool => {
Crypto.check(pk, signed, msg);
};
```

View File

@ -3,7 +3,7 @@ id: types
title: Types
---
LIGO is strongly and statically typed. This means that the compiler checks your program at compilation time and makes sure there won't be any type related runtime errors. LIGO types are built on top of Michelson's type system.
LIGO is strongly and statically typed. This means that the compiler checks your program at compilation time and makes sure there won't be any type related runtime errors. LIGO types are built on top of Michelson's type system.
## Built-in types
@ -36,6 +36,8 @@ let dog_breed: animal_breed = "Saluki";
<!--END_DOCUSAURUS_CODE_TABS-->
> Types in LIGO are `structural`, which means that `animalBreed`/`animal_breed` and `string` are interchangable and are considered equal.
## Simple types
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -146,3 +148,18 @@ let ledger: account_balances =
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Annotations
In certain cases, type of an expression cannot be properly determined. This can be circumvented by annotating an expression with it's desired type, here's an example:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
type int_map is map(int, int);
function get_first(const int_map: int_map): option(int) is int_map[1]
// empty map needs a type annotation
const first: option(int) = get_first(((map end) : int_map ));
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -108,7 +108,7 @@ with a new value being bound in place of the old one.
```reasonligo
let add = (a: int, b: int): int => {
let add = ((a,b): (int, int)): int => {
let c: int = a + b;
c;
};

View File

@ -30,16 +30,16 @@ type action =
| Increment of int
| Decrement of int
let add (a: int) (b: int) : int = a + b
let sub (a: int) (b: int) : int = a - b
let add (a,b: int * int) : int = a + b
let sub (a,b: int * int) : int = a - b
(* real entrypoint that re-routes the flow based on the action provided *)
let main (p,s: action * storage) =
let storage =
match p with
| Increment n -> add s n
| Decrement n -> sub s n
| Increment n -> add (s, n)
| Decrement n -> sub (s, n)
in ([] : operation list), storage
${pre}`;
@ -53,22 +53,19 @@ type action =
| Increment(int)
| Decrement(int);
let add = (a: int, b: int): int => a + b;
let sub = (a: int, b: int): int => a - b;
let add = ((a,b): (int, int)): int => a + b;
let sub = ((a,b): (int, int)): int => a - b;
/* real entrypoint that re-routes the flow based on the action provided */
let main2 = (p: action, storage) => {
let main = ((p,storage): (action, storage)) => {
let storage =
switch (p) {
| Increment(n) => add(storage, n)
| Decrement(n) => sub(storage, n)
| Increment(n) => add((storage, n))
| Decrement(n) => sub((storage, n))
};
([]: list(operation), storage);
};
let main = (x: (action, storage)) => main2(x[0],x[1]);
${pre}`;

View File

@ -5624,15 +5624,6 @@
"integrity": "sha512-s5kLOcnH0XqDO+FvuaLX8DDjZ18CGFk7VygH40QoKPUQhW4e2rvM0rwUq0t8IQDOwYSeLK01U90OjzBTme2QqA==",
"dev": true
},
"klaw-sync": {
"version": "6.0.0",
"resolved": "https://registry.npmjs.org/klaw-sync/-/klaw-sync-6.0.0.tgz",
"integrity": "sha512-nIeuVSzdCCs6TDPTqI8w1Yre34sSq7AkZ4B3sfOBbI2CgVSB4Du4aLQijFU2+lhAFCwt9+42Hel6lQNIv6AntQ==",
"dev": true,
"requires": {
"graceful-fs": "^4.1.11"
}
},
"lazy-cache": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/lazy-cache/-/lazy-cache-2.0.2.tgz",
@ -7412,15 +7403,6 @@
"integrity": "sha1-1PRWKwzjaW5BrFLQ4ALlemNdxtw=",
"dev": true
},
"preprocess": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/preprocess/-/preprocess-3.1.0.tgz",
"integrity": "sha1-pE5c3Vu7WlTwrSiaru2AmV19k4o=",
"dev": true,
"requires": {
"xregexp": "3.1.0"
}
},
"prismjs": {
"version": "1.17.1",
"resolved": "https://registry.npmjs.org/prismjs/-/prismjs-1.17.1.tgz",
@ -7750,6 +7732,12 @@
"picomatch": "^2.0.4"
}
},
"reason-highlightjs": {
"version": "0.2.1",
"resolved": "https://registry.npmjs.org/reason-highlightjs/-/reason-highlightjs-0.2.1.tgz",
"integrity": "sha512-DWWPtfeQjwKgHj2OOieEIAB544uAVjwOAIAg2Yu09CobdUe41Yah0Z67GEvmVtpYCGG/+3CZvDRM1hMVr1zN3A==",
"dev": true
},
"rechoir": {
"version": "0.6.2",
"resolved": "https://registry.npmjs.org/rechoir/-/rechoir-0.6.2.tgz",
@ -9433,12 +9421,6 @@
"integrity": "sha512-Eux0i2QdDYKbdbA6AM6xE4m6ZTZr4G4xF9kahI2ukSEMCzwce2eX9WlTI5J3s+NU7hpasFsr8hWIONae7LluAQ==",
"dev": true
},
"xregexp": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/xregexp/-/xregexp-3.1.0.tgz",
"integrity": "sha1-FNhGHgvdOCJL/uUDmgiY/EL80zY=",
"dev": true
},
"xtend": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/xtend/-/xtend-4.0.2.tgz",

View File

@ -285,7 +285,7 @@ let compile_storage =
let%bind simplified_param = Compile.Of_source.compile_expression v_syntax expression in
let%bind (typed_param,_) = Compile.Of_simplified.compile_expression ~env ~state simplified_param in
let%bind mini_c_param = Compile.Of_typed.compile_expression typed_param in
let%bind compiled_param = Compile.Of_mini_c.compile_expression mini_c_param in
let%bind compiled_param = Compile.Of_mini_c.aggregate_and_compile_expression mini_c_prg mini_c_param in
let%bind () = Compile.Of_typed.assert_equal_contract_type Check_storage entry_point typed_prg typed_param in
let%bind () = Compile.Of_michelson.assert_equal_contract_type Check_storage michelson_prg compiled_param in
let%bind options = Run.make_dry_run_options {predecessor_timestamp ; amount ; sender ; source } in
@ -374,7 +374,7 @@ let evaluate_value =
let%bind compiled = Compile.Of_mini_c.aggregate_and_compile_expression mini_c exp in
let%bind options = Run.make_dry_run_options {predecessor_timestamp ; amount ; sender ; source } in
let%bind michelson_output = Run.run_no_failwith ~options compiled.expr compiled.expr_ty in
let%bind simplified_output = Uncompile.uncompile_typed_program_entry_function_result typed_prg entry_point michelson_output in
let%bind simplified_output = Uncompile.uncompile_typed_program_entry_expression_result typed_prg entry_point michelson_output in
ok @@ Format.asprintf "%a\n" Ast_simplified.PP.expression simplified_output
in
let term =
@ -410,6 +410,19 @@ let dump_changelog =
let doc = "Dump the LIGO changelog to stdout." in
(Term.ret term , Term.info ~doc cmdname)
let list_declarations =
let f source_file syntax =
toplevel ~display_format:(`Human_readable) @@
let%bind simplified_prg = Compile.Of_source.compile source_file (Syntax_name syntax) in
let json_decl = List.map (fun decl -> `String decl) @@ Compile.Of_simplified.list_declarations simplified_prg in
ok @@ J.to_string @@ `Assoc [ ("source_file", `String source_file) ; ("declarations", `List json_decl) ]
in
let term =
Term.(const f $ source_file 0 $ syntax ) in
let cmdname = "list-declarations" in
let doc = "Subcommand: list all the top-level decalarations." in
(Term.ret term , Term.info ~doc cmdname)
let run ?argv () =
Term.eval_choice ?argv main [
compile_file ;
@ -425,5 +438,6 @@ let run ?argv () =
print_cst ;
print_ast ;
print_typed_ast ;
print_mini_c
print_mini_c ;
list_declarations ;
]

View File

@ -1037,4 +1037,9 @@ let%expect_test _ =
* Visit our documentation: https://ligolang.org/docs/intro/what-and-why/
* Ask a question on our Discord: https://discord.gg/9rhYaEt
* Open a gitlab issue: https://gitlab.com/ligolang/ligo/issues/new
* Check the changelog by running 'ligo changelog' |}]
* Check the changelog by running 'ligo changelog' |}]
let%expect_test _ =
run_ligo_good [ "compile-storage" ; contract "big_map.ligo" ; "main" ; "(big_map1,unit)" ] ;
[%expect {|
(Pair { Elt 23 0 ; Elt 42 0 } Unit) |}]

View File

@ -44,6 +44,9 @@ let%expect_test _ =
Subcommand: interpret the expression in the context initialized by
the provided source file.
list-declarations
Subcommand: list all the top-level decalarations.
measure-contract
Subcommand: measure a contract's compiled size in bytes.
@ -117,6 +120,9 @@ let%expect_test _ =
Subcommand: interpret the expression in the context initialized by
the provided source file.
list-declarations
Subcommand: list all the top-level decalarations.
measure-contract
Subcommand: measure a contract's compiled size in bytes.

View File

@ -0,0 +1,22 @@
open Cli_expect
(* evaluate-value *)
let%expect_test _ =
run_ligo_good [ "evaluate-value" ; "../../test/contracts/evaluation_tests.ligo" ; "a" ] ;
[%expect {|
{foo = +0 , bar = "bar"} |} ];
run_ligo_good [ "evaluate-value" ; "../../test/contracts/evaluation_tests.ligo" ; "b" ] ;
[%expect {|
2 |} ]
(* list-declarations *)
let%expect_test _ =
run_ligo_good [ "list-declarations" ; "../../test/contracts/loop.ligo" ] ;
[%expect {| {"source_file":"../../test/contracts/loop.ligo","declarations":["inner_capture_in_conditional_block","dummy","nested_for_collection_local_var","nested_for_collection","for_collection_map_k","for_collection_map_kv","for_collection_empty","for_collection_with_patches","for_collection_comp_with_acc","for_collection_proc_call","for_collection_rhs_capture","for_collection_if_and_local_var","for_collection_set","for_collection_list","for_sum","while_sum","counter"]} |} ];
run_ligo_good [ "list-declarations" ; "../../test/contracts/loop.mligo" ] ;
[%expect {| {"source_file":"../../test/contracts/loop.mligo","declarations":["counter_nest","aux_nest","counter","counter_simple","aux_simple"]} |} ];
run_ligo_good [ "list-declarations" ; "../../test/contracts/loop.religo" ] ;
[%expect {| {"source_file":"../../test/contracts/loop.religo","declarations":["counter_nest","aux_nest","counter","counter_simple","aux_simple"]} |} ];

View File

@ -41,7 +41,7 @@ let%expect_test _ =
run_ligo_bad [ "compile-contract" ; "../../test/contracts/negative/error_typer_3.mligo" ; "main" ] ;
[%expect {|
ligo: in file "error_typer_3.mligo", line 3, characters 34-53. tuples have different sizes: Expected these two types to be the same, but they're different (both are tuples, but with a different number of arguments) {"a":"tuple[int , string , bool]","b":"tuple[int , string]"}
ligo: in file "error_typer_3.mligo", line 3, characters 34-53. different number of arguments to type constructors: Expected these two n-ary type constructors to be the same, but they have different numbers of arguments (both use the TC_tuple type constructor, but they have 3 and 2 arguments, respectively) {"a":"(TO_tuple[int , string , bool])","b":"(TO_tuple[int , string])","op":"TC_tuple","len_a":"3","len_b":"2"}
If you're not sure how to fix this error, you can

View File

@ -9,15 +9,13 @@ let compile_contract : expression -> Compiler.compiled_expression result = fun e
let%bind body = Compiler.Program.translate_function_body body [] input_ty in
let expr = Self_michelson.optimize body in
let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in
let open! Compiler.Program in
ok { expr_ty ; expr }
ok ({ expr_ty ; expr } : Compiler.Program.compiled_expression)
let compile_expression : expression -> Compiler.compiled_expression result = fun e ->
let%bind expr = Compiler.Program.translate_expression e Compiler.Environment.empty in
let expr = Self_michelson.optimize expr in
let%bind expr_ty = Compiler.Type.Ty.type_ e.type_value in
let open! Compiler.Program in
ok { expr_ty ; expr }
ok ({ expr_ty ; expr } : Compiler.Program.compiled_expression)
let aggregate_and_compile = fun program form ->
let%bind aggregated = aggregate_entry program form in

View File

@ -7,17 +7,28 @@ let compile (program : Ast_simplified.program) : (Ast_typed.program * Typer.Solv
let compile_expression ?(env = Ast_typed.Environment.full_empty) ~(state : Typer.Solver.state) (ae : Ast_simplified.expression)
: (Ast_typed.value * Typer.Solver.state) result =
Typer.type_expression env state ae
let () = Typer.Solver.discard_state state in
Typer.type_expression_subst env state ae
let apply (entry_point : string) (param : Ast_simplified.expression) : Ast_simplified.expression result =
let name = Var.of_name entry_point in
let entry_point_var : Ast_simplified.expression =
{ expression = Ast_simplified.E_variable name ;
location = Virtual "generated entry-point variable" } in
let applied : Ast_simplified.expression =
let applied : Ast_simplified.expression =
{ expression = Ast_simplified.E_application (entry_point_var, param) ;
location = Virtual "generated application" } in
ok applied
let pretty_print formatter (program : Ast_simplified.program) =
Ast_simplified.PP.program formatter program
Ast_simplified.PP.program formatter program
let list_declarations (program : Ast_simplified.program) : string list =
List.fold_left
(fun prev el ->
let open Location in
let open Ast_simplified in
match el.wrap_content with
| Declaration_constant (var,_,_,_) -> (Var.to_name var)::prev
| _ -> prev)
[] program

View File

@ -14,7 +14,7 @@ let assert_equal_contract_type : check_type -> string -> Ast_typed.program -> As
match entry_point.type_annotation.type_value' with
| T_arrow (args,_) -> (
match args.type_value' with
| T_tuple [param_exp;storage_exp] -> (
| T_operator (TC_tuple [param_exp;storage_exp]) -> (
match c with
| Check_parameter -> assert_type_value_eq (param_exp, param.type_annotation)
| Check_storage -> assert_type_value_eq (storage_exp, param.type_annotation)
@ -24,4 +24,4 @@ let assert_equal_contract_type : check_type -> string -> Ast_typed.program -> As
| _ -> dummy_fail )
let pretty_print ppf program =
Ast_typed.PP.program ppf program
Ast_typed.PP.program ppf program

View File

@ -333,10 +333,15 @@ and update = {
lbrace : lbrace;
record : path;
kwd_with : kwd_with;
updates : record reg;
updates : field_path_assign reg ne_injection reg;
rbrace : rbrace;
}
and field_path_assign = {
field_path : (field_name, dot) nsepseq;
assignment : equal;
field_expr : expr
}
and path =
Name of variable
| Path of projection reg

View File

@ -627,7 +627,7 @@ record_expr:
in {region; value} }
update_record:
"{" path "with" sep_or_term_list(field_assignment,";") "}" {
"{" path "with" sep_or_term_list(field_path_assignment,";") "}" {
let region = cover $1 $5 in
let ne_elements, terminator = $4 in
let value = {
@ -641,6 +641,14 @@ update_record:
rbrace = $5}
in {region; value} }
field_path_assignment :
nsepseq(field_name,".") "=" expr {
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3) in
let value = {field_path = $1;
assignment = $2;
field_expr = $3}
in {region; value}}
field_assignment:
field_name "=" expr {
let start = $1.region in

View File

@ -188,7 +188,7 @@ and print_update state {value; _} =
print_token state lbrace "{";
print_path state record;
print_token state kwd_with "with";
print_record_expr state updates;
print_ne_injection state print_field_path_assign updates;
print_token state rbrace "}"
and print_path state = function
@ -513,6 +513,12 @@ and print_field_assign state {value; _} =
print_token state assignment "=";
print_expr state field_expr
and print_field_path_assign state {value; _} =
let {field_path; assignment; field_expr} = value in
print_nsepseq state "." print_var field_path;
print_token state assignment "=";
print_expr state field_expr
and print_sequence state seq =
print_injection state print_expr seq
@ -905,7 +911,7 @@ and pp_projection state proj =
and pp_update state update =
pp_path state update.record;
pp_ne_injection pp_field_assign state update.updates.value
pp_ne_injection pp_field_path_assign state update.updates.value
and pp_path state = function
Name name ->
@ -928,6 +934,12 @@ and pp_field_assign state {value; _} =
pp_ident (state#pad 2 0) value.field_name;
pp_expr (state#pad 2 1) value.field_expr
and pp_field_path_assign state {value; _} =
pp_node state "<field path for update>";
let path = Utils.nsepseq_to_list value.field_path in
List.iter (pp_ident (state#pad 2 0)) path;
pp_expr (state#pad 2 1) value.field_expr
and pp_constr_expr state = function
ENone region ->
pp_loc_node state "ENone" region

View File

@ -577,7 +577,13 @@ and projection = {
and update = {
record : path;
kwd_with : kwd_with;
updates : record reg;
updates : field_path_assign reg ne_injection reg
}
and field_path_assign = {
field_path : (field_name, dot) nsepseq;
equal : equal;
field_expr : expr
}
and selection =

View File

@ -937,7 +937,7 @@ record_expr:
in {region; value} }
update_record:
path "with" ne_injection("record",field_assignment){
path "with" ne_injection("record",field_path_assignment){
let region = cover (path_to_region $1) $3.region in
let value = {
record = $1;
@ -954,6 +954,14 @@ field_assignment:
field_expr = $3}
in {region; value} }
field_path_assignment:
nsepseq(field_name,".") "=" expr {
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3)
and value = {field_path = $1;
equal = $2;
field_expr = $3}
in {region; value} }
fun_call:
fun_name arguments {
let region = cover $1.region $2.region

View File

@ -603,11 +603,18 @@ and print_field_assign state {value; _} =
print_token state equal "=";
print_expr state field_expr
and print_update_expr state {value; _} =
and print_field_path_assign state {value; _} =
let {field_path; equal; field_expr} = value in
print_nsepseq state "field_path" print_var field_path;
print_token state equal "=";
print_expr state field_expr
and print_update_expr state {value; _} =
let {record; kwd_with; updates} = value in
print_path state record;
print_token state kwd_with "with";
print_record_expr state updates
print_ne_injection state "updates field" print_field_path_assign updates
and print_projection state {value; _} =
let {struct_name; selector; field_path} = value in
@ -1215,7 +1222,7 @@ and pp_projection state proj =
and pp_update state update =
pp_path state update.record;
pp_ne_injection pp_field_assign state update.updates.value
pp_ne_injection pp_field_path_assign state update.updates.value
and pp_selection state = function
FieldName name ->
@ -1320,6 +1327,12 @@ and pp_field_assign state {value; _} =
pp_ident (state#pad 2 0) value.field_name;
pp_expr (state#pad 2 1) value.field_expr
and pp_field_path_assign state {value; _} =
pp_node state "<field path for update>";
let path = Utils.nsepseq_to_list value.field_path in
List.iter (pp_ident (state#pad 2 0)) path;
pp_expr (state#pad 2 1) value.field_expr
and pp_map_patch state patch =
pp_path (state#pad 2 0) patch.path;
pp_ne_injection pp_binding state patch.map_inj.value

View File

@ -812,7 +812,7 @@ path :
| projection { Path $1}
update_record :
"{""..."path "," sep_or_term_list(field_assignment,",") "}" {
"{""..."path "," sep_or_term_list(field_path_assignment,",") "}" {
let region = cover $1 $6 in
let ne_elements, terminator = $5 in
let value = {
@ -873,3 +873,21 @@ field_assignment:
assignment = $2;
field_expr = $3}
in {region; value} }
field_path_assignment:
field_name {
let value = {
field_path = ($1,[]);
assignment = ghost;
field_expr = EVar $1 }
in {$1 with value}
}
| nsepseq(field_name,".") ":" expr {
let start = nsepseq_to_region (fun x -> x.region) $1 in
let stop = expr_to_region $3 in
let region = cover start stop in
let value = {
field_path = $1;
assignment = $2;
field_expr = $3}
in {region; value} }

View File

@ -246,7 +246,7 @@ and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result
| [hd] -> simpl_type_expression hd
| lst ->
let%bind lst = bind_map_list simpl_type_expression lst in
ok @@ make_t @@ T_tuple lst
ok @@ make_t @@ T_operator (TC_tuple lst)
let rec simpl_expression :
Raw.expr -> expr result = fun t ->
@ -291,14 +291,23 @@ let rec simpl_expression :
| _ -> e_accessor (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in
let%bind updates' =
let aux (f:Raw.field_assign Raw.reg) =
let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in
let%bind expr = simpl_expression f.field_expr in
ok (f.field_name.value, expr)
ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in
bind_map_list aux @@ npseq_to_list updates
in
return @@ e_update ~loc record updates'
let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_accessor ~loc record [Access_record hd]) tl) in
ok @@ e_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
in
trace (simplifying_expr t) @@

View File

@ -267,7 +267,7 @@ and simpl_list_type_expression (lst:Raw.type_expr list) : type_expression result
| [hd] -> simpl_type_expression hd
| lst ->
let%bind lst = bind_list @@ List.map simpl_type_expression lst in
ok @@ make_t @@ T_tuple lst
ok @@ make_t @@ T_operator (TC_tuple lst)
let simpl_projection : Raw.projection Region.reg -> _ = fun p ->
let (p' , loc) = r_split p in
@ -473,14 +473,23 @@ and simpl_update = fun (u:Raw.update Region.reg) ->
| _ -> e_accessor (e_variable (Var.of_name name)) path in
let updates = u.updates.value.ne_elements in
let%bind updates' =
let aux (f:Raw.field_assign Raw.reg) =
let aux (f:Raw.field_path_assign Raw.reg) =
let (f,_) = r_split f in
let%bind expr = simpl_expression f.field_expr in
ok (f.field_name.value, expr)
ok ( List.map (fun (x: _ Raw.reg) -> x.value) (npseq_to_list f.field_path), expr)
in
bind_map_list aux @@ npseq_to_list updates
in
ok @@ e_update ~loc record updates'
let aux ur (path, expr) =
let rec aux record = function
| [] -> failwith "error in parsing"
| hd :: [] -> ok @@ e_update ~loc record hd expr
| hd :: tl ->
let%bind expr = (aux (e_accessor ~loc record [Access_record hd]) tl) in
ok @@ e_update ~loc record hd expr
in
aux ur path in
bind_fold_list aux record updates'
and simpl_logic_expression (t:Raw.logic_expr) : expression result =
let return x = ok x in
@ -654,7 +663,7 @@ and simpl_fun_decl :
let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list simpl_param lst in
let (binder , input_type) =
let type_expression = T_tuple (List.map snd params) in
let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in
let%bind tpl_declarations =
let aux = fun i x ->
@ -673,8 +682,8 @@ and simpl_fun_decl :
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let expression =
e_lambda ~loc binder (Some (make_t @@ input_type)) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (make_t input_type, output_type)) in
e_lambda ~loc binder (Some input_type) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (input_type, output_type)) in
ok ((Var.of_name fun_name.value, type_annotation), expression)
)
)
@ -708,7 +717,7 @@ and simpl_fun_expression :
let arguments_name = Var.of_name "arguments" in
let%bind params = bind_map_list simpl_param lst in
let (binder , input_type) =
let type_expression = T_tuple (List.map snd params) in
let type_expression = t_tuple (List.map snd params) in
(arguments_name , type_expression) in
let%bind tpl_declarations =
let aux = fun i x ->
@ -727,8 +736,8 @@ and simpl_fun_expression :
let aux prec cur = cur (Some prec) in
bind_fold_right_list aux result body in
let expression =
e_lambda ~loc binder (Some (make_t @@ input_type)) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (make_t input_type, output_type)) in
e_lambda ~loc binder (Some (input_type)) (Some output_type) result in
let type_annotation = Some (make_t @@ T_arrow (input_type, output_type)) in
ok (type_annotation, expression)
)
)

View File

@ -41,13 +41,9 @@ let rec fold_expression : 'a folder -> 'a -> expression -> 'a result = fun f ini
let%bind res = bind_fold_lmap aux (ok init') m in
ok res
)
| E_update {record;updates} -> (
| E_update {record;update=(_,expr)} -> (
let%bind res = self init' record in
let aux res (_, expr) =
let%bind res = fold_expression self res expr in
ok res
in
let%bind res = bind_fold_list aux res updates in
let%bind res = fold_expression self res expr in
ok res
)
| E_let_in { binder = _ ; rhs ; result } -> (
@ -140,10 +136,10 @@ let rec map_expression : mapper -> expression -> expression result = fun f e ->
let%bind m' = bind_map_lmap self m in
return @@ E_record m'
)
| E_update {record; updates} -> (
| E_update {record; update=(l,expr)} -> (
let%bind record = self record in
let%bind updates = bind_map_list (fun(l,e) -> let%bind e = self e in ok (l,e)) updates in
return @@ E_update {record;updates}
let%bind expr = self expr in
return @@ E_update {record;update=(l,expr)}
)
| E_constructor (name , e) -> (
let%bind e' = self e in

View File

@ -0,0 +1,54 @@
open Solver
open Format
let type_constraint : _ -> type_constraint_simpl -> unit = fun ppf ->
function
|SC_Constructor { tv; c_tag; tv_list=_ } ->
let ct = match c_tag with
| Solver.Core.C_arrow -> "arrow"
| Solver.Core.C_option -> "option"
| Solver.Core.C_tuple -> "tuple"
| Solver.Core.C_record -> failwith "record"
| Solver.Core.C_variant -> failwith "variant"
| Solver.Core.C_map -> "map"
| Solver.Core.C_big_map -> "big_map"
| Solver.Core.C_list -> "list"
| Solver.Core.C_set -> "set"
| Solver.Core.C_unit -> "unit"
| Solver.Core.C_bool -> "bool"
| Solver.Core.C_string -> "string"
| Solver.Core.C_nat -> "nat"
| Solver.Core.C_mutez -> "mutez"
| Solver.Core.C_timestamp -> "timestamp"
| Solver.Core.C_int -> "int"
| Solver.Core.C_address -> "address"
| Solver.Core.C_bytes -> "bytes"
| Solver.Core.C_key_hash -> "key_hash"
| Solver.Core.C_key -> "key"
| Solver.Core.C_signature -> "signature"
| Solver.Core.C_operation -> "operation"
| Solver.Core.C_contract -> "contract"
| Solver.Core.C_chain_id -> "chain_id"
in
fprintf ppf "CTOR %a %s()" Var.pp tv ct
|SC_Alias (a, b) -> fprintf ppf "Alias %a %a" Var.pp a Var.pp b
|SC_Poly _ -> fprintf ppf "Poly"
|SC_Typeclass _ -> fprintf ppf "TC"
let all_constraints ppf ac =
fprintf ppf "[%a]" (pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf ";\n") type_constraint) ac
let aliases ppf (al : unionfind) =
fprintf ppf "ALIASES %a" UF.print al
let structured_dbs : _ -> structured_dbs -> unit = fun ppf structured_dbs ->
let { all_constraints = a ; aliases = b ; _ } = structured_dbs in
fprintf ppf "STRUCTURED_DBS\n %a\n %a" all_constraints a aliases b
let already_selected : _ -> already_selected -> unit = fun ppf already_selected ->
let _ = already_selected in
fprintf ppf "ALREADY_SELECTED"
let state : _ -> state -> unit = fun ppf state ->
let { structured_dbs=a ; already_selected=b } = state in
fprintf ppf "STATE %a %a" structured_dbs a already_selected b

View File

@ -34,8 +34,6 @@ module Wrap = struct
let rec type_expression_to_type_value : T.type_value -> O.type_value = fun te ->
match te.type_value' with
| T_tuple types ->
P_constant (C_tuple, List.map type_expression_to_type_value types)
| T_sum kvmap ->
P_constant (C_variant, T.CMap.to_list @@ T.CMap.map type_expression_to_type_value kvmap)
| T_record kvmap ->
@ -64,21 +62,20 @@ module Wrap = struct
P_constant (csttag, [])
| T_operator (type_operator) ->
let (csttag, args) = Core.(match type_operator with
| TC_option o -> (C_option, [o])
| TC_set s -> (C_set, [s])
| TC_map (k,v) -> (C_map, [k;v])
| TC_big_map (k,v) -> (C_big_map, [k;v])
| TC_list l -> (C_list, [l])
| TC_contract c -> (C_contract, [c])
| TC_option o -> (C_option, [o])
| TC_set s -> (C_set, [s])
| TC_map ( k , v ) -> (C_map, [k;v])
| TC_big_map ( k , v) -> (C_big_map, [k;v])
| TC_list l -> (C_list, [l])
| TC_contract c -> (C_contract, [c])
| TC_arrow ( arg , ret ) -> (C_arrow, [ arg ; ret ])
| TC_tuple lst -> (C_tuple, lst)
)
in
P_constant (csttag, List.map type_expression_to_type_value args)
let rec type_expression_to_type_value_copypasted : I.type_expression -> O.type_value = fun te ->
match te.type_expression' with
| T_tuple types ->
P_constant (C_tuple, List.map type_expression_to_type_value_copypasted types)
| T_sum kvmap ->
P_constant (C_variant, I.CMap.to_list @@ I.CMap.map type_expression_to_type_value_copypasted kvmap)
| T_record kvmap ->
@ -96,12 +93,14 @@ module Wrap = struct
P_constant (csttag,[])
| T_operator (type_name) ->
let (csttag, args) = Core.(match type_name with
| TC_option o -> (C_option , [o])
| TC_list l -> (C_list , [l])
| TC_set s -> (C_set , [s])
| TC_map (k,v) -> (C_map , [k;v])
| TC_big_map (k,v) -> (C_big_map, [k;v])
| TC_contract c -> (C_contract, [c])
| TC_option o -> (C_option , [o])
| TC_list l -> (C_list , [l])
| TC_set s -> (C_set , [s])
| TC_map ( k , v ) -> (C_map , [k;v])
| TC_big_map ( k , v ) -> (C_big_map, [k;v])
| TC_contract c -> (C_contract, [c])
| TC_arrow ( arg , ret ) -> (C_arrow, [ arg ; ret ])
| TC_tuple lst -> (C_tuple, lst)
)
in
P_constant (csttag, List.map type_expression_to_type_value_copypasted args)
@ -350,7 +349,7 @@ end
module TypeVariable =
struct
type t = Core.type_variable
let compare a b= Var.compare a b
let compare a b = Var.compare a b
let to_string = (fun s -> Format.asprintf "%a" Var.pp s)
end
@ -475,44 +474,69 @@ module UnionFindWrapper = struct
in
let dbs = { dbs with grouped_by_variable } in
dbs
let merge_variables : type_variable -> type_variable -> structured_dbs -> structured_dbs =
let merge_constraints : type_variable -> type_variable -> structured_dbs -> structured_dbs =
fun variable_a variable_b dbs ->
(* get old representant for variable_a *)
let variable_repr_a , aliases = UF.get_or_set variable_a dbs.aliases in
let dbs = { dbs with aliases } in
(* get old representant for variable_b *)
let variable_repr_b , aliases = UF.get_or_set variable_b dbs.aliases in
let dbs = { dbs with aliases } in
let default d = function None -> d | Some y -> y in
let get_constraints ab =
TypeVariableMap.find_opt ab dbs.grouped_by_variable
|> default { constructor = [] ; poly = [] ; tc = [] } in
let constraints_a = get_constraints variable_repr_a in
let constraints_b = get_constraints variable_repr_b in
let all_constraints = {
constructor = constraints_a.constructor @ constraints_b.constructor ;
poly = constraints_a.poly @ constraints_b.poly ;
tc = constraints_a.tc @ constraints_b.tc ;
} in
let grouped_by_variable =
TypeVariableMap.add variable_repr_a all_constraints dbs.grouped_by_variable in
let dbs = { dbs with grouped_by_variable} in
let grouped_by_variable =
TypeVariableMap.remove variable_repr_b dbs.grouped_by_variable in
let dbs = { dbs with grouped_by_variable} in
dbs
(* alias variable_a and variable_b together *)
let aliases = UF.alias variable_a variable_b dbs.aliases in
let dbs = { dbs with aliases } in
(* Replace the two entries in grouped_by_variable by a single one *)
(
let get_constraints ab =
match TypeVariableMap.find_opt ab dbs.grouped_by_variable with
| Some x -> x
| None -> { constructor = [] ; poly = [] ; tc = [] } in
let constraints_a = get_constraints variable_repr_a in
let constraints_b = get_constraints variable_repr_b in
let all_constraints = {
constructor = constraints_a.constructor @ constraints_b.constructor ;
poly = constraints_a.poly @ constraints_b.poly ;
tc = constraints_a.tc @ constraints_b.tc ;
} in
let grouped_by_variable =
TypeVariableMap.add variable_repr_a all_constraints dbs.grouped_by_variable in
let dbs = { dbs with grouped_by_variable} in
let grouped_by_variable =
TypeVariableMap.remove variable_repr_b dbs.grouped_by_variable in
let dbs = { dbs with grouped_by_variable} in
dbs
)
end
(* sub-sub component: constraint normalizer: remove dupes and give structure
* right now: union-find of unification vars
* later: better database-like organisation of knowledge *)
(* Each normalizer returns a *)
(* If implemented in a language with decent sets, should be 'b set not 'b list. *)
(* Each normalizer returns an updated database (after storing the
incoming constraint) and a list of constraints, used when the
normalizer rewrites the constraints e.g. into simpler ones. *)
(* TODO: If implemented in a language with decent sets, should be 'b set not 'b list. *)
type ('a , 'b) normalizer = structured_dbs -> 'a -> (structured_dbs * 'b list)
(** Updates the dbs.all_constraints field when new constraints are
discovered.
This field contains a list of all the constraints, without any form of
grouping or sorting. *)
let normalizer_all_constraints : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint ->
({ dbs with all_constraints = new_constraint :: dbs.all_constraints } , [new_constraint])
(** Updates the dbs.grouped_by_variable field when new constraints are
discovered.
This field contains a map from type variables to lists of
constraints that are related to that variable (in other words, the
key appears in the equation).
*)
let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint ->
let store_constraint tvars constraints =
@ -520,16 +544,18 @@ let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_si
UnionFindWrapper.add_constraints_related_to tvar constraints dbs
in List.fold_left aux dbs tvars
in
let merge_constraints a b =
UnionFindWrapper.merge_variables a b dbs in
let dbs = match new_constraint with
SC_Constructor ({tv ; c_tag = _ ; tv_list} as c) -> store_constraint (tv :: tv_list) {constructor = [c] ; poly = [] ; tc = []}
| SC_Typeclass ({tc = _ ; args} as c) -> store_constraint args {constructor = [] ; poly = [] ; tc = [c]}
| SC_Poly ({tv; forall = _} as c) -> store_constraint [tv] {constructor = [] ; poly = [c] ; tc = []}
| SC_Alias (a , b) -> merge_constraints a b
| SC_Alias (a , b) -> UnionFindWrapper.merge_constraints a b dbs
in (dbs , [new_constraint])
(* Stores the first assinment ('a = ctor('b, …)) seen *)
(** Stores the first assinment ('a = ctor('b, …)) that is encountered.
Subsequent ('a = ctor('b2, )) with the same 'a are ignored.
TOOD: are we checking somewhere that 'b = 'b2 ? *)
let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) normalizer =
fun dbs new_constraint ->
match new_constraint with
@ -540,9 +566,14 @@ let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) nor
| _ ->
(dbs , [new_constraint])
(** Evaluates a type-leval application. For now, only supports
immediate beta-reduction at the root of the type. *)
let type_level_eval : type_value -> type_value * type_constraint list =
fun tv -> Typesystem.Misc.Substitution.Pattern.eval_beta_root ~tv
(** Checks that a type-level application has been fully reduced. For
now, only some simple cases like applications of `forall`
<polymorphic types are allowed. *)
let check_applied ((reduced, _new_constraints) as x) =
let () = match reduced with
P_apply _ -> failwith "internal error: shouldn't happen" (* failwith "could not reduce type-level application. Arbitrary type-level applications are not supported for now." *)
@ -552,6 +583,14 @@ let check_applied ((reduced, _new_constraints) as x) =
(* TODO: at some point there may be uses of named type aliases (type
foo = int; let x : foo = 42). These should be inlined. *)
(** This function converts constraints from type_constraint to
type_constraint_simpl. The former has more possible cases, and the
latter uses a more minimalistic constraint language.
It does not modify the dbs, and only rewrites the constraint
TODO: update the code to show that the dbs are always copied as-is
*)
let rec normalizer_simpl : (type_constraint , type_constraint_simpl) normalizer =
fun dbs new_constraint ->
let insert_fresh a b =

View File

@ -334,9 +334,6 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
let%bind a' = evaluate_type e a in
let%bind b' = evaluate_type e b in
return (T_arrow (a', b'))
| T_tuple lst ->
let%bind lst' = bind_list @@ List.map (evaluate_type e) lst in
return (T_tuple lst')
| T_sum m ->
let aux k v prev =
let%bind prev' = prev in
@ -382,6 +379,13 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
| TC_contract c ->
let%bind c = evaluate_type e c in
ok @@ O.TC_contract c
| TC_arrow ( arg , ret ) ->
let%bind arg' = evaluate_type e arg in
let%bind ret' = evaluate_type e ret in
ok @@ O.TC_arrow ( arg' , ret' )
| TC_tuple lst ->
let%bind lst' = bind_map_list (evaluate_type e) lst in
ok @@ O.TC_tuple lst'
in
return (T_operator (opt))
@ -469,10 +473,11 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
return_wrapped (e_operation o) state @@ Wrap.literal (t_operation ())
)
| E_literal (Literal_unit) -> (
return_wrapped (e_unit) state @@ Wrap.literal (t_unit ())
return_wrapped (e_unit ()) state @@ Wrap.literal (t_unit ())
)
| E_skip -> (
failwith "TODO: missing implementation for E_skip"
(* E_skip just returns unit *)
return_wrapped (e_unit ()) state @@ Wrap.literal (t_unit ())
)
(* | E_literal (Literal_string s) -> (
* L.log (Format.asprintf "literal_string option type: %a" PP_helpers.(option O.PP.type_expression) tv_opt) ;
@ -516,7 +521,6 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
trace_option error @@
Environment.get_constructor c e in
let%bind (expr' , state') = type_expression e state expr in
let%bind _assert = O.assert_type_value_eq (expr'.type_annotation, c_tv) in
let wrapped = Wrap.constructor expr'.type_annotation c_tv sum_tv in
return_wrapped (E_constructor (c , expr')) state' wrapped
@ -529,27 +533,22 @@ and type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.e
let%bind (m' , state') = I.bind_fold_lmap aux (ok (I.LMap.empty , state)) m in
let wrapped = Wrap.record (I.LMap.map get_type_annotation m') in
return_wrapped (E_record m') state' wrapped
| E_update {record; updates} ->
| E_update {record; update=(k,expr)} ->
let%bind (record, state) = type_expression e state record in
let aux (lst,state) (k, expr) =
let%bind (expr', state) = type_expression e state expr in
ok ((k,expr')::lst, state)
in
let%bind (updates, state) = bind_fold_list aux ([], state) updates in
let%bind (expr,state) = type_expression e state expr in
let wrapped = get_type_annotation record in
let%bind wrapped = match wrapped.type_value' with
| T_record record ->
let aux (k, e) =
let%bind (wrapped,tv) =
match wrapped.type_value' with
| T_record record -> (
let field_op = I.LMap.find_opt k record in
match field_op with
| Some tv -> ok (record,tv)
| None -> failwith @@ Format.asprintf "field %a is not part of record" Stage_common.PP.label k
| Some tv -> O.assert_type_value_eq (tv, get_type_annotation e)
in
let%bind () = bind_iter_list aux updates in
ok (record)
| _ -> failwith "Update an expression which is not a record"
)
| _ -> failwith "Update an expression which is not a record"
in
return_wrapped (E_record_update (record, updates)) state (Wrap.record wrapped)
let%bind () = O.assert_type_value_eq (tv, get_type_annotation expr) in
return_wrapped (E_record_update (record, (k,expr))) state (Wrap.record wrapped)
(* Data-structure *)
(*
@ -937,9 +936,7 @@ let untype_type_value (t:O.type_value) : (I.type_expression) result =
(*
Apply type_declaration on all the node of the AST_simplified from the root p
*)
let type_program_returns_state (p:I.program) : (environment * Solver.state * O.program) result =
let env = Ast_typed.Environment.full_empty in
let state = Solver.initial_state in
let type_program_returns_state ((env, state, p) : environment * Solver.state * I.program) : (environment * Solver.state * O.program) result =
let aux ((e : environment), (s : Solver.state) , (ds : O.declaration Location.wrap list)) (d:I.declaration Location.wrap) =
let%bind (e' , s' , d'_opt) = type_declaration e s (Location.unwrap d) in
let ds' = match d'_opt with
@ -954,51 +951,45 @@ let type_program_returns_state (p:I.program) : (environment * Solver.state * O.p
let () = ignore (env' , state') in
ok (env', state', declarations)
(* module TSMap = TMap(Solver.TypeVariable) *)
(* let c_tag_to_string : Solver.Core.constant_tag -> string = function
* | Solver.Core.C_arrow -> "arrow"
* | Solver.Core.C_option -> "option"
* | Solver.Core.C_tuple -> "tuple"
* | Solver.Core.C_record -> failwith "record"
* | Solver.Core.C_variant -> failwith "variant"
* | Solver.Core.C_map -> "map"
* | Solver.Core.C_big_map -> "big"
* | Solver.Core.C_list -> "list"
* | Solver.Core.C_set -> "set"
* | Solver.Core.C_unit -> "unit"
* | Solver.Core.C_bool -> "bool"
* | Solver.Core.C_string -> "string"
* | Solver.Core.C_nat -> "nat"
* | Solver.Core.C_mutez -> "mutez"
* | Solver.Core.C_timestamp -> "timestamp"
* | Solver.Core.C_int -> "int"
* | Solver.Core.C_address -> "address"
* | Solver.Core.C_bytes -> "bytes"
* | Solver.Core.C_key_hash -> "key_hash"
* | Solver.Core.C_key -> "key"
* | Solver.Core.C_signature -> "signature"
* | Solver.Core.C_operation -> "operation"
* | Solver.Core.C_contract -> "contract"
* | Solver.Core.C_chain_id -> "chain_id" *)
let type_program (p : I.program) : (O.program * Solver.state) result =
let%bind (env, state, program) = type_program_returns_state p in
let type_and_subst_xyz (env_state_node : environment * Solver.state * 'a) (apply_substs : 'b Typesystem.Misc.Substitution.Pattern.w) (type_xyz_returns_state : (environment * Solver.state * 'a) -> (environment * Solver.state * 'b) Trace.result) : ('b * Solver.state) result =
let%bind (env, state, program) = type_xyz_returns_state env_state_node in
let subst_all =
let aliases = state.structured_dbs.aliases in
let assignments = state.structured_dbs.assignments in
let aux (v : I.type_variable) (expr : Solver.c_constructor_simpl) (p:O.program result) =
let%bind p = p in
let Solver.{ tv ; c_tag ; tv_list } = expr in
let substs : variable: I.type_variable -> _ = fun ~variable ->
to_option @@
let%bind root =
trace_option (simple_error (Format.asprintf "can't find alias root of variable %a" Var.pp variable)) @@
(* TODO: after upgrading UnionFind, this will be an option, not an exception. *)
try Some (Solver.UF.repr variable aliases) with Not_found -> None in
let%bind assignment =
trace_option (simple_error (Format.asprintf "can't find assignment for root %a" Var.pp root)) @@
(Solver.TypeVariableMap.find_opt root assignments) in
let Solver.{ tv ; c_tag ; tv_list } = assignment in
let () = ignore tv (* I think there is an issue where the tv is stored twice (as a key and in the element itself) *) in
let%bind (expr : O.type_value') = Typesystem.Core.type_expression'_of_simple_c_constant (c_tag , (List.map (fun s -> O.{ type_value' = T_variable s ; simplified = None }) tv_list)) in
Typesystem.Misc.Substitution.Pattern.program ~p ~v ~expr in
(* let p = TSMap.bind_fold_Map aux program assignments in *) (* TODO: Module magic: this does not work *)
let p = Solver.TypeVariableMap.fold aux assignments (ok program) in
ok @@ expr
in
let p = apply_substs ~substs program in
p in
let%bind program = subst_all in
let () = ignore env in (* TODO: shouldn't we use the `env` somewhere? *)
ok (program, state)
let type_program (p : I.program) : (O.program * Solver.state) result =
let empty_env = Ast_typed.Environment.full_empty in
let empty_state = Solver.initial_state in
type_and_subst_xyz (empty_env , empty_state , p) Typesystem.Misc.Substitution.Pattern.s_program type_program_returns_state
let type_expression_returns_state : (environment * Solver.state * I.expression) -> (environment * Solver.state * O.annotated_expression) Trace.result =
fun (env, state, e) ->
let%bind (e , state) = type_expression env state e in
ok (env, state, e)
let type_expression_subst (env : environment) (state : Solver.state) ?(tv_opt : O.type_value option) (e : I.expression) : (O.annotated_expression * Solver.state) result =
let () = ignore tv_opt in (* For compatibility with the old typer's API, this argument can be removed once the new typer is used. *)
type_and_subst_xyz (env , state , e) Typesystem.Misc.Substitution.Pattern.s_annotated_expression type_expression_returns_state
(*
TODO: Similar to type_program but use a fold_map_list and List.fold_left and add element to the left or the list which gives a better complexity
*)
@ -1026,9 +1017,6 @@ let type_program' : I.program -> O.program result = fun p ->
let rec untype_type_expression (t:O.type_value) : (I.type_expression) result =
(* TODO: or should we use t.simplified if present? *)
let%bind t = match t.type_value' with
| O.T_tuple x ->
let%bind x' = bind_map_list untype_type_expression x in
ok @@ I.T_tuple x'
| O.T_sum x ->
let%bind x' = I.bind_map_cmap untype_type_expression x in
ok @@ I.T_sum x'
@ -1064,6 +1052,13 @@ let rec untype_type_expression (t:O.type_value) : (I.type_expression) result =
| O.TC_contract c->
let%bind c = untype_type_expression c in
ok @@ I.TC_contract c
| O.TC_arrow ( arg , ret ) ->
let%bind arg' = untype_type_expression arg in
let%bind ret' = untype_type_expression ret in
ok @@ I.TC_arrow ( arg' , ret' )
| O.TC_tuple lst ->
let%bind lst' = bind_map_list untype_type_expression lst in
ok @@ I.TC_tuple lst'
in
ok @@ I.T_operator (type_name)
in
@ -1139,14 +1134,11 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
| E_record_accessor (r, Label s) ->
let%bind r' = untype_expression r in
return (e_accessor r' [Access_record s])
| E_record_update (r, updates) ->
| E_record_update (r, (l,e)) ->
let%bind r' = untype_expression r in
let aux (Label l,e) =
let%bind e = untype_expression e in
ok (l, e)
in
let%bind updates = bind_map_list aux updates in
return (e_update r' updates)
let%bind e = untype_expression e in
let Label l = l in
return (e_update r' l e)
| E_map m ->
let%bind m' = bind_map_list (bind_map_pair untype_expression) m in
return (e_map m')

View File

@ -44,6 +44,7 @@ val type_declaration : environment -> Solver.state -> I.declaration -> (environm
(* val type_match : (environment -> 'i -> 'o result) -> environment -> O.type_value -> 'i I.matching -> I.expression -> Location.t -> 'o O.matching result *)
val evaluate_type : environment -> I.type_expression -> O.type_value result
val type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val type_expression_subst : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val type_constant : I.constant -> O.type_value list -> O.type_value option -> (O.constant * O.type_value) result
(*
val untype_type_value : O.type_value -> (I.type_expression) result

View File

@ -327,9 +327,6 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
let%bind a' = evaluate_type e a in
let%bind b' = evaluate_type e b in
return (T_arrow (a', b'))
| T_tuple lst ->
let%bind lst' = bind_list @@ List.map (evaluate_type e) lst in
return (T_tuple lst')
| T_sum m ->
let aux k v prev =
let%bind prev' = prev in
@ -375,6 +372,13 @@ and evaluate_type (e:environment) (t:I.type_expression) : O.type_value result =
| TC_contract c ->
let%bind c = evaluate_type e c in
ok @@ I.TC_contract c
| TC_arrow ( arg , ret ) ->
let%bind arg' = evaluate_type e arg in
let%bind ret' = evaluate_type e ret in
ok @@ I.TC_arrow ( arg' , ret' )
| TC_tuple lst ->
let%bind lst' = bind_map_list (evaluate_type e) lst in
ok @@ I.TC_tuple lst'
in
return (T_operator (opt))
@ -496,26 +500,22 @@ and type_expression' : environment -> ?tv_opt:O.type_value -> I.expression -> O.
in
let%bind m' = I.bind_fold_lmap aux (ok I.LMap.empty) m in
return (E_record m') (t_record (I.LMap.map get_type_annotation m') ())
| E_update {record; updates} ->
| E_update {record; update =(l,expr)} ->
let%bind record = type_expression' e record in
let aux acc (k, expr) =
let%bind expr' = type_expression' e expr in
ok ((k,expr')::acc)
in
let%bind updates = bind_fold_list aux ([]) updates in
let%bind expr' = type_expression' e expr in
let wrapped = get_type_annotation record in
let%bind () = match wrapped.type_value' with
| T_record record ->
let aux (k, e) =
let field_op = I.LMap.find_opt k record in
let%bind tv =
match wrapped.type_value' with
| T_record record -> (
let field_op = I.LMap.find_opt l record in
match field_op with
| None -> failwith @@ Format.asprintf "field %a is not part of record" Stage_common.PP.label k
| Some tv -> O.assert_type_value_eq (tv, get_type_annotation e)
in
bind_iter_list aux updates
| _ -> failwith "Update an expression which is not a record"
| Some tv -> ok (tv)
| None -> failwith @@ Format.asprintf "field %a is not part of record %a" Stage_common.PP.label l O.PP.type_value wrapped
)
| _ -> failwith "Update an expression which is not a record"
in
return (E_record_update (record, updates)) wrapped
let%bind () = O.assert_type_value_eq (tv, get_type_annotation expr') in
return (E_record_update (record, (l,expr'))) wrapped
(* Data-structure *)
| E_list lst ->
let%bind lst' = bind_map_list (type_expression' e) lst in
@ -896,14 +896,11 @@ let rec untype_expression (e:O.annotated_expression) : (I.expression) result =
| E_record_accessor (r, Label s) ->
let%bind r' = untype_expression r in
return (e_accessor r' [Access_record s])
| E_record_update (r, updates) ->
| E_record_update (r, (l,e)) ->
let%bind r' = untype_expression r in
let aux (Label l,e) =
let%bind e = untype_expression e in
ok (l, e)
in
let%bind updates = bind_map_list aux updates in
return (e_update r' updates)
let%bind e = untype_expression e in
let Label l = l in
return (e_update r' l e)
| E_map m ->
let%bind m' = bind_map_list (bind_map_pair untype_expression) m in
return (e_map m')

View File

@ -10,5 +10,5 @@ module Solver = Typer_new.Solver (* Both the old typer and the new typer use the
type environment = Environment.t
let type_program = if use_new_typer then Typer_new.type_program else Typer_old.type_program
let type_expression = if use_new_typer then Typer_new.type_expression else Typer_old.type_expression
let type_expression_subst = if use_new_typer then Typer_new.type_expression_subst else Typer_old.type_expression (* the old typer does not have unification variables that would need substitution, so no need to "subst" anything. *)
let untype_expression = if use_new_typer then Typer_new.untype_expression else Typer_old.untype_expression

View File

@ -12,5 +12,5 @@ module Solver = Typer_new.Solver
type environment = Environment.t
val type_program : I.program -> (O.program * Solver.state) result
val type_expression : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val type_expression_subst : environment -> Solver.state -> ?tv_opt:O.type_value -> I.expression -> (O.annotated_expression * Solver.state) result
val untype_expression : O.annotated_expression -> I.expression result

View File

@ -146,6 +146,11 @@ let rec transpile_type (t:AST.type_value) : type_value result =
| T_operator (TC_option o) ->
let%bind o' = transpile_type o in
ok (T_option o')
| T_operator (TC_arrow (param , result)) -> (
let%bind param' = transpile_type param in
let%bind result' = transpile_type result in
ok (T_function (param', result'))
)
(* TODO hmm *)
| T_sum m ->
let node = Append_tree.of_list @@ kv_list_of_cmap m in
@ -173,7 +178,7 @@ let rec transpile_type (t:AST.type_value) : type_value result =
ok (Some ann, a))
aux node in
ok @@ snd m'
| T_tuple lst ->
| T_operator (TC_tuple lst) ->
let node = Append_tree.of_list lst in
let aux a b : type_value result =
let%bind a = a in
@ -206,11 +211,11 @@ let tuple_access_to_lr : type_value -> type_value list -> int -> (type_value * [
bind_fold_list aux (ty , []) lr_path in
ok lst
let record_access_to_lr : type_value -> type_value AST.label_map -> string -> (type_value * [`Left | `Right]) list result = fun ty tym ind ->
let record_access_to_lr : type_value -> type_value AST.label_map -> label -> (type_value * [`Left | `Right]) list result = fun ty tym ind ->
let tys = kv_list_of_lmap tym in
let node_tv = Append_tree.of_list tys in
let%bind path =
let aux (Label i , _) = i = ind in
let aux (Label i , _) = let Label ind = ind in i = ind in
trace_option (corner_case ~loc:__LOC__ "record access leaf") @@
Append_tree.exists_path aux node_tv in
let lr_path = List.map (fun b -> if b then `Right else `Left) path in
@ -320,7 +325,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
| E_tuple_accessor (tpl, ind) -> (
let%bind ty' = transpile_type tpl.type_annotation in
let%bind ty_lst =
trace_strong (corner_case ~loc:__LOC__ "not a tuple") @@
trace_strong (corner_case ~loc:__LOC__ "transpiler: E_tuple_accessor: not a tuple") @@
get_t_tuple tpl.type_annotation in
let%bind ty'_lst = bind_map_list transpile_type ty_lst in
let%bind path =
@ -348,7 +353,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
trace_strong (corner_case ~loc:__LOC__ "record build") @@
Append_tree.fold_ne (transpile_annotated_expression) aux node
)
| E_record_accessor (record, Label property) ->
| E_record_accessor (record, property) ->
let%bind ty' = transpile_type (get_type_annotation record) in
let%bind ty_lmap =
trace_strong (corner_case ~loc:__LOC__ "not a record") @@
@ -365,23 +370,19 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
let%bind record' = transpile_annotated_expression record in
let expr = List.fold_left aux record' path in
ok expr
| E_record_update (record, updates) ->
| E_record_update (record, (l,expr)) ->
let%bind ty' = transpile_type (get_type_annotation record) in
let%bind ty_lmap =
trace_strong (corner_case ~loc:__LOC__ "not a record") @@
get_t_record (get_type_annotation record) in
let%bind ty'_lmap = AST.bind_map_lmap transpile_type ty_lmap in
let aux (Label l, expr) =
let%bind path =
trace_strong (corner_case ~loc:__LOC__ "record access") @@
record_access_to_lr ty' ty'_lmap l in
let path' = List.map snd path in
let%bind expr' = transpile_annotated_expression expr in
ok (path',expr')
in
let%bind updates = bind_map_list aux updates in
let%bind path =
trace_strong (corner_case ~loc:__LOC__ "record access") @@
record_access_to_lr ty' ty'_lmap l in
let path' = List.map snd path in
let%bind expr' = transpile_annotated_expression expr in
let%bind record = transpile_annotated_expression record in
return @@ E_update (record, updates)
return @@ E_update (record, (path',expr'))
| E_constant (name , lst) -> (
let iterator_generator iterator_name =
let lambda_to_iterator_body (f : AST.annotated_expression) (l : AST.lambda) =
@ -509,7 +510,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
match cur with
| Access_tuple ind -> (
let%bind ty_lst =
trace_strong (corner_case ~loc:__LOC__ "not a tuple") @@
trace_strong (corner_case ~loc:__LOC__ "transpiler: E_assign: Access_tuple: not a tuple") @@
AST.Combinators.get_t_tuple prev in
let%bind ty'_lst = bind_map_list transpile_type ty_lst in
let%bind path = tuple_access_to_lr ty' ty'_lst ind in
@ -521,7 +522,7 @@ and transpile_annotated_expression (ae:AST.annotated_expression) : expression re
trace_strong (corner_case ~loc:__LOC__ "not a record") @@
AST.Combinators.get_t_record prev in
let%bind ty'_map = bind_map_lmap transpile_type ty_map in
let%bind path = record_access_to_lr ty' ty'_map prop in
let%bind path = record_access_to_lr ty' ty'_map (Label prop) in
let path' = List.map snd path in
let%bind prop_in_ty_map = trace_option
(Errors.not_found "acessing prop in ty_map [TODO: better error message]")

View File

@ -36,15 +36,6 @@ them. please report this to the developers." in
] in
error ~data title content
let unknown_untranspile unknown_type value =
let title () = "untranspiling unknown value" in
let content () = Format.asprintf "can not untranspile %s" unknown_type in
let data = [
("unknown_type" , fun () -> unknown_type) ;
("value" , fun () -> Format.asprintf "%a" Mini_c.PP.value value) ;
] in
error ~data title content
end
open Errors
@ -196,6 +187,22 @@ let rec untranspile (v : value) (t : AST.type_value) : AST.annotated_expression
)
| TC_contract _ ->
fail @@ bad_untranspile "contract" v
| TC_arrow _ -> (
let%bind n =
trace_strong (wrong_mini_c_value "lambda as string" v) @@
get_string v in
return (E_literal (Literal_string n))
)
| TC_tuple lst ->
let%bind node = match Append_tree.of_list lst with
| Empty -> fail @@ corner_case ~loc:__LOC__ "empty tuple"
| Full t -> ok t in
let%bind tpl =
trace_strong (corner_case ~loc:__LOC__ "tuple extract") @@
extract_tuple v node in
let%bind tpl' = bind_list
@@ List.map (fun (x, y) -> untranspile x y) tpl in
return (E_tuple tpl')
)
| T_sum m ->
let lst = kv_list_of_cmap m in
@ -208,16 +215,6 @@ let rec untranspile (v : value) (t : AST.type_value) : AST.annotated_expression
extract_constructor v node in
let%bind sub = untranspile v tv in
return (E_constructor (Constructor name, sub))
| T_tuple lst ->
let%bind node = match Append_tree.of_list lst with
| Empty -> fail @@ corner_case ~loc:__LOC__ "empty tuple"
| Full t -> ok t in
let%bind tpl =
trace_strong (corner_case ~loc:__LOC__ "tuple extract") @@
extract_tuple v node in
let%bind tpl' = bind_list
@@ List.map (fun (x, y) -> untranspile x y) tpl in
return (E_tuple tpl')
| T_record m ->
let lst = kv_list_of_lmap m in
let%bind node = match Append_tree.of_list lst with

View File

@ -84,13 +84,9 @@ let rec fold_expression : 'a folder -> 'a -> expression -> 'a result = fun f ini
let%bind res = self init' exp in
ok res
)
| E_update (r, updates) -> (
| E_update (r, (_,e)) -> (
let%bind res = self init' r in
let aux prev (_,e) =
let%bind res = self prev e in
ok res
in
let%bind res = bind_fold_list aux res updates in
let%bind res = self res e in
ok res
)
@ -158,10 +154,10 @@ let rec map_expression : mapper -> expression -> expression result = fun f e ->
let%bind exp' = self exp in
return @@ E_assignment (s, lrl, exp')
)
| E_update (r, updates) -> (
| E_update (r, (l,e)) -> (
let%bind r = self r in
let%bind updates = bind_map_list (fun (p,e) -> let%bind e = self e in ok(p,e)) updates in
return @@ E_update(r,updates)
let%bind e = self e in
return @@ E_update(r,(l,e))
)
let map_sub_level_expression : mapper -> expression -> expression result = fun f e ->

View File

@ -66,8 +66,8 @@ let rec is_pure : expression -> bool = fun e ->
| E_constant (c, args)
-> is_pure_constant c && List.for_all is_pure args
| E_update (e, updates)
-> is_pure e && List.for_all (fun (_,e) -> is_pure e) updates
| E_update (r, (_,e))
-> is_pure r && is_pure e
(* I'm not sure about these. Maybe can be tested better? *)
| E_application _
@ -111,8 +111,8 @@ let rec is_assigned : ignore_lambdas:bool -> expression_variable -> expression -
match e.content with
| E_assignment (x, _, e) ->
it x || self e
| E_update (r, updates) ->
List.fold_left (fun prev (_,e) -> prev || self e) (self r) updates
| E_update (r, (_,e)) ->
self r || self e
| E_closure { binder; body } ->
if ignore_lambdas
then false

View File

@ -94,10 +94,10 @@ let rec replace : expression -> var_name -> var_name -> expression =
let v = replace_var v in
let e = replace e in
return @@ E_assignment (v, path, e)
| E_update (r, updates) ->
| E_update (r, (p,e)) ->
let r = replace r in
let updates = List.map (fun (p,e)-> (p, replace e)) updates in
return @@ E_update (r,updates)
let e = replace e in
return @@ E_update (r, (p,e))
| E_while (cond, body) ->
let cond = replace cond in
let body = replace body in
@ -209,10 +209,10 @@ let rec subst_expression : body:expression -> x:var_name -> expr:expression -> e
if Var.equal s x then raise Bad_argument ;
return @@ E_assignment (s, lrl, exp')
)
| E_update (r, updates) -> (
| E_update (r, (p,e)) -> (
let r' = self r in
let updates' = List.map (fun (p,e) -> (p, self e)) updates in
return @@ E_update(r',updates')
let e' = self e in
return @@ E_update(r', (p,e'))
)
let%expect_test _ =

View File

@ -402,32 +402,29 @@ and translate_expression (expr:expression) (env:environment) : michelson result
i_push_unit ;
]
)
| E_update (record, updates) -> (
| E_update (record, (path, expr)) -> (
let%bind record' = translate_expression record env in
let insts = [
i_comment "r_update: start, move the record on top # env";
record';] in
let aux (init :t list) (update,expr) =
let record_var = Var.fresh () in
let env' = Environment.add (record_var, record.type_value) env in
let%bind expr' = translate_expression expr env' in
let modify_code =
let aux acc step = match step with
| `Left -> seq [dip i_unpair ; acc ; i_pair]
| `Right -> seq [dip i_unpiar ; acc ; i_piar]
in
let init = dip i_drop in
List.fold_right' aux init update
let record_var = Var.fresh () in
let env' = Environment.add (record_var, record.type_value) env in
let%bind expr' = translate_expression expr env' in
let modify_code =
let aux acc step = match step with
| `Left -> seq [dip i_unpair ; acc ; i_pair]
| `Right -> seq [dip i_unpiar ; acc ; i_piar]
in
ok @@ init @ [
expr';
i_comment "r_updates : compute rhs # rhs:env";
modify_code;
i_comment "r_update: modify code # record+rhs : env";
]
let init = dip i_drop in
List.fold_right' aux init path
in
let%bind insts = bind_fold_list aux insts updates in
return @@ seq insts
return @@ seq [
i_comment "r_update: start # env";
record';
i_comment "r_update: move the record on top # env";
expr';
i_comment "r_updates : compute rhs # rhs:env";
modify_code;
i_comment "r_update: modify code # record+rhs : env";
]
)
| E_while (expr , block) -> (

View File

@ -18,7 +18,7 @@ and type_expression ppf (te: type_expression) : unit =
te' ppf te.type_expression'
let rec expression ppf (e:expression) = match e.expression with
| E_literal l -> literal ppf l
| E_literal l -> fprintf ppf "%a" literal l
| E_variable n -> fprintf ppf "%a" name n
| E_application (f, arg) -> fprintf ppf "(%a)@(%a)" expression f expression arg
| E_constructor (c, ae) -> fprintf ppf "%a(%a)" constructor c expression ae
@ -26,11 +26,11 @@ let rec expression ppf (e:expression) = match e.expression with
| E_tuple lst -> fprintf ppf "(%a)" (tuple_sep_d expression) lst
| E_accessor (ae, p) -> fprintf ppf "%a.%a" expression ae access_path p
| E_record m -> fprintf ppf "{%a}" (lrecord_sep expression (const " , ")) m
| E_update {record; updates} -> fprintf ppf "%a with {%a}" expression record (tuple_sep_d (fun ppf (a,b) -> fprintf ppf "%a = %a" label a expression b)) updates
| E_update {record; update=(path,expr)} -> fprintf ppf "%a with { %a = %a }" expression record Stage_common.PP.label path expression expr
| E_map m -> fprintf ppf "[%a]" (list_sep_d assoc_expression) m
| E_big_map m -> fprintf ppf "big_map[%a]" (list_sep_d assoc_expression) m
| E_list lst -> fprintf ppf "[%a]" (list_sep_d expression) lst
| E_set lst -> fprintf ppf "{%a}" (list_sep_d expression) lst
| E_set lst -> fprintf ppf "{%a}" (list_sep_d expression) lst
| E_look_up (ds, ind) -> fprintf ppf "(%a)[%a]" expression ds expression ind
| E_lambda {binder;input_type;output_type;result} ->
fprintf ppf "lambda (%a:%a) : %a return %a"

View File

@ -36,7 +36,7 @@ let t_key_hash : type_expression = make_t @@ T_constant (TC_key_hash)
let t_option o : type_expression = make_t @@ T_operator (TC_option o)
let t_list t : type_expression = make_t @@ T_operator (TC_list t)
let t_variable n : type_expression = make_t @@ T_variable (Var.of_name n)
let t_tuple lst : type_expression = make_t @@ T_tuple lst
let t_tuple lst : type_expression = make_t @@ T_operator (TC_tuple lst)
let t_pair (a , b) : type_expression = t_tuple [a ; b]
let t_record_ez lst =
let lst = List.map (fun (k, v) -> (Label k, v)) lst in
@ -92,11 +92,13 @@ let e_chain_id ?loc s : expression = location_wrap ?loc @@ E_literal (Literal_ch
let e'_bytes b : expression' result =
let%bind bytes = generic_try (simple_error "bad hex to bytes") (fun () -> Hex.to_bytes (`Hex b)) in
ok @@ E_literal (Literal_bytes bytes)
let e_bytes ?loc b : expression result =
let e_bytes_hex ?loc b : expression result =
let%bind e' = e'_bytes b in
ok @@ location_wrap ?loc e'
let e_bytes_ofbytes ?loc (b: bytes) : expression =
let e_bytes_raw ?loc (b: bytes) : expression =
location_wrap ?loc @@ E_literal (Literal_bytes b)
let e_bytes_string ?loc (s: string) : expression =
location_wrap ?loc @@ E_literal (Literal_bytes (Hex.to_bytes (Hex.of_string s)))
let e_big_map ?loc lst : expression = location_wrap ?loc @@ E_big_map lst
let e_record ?loc map : expression = location_wrap ?loc @@ E_record map
let e_tuple ?loc lst : expression = location_wrap ?loc @@ E_tuple lst
@ -172,9 +174,10 @@ let e_ez_record ?loc (lst : (string * expr) list) : expression =
let e_record ?loc map =
let lst = Map.String.to_kv_list map in
e_ez_record ?loc lst
let e_update ?loc record updates =
let updates = List.map (fun (x,y) -> (Label x, y)) updates in
location_wrap ?loc @@ E_update {record; updates}
let e_update ?loc record path expr =
let update = (Label path, expr) in
location_wrap ?loc @@ E_update {record; update}
let get_e_accessor = fun t ->
match t with
@ -203,7 +206,7 @@ let get_e_list = fun t ->
let get_e_tuple = fun t ->
match t with
| E_tuple lst -> ok lst
| _ -> simple_fail "not a tuple"
| _ -> simple_fail "ast_simplified: get_e_tuple: not a tuple"
let extract_pair : expression -> (expression * expression) result = fun e ->
match e.expression with

View File

@ -27,8 +27,8 @@ val t_option : type_expression -> type_expression
*)
val t_list : type_expression -> type_expression
val t_variable : string -> type_expression
(*
val t_tuple : type_expression list -> type_expression
(*
val t_record : te_map -> type_expression
*)
val t_pair : ( type_expression * type_expression ) -> type_expression
@ -60,8 +60,9 @@ val e_key_hash : ?loc:Location.t -> string -> expression
val e_chain_id : ?loc:Location.t -> string -> expression
val e_mutez : ?loc:Location.t -> int -> expression
val e'_bytes : string -> expression' result
val e_bytes : ?loc:Location.t -> string -> expression result
val e_bytes_ofbytes : ?loc:Location.t -> bytes -> expression
val e_bytes_hex : ?loc:Location.t -> string -> expression result
val e_bytes_raw : ?loc:Location.t -> bytes -> expression
val e_bytes_string : ?loc:Location.t -> string -> expression
val e_big_map : ?loc:Location.t -> ( expr * expr ) list -> expression
(*
val e_record : ?loc:Location.t -> ( expr * expr ) list -> expression
@ -108,7 +109,7 @@ val e_typed_set : ?loc:Location.t -> expression list -> type_expression -> expre
val e_lambda : ?loc:Location.t -> expression_variable -> type_expression option -> type_expression option -> expression -> expression
val e_record : ?loc:Location.t -> expr Map.String.t -> expression
val e_update : ?loc:Location.t -> expression -> (string * expression) list -> expression
val e_update : ?loc:Location.t -> expression -> string -> expression -> expression
val e_ez_record : ?loc:Location.t -> ( string * expr ) list -> expression
(*

View File

@ -1,6 +1,8 @@
open Trace
open Types
include Stage_common.Misc
module Errors = struct
let different_literals_because_different_types name a b () =
let title () = "literals have different types: " ^ name in
@ -133,14 +135,14 @@ let rec assert_value_eq (a, b: (expression * expression )) : unit result =
simple_fail "comparing record with other expression"
| E_update ura, E_update urb ->
let%bind lst =
generic_try (simple_error "updates with different number of fields")
(fun () -> List.combine ura.updates urb.updates) in
let _ =
generic_try (simple_error "Updating different record") @@
fun () -> assert_value_eq (ura.record, urb.record) in
let aux ((Label a,expra),(Label b, exprb))=
assert (String.equal a b);
assert (String.equal a b);
assert_value_eq (expra,exprb)
in
let%bind _all = bind_list @@ List.map aux lst in
let%bind _all = aux (ura.update, urb.update) in
ok ()
| E_update _, _ ->
simple_fail "comparing record update with other expression"

View File

@ -1,5 +1,8 @@
open Trace
open Types
include module type of Stage_common.Misc
(*
module Errors : sig
@ -15,4 +18,4 @@ val assert_literal_eq : ( literal * literal ) -> unit result
val assert_value_eq : ( expression * expression ) -> unit result
val is_value_eq : ( expression * expression ) -> bool
val is_value_eq : ( expression * expression ) -> bool

View File

@ -67,6 +67,6 @@ and expression = {
expression : expression' ;
location : Location.t ;
}
and update = {record: expr; updates: (label*expr)list}
and update = { record: expr; update: (label *expr) }
and matching_expr = (expr,unit) matching

View File

@ -15,13 +15,12 @@ and type_value ppf (tv:type_value) : unit =
let rec annotated_expression ppf (ae:annotated_expression) : unit =
match ae.type_annotation.simplified with
| Some _ -> fprintf ppf "@[<v>%a:%a@]" expression ae.expression type_value ae.type_annotation
| _ -> fprintf ppf "@[<v>%a@]" expression ae.expression
| _ -> fprintf ppf "@[<v>%a:%a@]" expression ae.expression type_value ae.type_annotation
and lambda ppf l =
let ({ binder ; body } : lambda) = l in
fprintf ppf "lambda (%a) -> %a"
name binder
fprintf ppf "(lambda (%a) -> %a)"
name binder
annotated_expression body
and option_inline ppf inline =
@ -33,14 +32,14 @@ and option_inline ppf inline =
and expression ppf (e:expression) : unit =
match e with
| E_literal l -> Stage_common.PP.literal ppf l
| E_constant (b, lst) -> fprintf ppf "%a(%a)" constant b (list_sep_d annotated_expression) lst
| E_constructor (c, lst) -> fprintf ppf "%a(%a)" constructor c annotated_expression lst
| E_variable a -> fprintf ppf "%a" name a
| E_constant (b, lst) -> fprintf ppf "(e_constant %a(%a))" constant b (list_sep_d annotated_expression) lst
| E_constructor (c, lst) -> fprintf ppf "(e_constructor %a(%a))" constructor c annotated_expression lst
| E_variable a -> fprintf ppf "(e_var %a)" name a
| E_application (f, arg) -> fprintf ppf "(%a) (%a)" annotated_expression f annotated_expression arg
| E_lambda l -> fprintf ppf "%a" lambda l
| E_tuple_accessor (ae, i) -> fprintf ppf "%a.%d" annotated_expression ae i
| E_record_accessor (ae, l) -> fprintf ppf "%a.%a" annotated_expression ae label l
| E_record_update (ae, ups) -> fprintf ppf "%a with record[%a]" annotated_expression ae (lmap_sep annotated_expression (const " , ")) (LMap.of_list ups)
| E_record_update (ae, (path,expr)) -> fprintf ppf "%a with record[%a=%a]" annotated_expression ae Stage_common.PP.label path annotated_expression expr
| E_tuple lst -> fprintf ppf "tuple[@; @[<v>%a@]@;]" (list_sep annotated_expression (tag ",@;")) lst
| E_record m -> fprintf ppf "record[%a]" (lmap_sep annotated_expression (const " , ")) m
| E_map m -> fprintf ppf "map[@; @[<v>%a@]@;]" (list_sep assoc_annotated_expression (tag ",@;")) m
@ -50,7 +49,7 @@ and expression ppf (e:expression) : unit =
| E_look_up (ds, i) -> fprintf ppf "(%a)[%a]" annotated_expression ds annotated_expression i
| E_matching (ae, m) ->
fprintf ppf "match %a with %a" annotated_expression ae (matching annotated_expression) m
| E_sequence (a , b) -> fprintf ppf "%a ; %a" annotated_expression a annotated_expression b
| E_sequence (a , b) -> fprintf ppf "(e_seq %a ; %a)" annotated_expression a annotated_expression b
| E_loop (expr , body) -> fprintf ppf "while %a { %a }" annotated_expression expr annotated_expression body
| E_assign (name , path , expr) ->
fprintf ppf "%a.%a := %a"

View File

@ -48,7 +48,7 @@ let t_mutez ?s () : type_value = make_t (T_constant TC_mutez) s
let t_timestamp ?s () : type_value = make_t (T_constant TC_timestamp) s
let t_unit ?s () : type_value = make_t (T_constant TC_unit) s
let t_option o ?s () : type_value = make_t (T_operator (TC_option o)) s
let t_tuple lst ?s () : type_value = make_t (T_tuple lst) s
let t_tuple lst ?s () : type_value = make_t (T_operator (TC_tuple lst)) s
let t_variable t ?s () : type_value = make_t (T_variable t) s
let t_list t ?s () : type_value = make_t (T_operator (TC_list t)) s
let t_set t ?s () : type_value = make_t (T_operator (TC_set t)) s
@ -147,11 +147,11 @@ let get_t_key_hash (t:type_value) : unit result = match t.type_value' with
| _ -> fail @@ Errors.not_a_x_type "key_hash" t ()
let get_t_tuple (t:type_value) : type_value list result = match t.type_value' with
| T_tuple lst -> ok lst
| T_operator (TC_tuple lst) -> ok lst
| _ -> fail @@ Errors.not_a_x_type "tuple" t ()
let get_t_pair (t:type_value) : (type_value * type_value) result = match t.type_value' with
| T_tuple lst ->
| T_operator (TC_tuple lst) ->
let%bind () =
trace_strong (Errors.not_a_x_type "pair (tuple with two elements)" t ()) @@
Assert.assert_list_size lst 2 in
@ -160,6 +160,7 @@ let get_t_pair (t:type_value) : (type_value * type_value) result = match t.type_
let get_t_function (t:type_value) : (type_value * type_value) result = match t.type_value' with
| T_arrow (a,r) -> ok (a,r)
| T_operator (TC_arrow (a , b)) -> ok (a , b)
| _ -> fail @@ Errors.not_a_x_type "function" t ()
let get_t_sum (t:type_value) : type_value constructor_map result = match t.type_value' with
@ -253,11 +254,11 @@ let ez_e_record (lst : (label * ae) list) : expression =
let map = List.fold_left aux LMap.empty lst in
e_record map
let e_some s : expression = E_constant (C_SOME, [s])
let e_none : expression = E_constant (C_NONE, [])
let e_none () : expression = E_constant (C_NONE, [])
let e_map lst : expression = E_map lst
let e_unit : expression = E_literal (Literal_unit)
let e_unit () : expression = E_literal (Literal_unit)
let e_int n : expression = E_literal (Literal_int n)
let e_nat n : expression = E_literal (Literal_nat n)
let e_mutez n : expression = E_literal (Literal_mutez n)
@ -279,7 +280,7 @@ let e_list lst : expression = E_list lst
let e_let_in binder inline rhs result = E_let_in { binder ; rhs ; result; inline }
let e_tuple lst : expression = E_tuple lst
let e_a_unit = make_a_e e_unit (t_unit ())
let e_a_unit = make_a_e (e_unit ()) (t_unit ())
let e_a_int n = make_a_e (e_int n) (t_int ())
let e_a_nat n = make_a_e (e_nat n) (t_nat ())
let e_a_mutez n = make_a_e (e_mutez n) (t_mutez ())
@ -289,7 +290,7 @@ let e_a_address s = make_a_e (e_address s) (t_address ())
let e_a_pair a b = make_a_e (e_pair a b) (t_pair a.type_annotation b.type_annotation ())
let e_a_some s = make_a_e (e_some s) (t_option s.type_annotation ())
let e_a_lambda l in_ty out_ty = make_a_e (e_lambda l) (t_function in_ty out_ty ())
let e_a_none t = make_a_e e_none (t_option t ())
let e_a_none t = make_a_e (e_none ()) (t_option t ())
let e_a_tuple lst = make_a_e (E_tuple lst) (t_tuple (List.map get_type_annotation lst) ())
let e_a_record r = make_a_e (e_record r) (t_record (LMap.map get_type_annotation r) ())
let e_a_application a b = make_a_e (e_application a b) (get_type_annotation b)

View File

@ -111,9 +111,9 @@ val ez_e_record : ( string * annotated_expression ) list -> expression
*)
val e_some : value -> expression
val e_none : expression
val e_none : unit -> expression
val e_map : ( value * value ) list -> expression
val e_unit : expression
val e_unit : unit -> expression
val e_int : int -> expression
val e_nat : int -> expression
val e_mutez : int -> expression

View File

@ -1,5 +1,6 @@
open Trace
open Types
include Stage_common.Misc
module Errors = struct
@ -29,6 +30,21 @@ module Errors = struct
] in
error ~data title message ()
let different_operator_number_of_arguments opa opb lena lenb () =
let title = (thunk "different number of arguments to type constructors") in
assert (String.equal (type_operator_name opa) (type_operator_name opb));
let message () = Format.asprintf
"Expected these two n-ary type constructors to be the same, but they have different numbers of arguments (both use the %s type constructor, but they have %d and %d arguments, respectively)"
(type_operator_name opa) lena lenb in
let data = [
("a" , fun () -> Format.asprintf "%a" (Stage_common.PP.type_operator PP.type_value) opa) ;
("b" , fun () -> Format.asprintf "%a" (Stage_common.PP.type_operator PP.type_value) opb) ;
("op" , fun () -> type_operator_name opa) ;
("len_a" , fun () -> Format.asprintf "%d" lena) ;
("len_b" , fun () -> Format.asprintf "%d" lenb) ;
] in
error ~data title message ()
let different_size_type name a b () =
let title () = name ^ " have different sizes" in
let message () = "Expected these two types to be the same, but they're different (both are " ^ name ^ ", but with a different number of arguments)" in
@ -49,8 +65,6 @@ module Errors = struct
let _different_size_constants = different_size_type "type constructors"
let different_size_tuples = different_size_type "tuples"
let different_size_sums = different_size_type "sums"
let different_size_records = different_size_type "records"
@ -179,7 +193,7 @@ module Free_variables = struct
| E_constructor (_ , a) -> self a
| E_record m -> unions @@ List.map self @@ LMap.to_list m
| E_record_accessor (a, _) -> self a
| E_record_update (r,ups) -> union (self r) @@ unions @@ List.map (fun (_,e) -> self e) ups
| E_record_update (r,(_,e)) -> union (self r) @@ self e
| E_tuple_accessor (a, _) -> self a
| E_list lst -> unions @@ List.map self lst
| E_set lst -> unions @@ List.map self lst
@ -301,13 +315,6 @@ open Errors
let rec assert_type_value_eq (a, b: (type_value * type_value)) : unit result = match (a.type_value', b.type_value') with
| T_tuple ta, T_tuple tb -> (
let%bind _ =
trace_strong (fun () -> (different_size_tuples a b ()))
@@ Assert.assert_true List.(length ta = length tb) in
bind_list_iter assert_type_value_eq (List.combine ta tb)
)
| T_tuple _, _ -> fail @@ different_kinds a b
| T_constant ca, T_constant cb -> (
trace_strong (different_constants ca cb)
@@ Assert.assert_true (ca = cb)
@ -321,10 +328,16 @@ let rec assert_type_value_eq (a, b: (type_value * type_value)) : unit result = m
| TC_set la, TC_set lb -> ok @@ ([la], [lb])
| TC_map (ka,va), TC_map (kb,vb)
| TC_big_map (ka,va), TC_big_map (kb,vb) -> ok @@ ([ka;va] ,[kb;vb])
| _,_ -> fail @@ different_operators opa opb
| TC_tuple lsta, TC_tuple lstb -> ok @@ (lsta , lstb)
| TC_arrow (froma , toa) , TC_arrow (fromb , tob) -> ok @@ ([froma;toa] , [fromb;tob])
| (TC_option _ | TC_list _ | TC_contract _ | TC_set _ | TC_map _ | TC_big_map _ | TC_tuple _ | TC_arrow _),
(TC_option _ | TC_list _ | TC_contract _ | TC_set _ | TC_map _ | TC_big_map _ | TC_tuple _ | TC_arrow _) -> fail @@ different_operators opa opb
in
trace (different_types "arguments to type operators" a b)
@@ bind_list_iter (fun (a,b) -> assert_type_value_eq (a,b) )(List.combine lsta lstb)
if List.length lsta <> List.length lstb then
fail @@ different_operator_number_of_arguments opa opb (List.length lsta) (List.length lstb)
else
trace (different_types "arguments to type operators" a b)
@@ bind_list_iter (fun (a,b) -> assert_type_value_eq (a,b) )(List.combine lsta lstb)
)
| T_operator _, _ -> fail @@ different_kinds a b
| T_sum sa, T_sum sb -> (

View File

@ -1,6 +1,8 @@
open Trace
open Types
include module type of Stage_common.Misc
val assert_value_eq : ( value * value ) -> unit result
val assert_type_value_eq : ( type_value * type_value ) -> unit result
@ -43,7 +45,6 @@ module Errors : sig
val different_size_type : name -> type_value -> type_value -> unit -> error
val different_props_in_record : string -> string -> unit -> error
val different_size_constants : type_value -> type_value -> unit -> error
val different_size_tuples : type_value -> type_value -> unit -> error
val different_size_sums : type_value -> type_value -> unit -> error
val different_size_records : type_value -> type_value -> unit -> error
val different_types : name -> type_value -> type_value -> unit -> error

View File

@ -72,14 +72,10 @@ module Captured_variables = struct
let%bind lst' = bind_map_list self @@ LMap.to_list m in
ok @@ unions lst'
| E_record_accessor (a, _) -> self a
| E_record_update (r,ups) ->
| E_record_update (r,(_,e)) ->
let%bind r = self r in
let aux (_, e) =
let%bind e = self e in
ok e
in
let%bind lst = bind_map_list aux ups in
ok @@ union r @@ unions lst
let%bind e = self e in
ok @@ union r e
| E_tuple_accessor (a, _) -> self a
| E_list lst ->
let%bind lst' = bind_map_list self lst in

View File

@ -18,7 +18,7 @@ and environment_element_definition =
and free_variables = expression_variable list
and environment_element = {
type_value : type_value ;
type_value : type_value ;
source_environment : full_environment ;
definition : environment_element_definition ;
}
@ -34,6 +34,12 @@ and annotated_expression = {
location : Location.t ;
}
(* This seems to be used only for top-level declarations, and
represents the name of the top-level binding, and the expression
assigned to it. -- Suzanne.
TODO: if this is correct, then we should inline this in
"declaration" or at least move it close to it. *)
and named_expression = {
name: expression_variable ;
annotated_expression: ae ;
@ -41,6 +47,7 @@ and named_expression = {
and ae = annotated_expression
and type_value' = type_value type_expression'
and type_value = {
type_value' : type_value';
simplified : S.type_expression option ; (* If we have the simplified this AST fragment comes from, it is stored here, for easier untyping. *)
@ -77,7 +84,7 @@ and 'a expression' =
| E_application of (('a) * ('a))
| E_lambda of lambda
| E_let_in of let_in
(* Tuple *)
(* Tuple, TODO: remove tuples and use records with integer keys instead *)
| E_tuple of ('a) list
| E_tuple_accessor of (('a) * int) (* Access n'th tuple's element *)
(* Sum *)
@ -85,7 +92,7 @@ and 'a expression' =
(* Record *)
| E_record of ('a) label_map
| E_record_accessor of (('a) * label)
| E_record_update of ('a * (label* 'a) list)
| E_record_update of ('a * (label * 'a))
(* Data Structures *)
| E_map of (('a) * ('a)) list
| E_big_map of (('a) * ('a)) list

View File

@ -141,7 +141,6 @@ let lmap_sep_d x = lmap_sep x (const " , ")
let rec type_expression' : type a . (formatter -> a -> unit) -> formatter -> a type_expression' -> unit =
fun f ppf te ->
match te with
| T_tuple lst -> fprintf ppf "tuple[%a]" (list_sep_d f) lst
| T_sum m -> fprintf ppf "sum[%a]" (cmap_sep_d f) m
| T_record m -> fprintf ppf "record[%a]" (lmap_sep_d f ) m
| T_arrow (a, b) -> fprintf ppf "%a -> %a" f a f b
@ -178,6 +177,8 @@ and type_operator : type a . (formatter -> a -> unit) -> formatter -> a type_ope
| TC_map (k, v) -> Format.asprintf "Map (%a,%a)" f k f v
| TC_big_map (k, v) -> Format.asprintf "Big Map (%a,%a)" f k f v
| TC_contract (c) -> Format.asprintf "Contract (%a)" f c
| TC_arrow (a , b) -> Format.asprintf "TC_Arrow (%a,%a)" f a f b
| TC_tuple lst -> Format.asprintf "tuple[%a]" (list_sep_d f) lst
in
fprintf ppf "(TO_%s)" s

View File

@ -13,3 +13,4 @@ val type_expression' : (formatter -> 'a -> unit) -> formatter -> 'a type_express
val type_operator : (formatter -> 'a -> unit) -> formatter -> 'a type_operator -> unit
val type_constant : formatter -> type_constant -> unit
val literal : formatter -> literal -> unit
val list_sep_d : (formatter -> 'a -> unit) -> formatter -> 'a list -> unit

View File

@ -7,7 +7,9 @@ let map_type_operator f = function
| TC_list x -> TC_list (f x)
| TC_set x -> TC_set (f x)
| TC_map (x , y) -> TC_map (f x , f y)
| TC_big_map (x , y)-> TC_big_map (f x , f y)
| TC_big_map (x , y) -> TC_big_map (f x , f y)
| TC_arrow (x , y) -> TC_arrow (f x , f y)
| TC_tuple lst -> TC_tuple (List.map f lst)
let bind_map_type_operator f = function
TC_contract x -> let%bind x = f x in ok @@ TC_contract x
@ -15,7 +17,9 @@ let bind_map_type_operator f = function
| TC_list x -> let%bind x = f x in ok @@ TC_list x
| TC_set x -> let%bind x = f x in ok @@ TC_set x
| TC_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_map (x , y)
| TC_big_map (x , y)-> let%bind x = f x in let%bind y = f y in ok @@ TC_big_map (x , y)
| TC_big_map (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_big_map (x , y)
| TC_arrow (x , y) -> let%bind x = f x in let%bind y = f y in ok @@ TC_arrow (x , y)
| TC_tuple lst -> let%bind lst = bind_map_list f lst in ok @@ TC_tuple lst
let type_operator_name = function
TC_contract _ -> "TC_contract"
@ -24,6 +28,8 @@ let type_operator_name = function
| TC_set _ -> "TC_set"
| TC_map _ -> "TC_map"
| TC_big_map _ -> "TC_big_map"
| TC_arrow _ -> "TC_arrow"
| TC_tuple _ -> "TC_tuple"
let type_expression'_of_string = function
| "TC_contract" , [x] -> ok @@ T_operator(TC_contract x)
@ -61,6 +67,8 @@ let string_of_type_operator = function
| TC_set x -> "TC_set" , [x]
| TC_map (x , y) -> "TC_map" , [x ; y]
| TC_big_map (x , y) -> "TC_big_map" , [x ; y]
| TC_arrow (x , y) -> "TC_arrow" , [x ; y]
| TC_tuple lst -> "TC_tuple" , lst
let string_of_type_constant = function
| TC_unit -> "TC_unit", []
@ -81,5 +89,6 @@ let string_of_type_constant = function
let string_of_type_expression' = function
| T_operator o -> string_of_type_operator o
| T_constant c -> string_of_type_constant c
| T_tuple _|T_sum _|T_record _|T_arrow (_, _)|T_variable _ ->
| T_sum _|T_record _|T_arrow (_, _)|T_variable _ ->
failwith "not a type operator or constant"

View File

@ -0,0 +1,9 @@
open Types
val map_type_operator : ('a -> 'b) -> 'a type_operator -> 'b type_operator
val bind_map_type_operator : ('a -> ('b * 'c list, 'd) Pervasives.result) -> 'a type_operator -> ('b type_operator * 'c list, 'd) Pervasives.result
val type_operator_name : 'a type_operator -> string
val type_expression'_of_string : string * 'a list -> ('a type_expression' * 'b list, 'c) Pervasives.result
val string_of_type_operator : 'a type_operator -> string * 'a list
val string_of_type_constant : type_constant -> string * 'a list
val string_of_type_expression' : 'a type_expression' -> string * 'a list

View File

@ -66,7 +66,6 @@ and literal =
(* The ast is a tree of node, 'a is the type of the node (type_variable or {type_variable, previous_type}) *)
type 'a type_expression' =
| T_tuple of 'a list
| T_sum of 'a constructor_map
| T_record of 'a label_map
| T_arrow of 'a * 'a
@ -96,6 +95,8 @@ and 'a type_operator =
| TC_set of 'a
| TC_map of 'a * 'a
| TC_big_map of 'a * 'a
| TC_arrow of 'a * 'a
| TC_tuple of 'a list
type type_base =
| Base_unit

View File

@ -99,8 +99,8 @@ and expression' ppf (e:expression') = match e with
fprintf ppf "fold %a on %a with %a do ( %a )" expression collection expression initial Stage_common.PP.name name expression body
| E_assignment (r , path , e) ->
fprintf ppf "%a.%a := %a" Stage_common.PP.name r (list_sep lr (const ".")) path expression e
| E_update (r, updates) ->
fprintf ppf "%a with {%a}" expression r (list_sep_d (fun ppf (path, e) -> fprintf ppf "%a = %a" (list_sep lr (const ".")) path expression e)) updates
| E_update (r, (path,e)) ->
fprintf ppf "%a with {%a=%a}" expression r (list_sep lr (const ".")) path expression e
| E_while (e , b) ->
fprintf ppf "while (%a) %a" expression e expression b

View File

@ -81,7 +81,7 @@ module Free_variables = struct
| E_sequence (x, y) -> union (self x) (self y)
(* NB different from ast_typed... *)
| E_assignment (v, _, e) -> unions [ var_name b v ; self e ]
| E_update (e, updates) -> union (self e) (unions @@ List.map (fun (_,e) -> self e) updates)
| E_update (r, (_,e)) -> union (self r) (self e)
| E_while (cond , body) -> union (self cond) (self body)
and var_name : bindings -> var_name -> bindings = fun b n ->

View File

@ -73,7 +73,7 @@ and expression' =
| E_let_in of ((var_name * type_value) * inline * expression * expression)
| E_sequence of (expression * expression)
| E_assignment of (expression_variable * [`Left | `Right] list * expression)
| E_update of (expression * ([`Left | `Right] list * expression) list)
| E_update of (expression * ([`Left | `Right] list * expression))
| E_while of (expression * expression)
and expression = {

View File

@ -3,120 +3,122 @@ open Core
let pair_map = fun f (x , y) -> (f x , f y)
module Substitution = struct
module Pattern = struct
open Trace
module T = Ast_typed
(* module TSMap = Trace.TMap(String) *)
type 'a w = 'a -> 'a result
type substs = variable:type_variable -> T.type_value' option (* this string is a type_name or type_variable I think *)
let mk_substs ~v ~expr = (v , expr)
type 'a w = substs:substs -> 'a -> 'a result
let rec rec_yes = true
and s_environment_element_definition ~v ~expr = function
and s_environment_element_definition ~substs = function
| T.ED_binder -> ok @@ T.ED_binder
| T.ED_declaration (val_, free_variables) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind free_variables = bind_map_list (s_variable ~v ~expr) free_variables in
let%bind val_ = s_annotated_expression ~substs val_ in
let%bind free_variables = bind_map_list (s_variable ~substs) free_variables in
ok @@ T.ED_declaration (val_, free_variables)
and s_environment ~v ~expr : T.environment w = fun env ->
and s_environment : T.environment w = fun ~substs env ->
bind_map_list (fun (variable, T.{ type_value; source_environment; definition }) ->
let%bind variable = s_variable ~v ~expr variable in
let%bind type_value = s_type_value ~v ~expr type_value in
let%bind source_environment = s_full_environment ~v ~expr source_environment in
let%bind definition = s_environment_element_definition ~v ~expr definition in
let%bind variable = s_variable ~substs variable in
let%bind type_value = s_type_value ~substs type_value in
let%bind source_environment = s_full_environment ~substs source_environment in
let%bind definition = s_environment_element_definition ~substs definition in
ok @@ (variable, T.{ type_value; source_environment; definition })) env
and s_type_environment ~v ~expr : T.type_environment w = fun tenv ->
and s_type_environment : T.type_environment w = fun ~substs tenv ->
bind_map_list (fun (type_variable , type_value) ->
let%bind type_variable = s_type_variable ~v ~expr type_variable in
let%bind type_value = s_type_value ~v ~expr type_value in
let%bind type_variable = s_type_variable ~substs type_variable in
let%bind type_value = s_type_value ~substs type_value in
ok @@ (type_variable , type_value)) tenv
and s_small_environment ~v ~expr : T.small_environment w = fun (environment, type_environment) ->
let%bind environment = s_environment ~v ~expr environment in
let%bind type_environment = s_type_environment ~v ~expr type_environment in
and s_small_environment : T.small_environment w = fun ~substs (environment, type_environment) ->
let%bind environment = s_environment ~substs environment in
let%bind type_environment = s_type_environment ~substs type_environment in
ok @@ (environment, type_environment)
and s_full_environment ~v ~expr : T.full_environment w = fun (a , b) ->
let%bind a = s_small_environment ~v ~expr a in
let%bind b = bind_map_list (s_small_environment ~v ~expr) b in
and s_full_environment : T.full_environment w = fun ~substs (a , b) ->
let%bind a = s_small_environment ~substs a in
let%bind b = bind_map_list (s_small_environment ~substs) b in
ok (a , b)
and s_variable ~v ~expr : T.expression_variable w = fun var ->
let () = ignore (v, expr) in
and s_variable : T.expression_variable w = fun ~substs var ->
let () = ignore @@ substs in
ok var
and s_type_variable ~v ~expr : T.type_variable w = fun tvar ->
let _TODO = ignore (v, expr) in
and s_type_variable : T.type_variable w = fun ~substs tvar ->
let _TODO = ignore @@ substs in
Printf.printf "TODO: subst: unimplemented case s_type_variable";
ok @@ tvar
(* if String.equal tvar v then
* expr
* else
* ok tvar *)
and s_label ~v ~expr : T.label w = fun l ->
let () = ignore (v, expr) in
and s_label : T.label w = fun ~substs l ->
let () = ignore @@ substs in
ok l
and s_build_in ~v ~expr : T.constant w = fun b ->
let () = ignore (v, expr) in
and s_build_in : T.constant w = fun ~substs b ->
let () = ignore @@ substs in
ok b
and s_constructor ~v ~expr : T.constructor w = fun c ->
let () = ignore (v, expr) in
and s_constructor : T.constructor w = fun ~substs c ->
let () = ignore @@ substs in
ok c
and s_type_name_constant ~v ~expr : T.type_constant w = fun type_name ->
and s_type_name_constant : T.type_constant w = fun ~substs type_name ->
(* TODO: we don't need to subst anything, right? *)
let () = ignore (v , expr) in
let () = ignore @@ substs in
ok @@ type_name
and s_type_value' ~v ~expr : T.type_value' w = function
| T.T_tuple type_value_list ->
let%bind type_value_list = bind_map_list (s_type_value ~v ~expr) type_value_list in
ok @@ T.T_tuple type_value_list
and s_type_value' : T.type_value' w = fun ~substs -> function
| T.T_operator (TC_tuple type_value_list) ->
let%bind type_value_list = bind_map_list (s_type_value ~substs) type_value_list in
ok @@ T.T_operator (TC_tuple type_value_list)
| T.T_sum _ -> failwith "TODO: T_sum"
| T.T_record _ -> failwith "TODO: T_record"
| T.T_constant (type_name) ->
let%bind type_name = s_type_name_constant ~v ~expr type_name in
| T.T_constant type_name ->
let%bind type_name = s_type_name_constant ~substs type_name in
ok @@ T.T_constant (type_name)
| T.T_variable variable ->
if Var.equal variable v
then ok @@ expr
else ok @@ T.T_variable variable
| T.T_operator (type_name_and_args) ->
let bind_map_type_operator = Stage_common.Misc.bind_map_type_operator in (* TODO: write T.Misc.bind_map_type_operator, but it doesn't work *)
let%bind type_name_and_args = bind_map_type_operator (s_type_value ~v ~expr) type_name_and_args in
begin
match substs ~variable with
| Some expr -> s_type_value' ~substs expr (* TODO: is it the right thing to recursively examine this? We mustn't go into an infinite loop. *)
| None -> ok @@ T.T_variable variable
end
| T.T_operator type_name_and_args ->
let%bind type_name_and_args = T.Misc.bind_map_type_operator (s_type_value ~substs) type_name_and_args in
ok @@ T.T_operator type_name_and_args
| T.T_arrow _ ->
let _TODO = (v, expr) in
let _TODO = substs in
failwith "TODO: T_function"
and s_type_expression' ~v ~expr : _ Ast_simplified.type_expression' w = fun type_expression' ->
match type_expression' with
| Ast_simplified.T_tuple _ -> failwith "TODO: subst: unimplemented case s_type_expression tuple"
| Ast_simplified.T_sum _ -> failwith "TODO: subst: unimplemented case s_type_expression sum"
| Ast_simplified.T_record _ -> failwith "TODO: subst: unimplemented case s_type_expression record"
| Ast_simplified.T_arrow (_, _) -> failwith "TODO: subst: unimplemented case s_type_expression arrow"
| Ast_simplified.T_variable _ -> failwith "TODO: subst: unimplemented case s_type_expression variable"
| Ast_simplified.T_operator op ->
let%bind op =
Stage_common.Misc.bind_map_type_operator (* TODO: write Ast_simplified.Misc.type_operator_name *)
(s_type_expression ~v ~expr)
op in
ok @@ Ast_simplified.T_operator op
| Ast_simplified.T_constant constant ->
ok @@ Ast_simplified.T_constant constant
and s_type_expression' : _ Ast_simplified.type_expression' w = fun ~substs -> function
| Ast_simplified.T_sum _ -> failwith "TODO: subst: unimplemented case s_type_expression sum"
| Ast_simplified.T_record _ -> failwith "TODO: subst: unimplemented case s_type_expression record"
| Ast_simplified.T_arrow (_, _) -> failwith "TODO: subst: unimplemented case s_type_expression arrow"
| Ast_simplified.T_variable _ -> failwith "TODO: subst: unimplemented case s_type_expression variable"
| Ast_simplified.T_operator op ->
let%bind op =
Ast_simplified.Misc.bind_map_type_operator
(s_type_expression ~substs)
op in
(* TODO: when we have generalized operators, we might need to subst the operator name itself? *)
ok @@ Ast_simplified.T_operator op
| Ast_simplified.T_constant constant ->
ok @@ Ast_simplified.T_constant constant
and s_type_expression ~v ~expr : Ast_simplified.type_expression w = fun {type_expression'} ->
let%bind type_expression' = s_type_expression' ~v ~expr type_expression' in
and s_type_expression : Ast_simplified.type_expression w = fun ~substs {type_expression'} ->
let%bind type_expression' = s_type_expression' ~substs type_expression' in
ok @@ Ast_simplified.{type_expression'}
and s_type_value ~v ~expr : T.type_value w = fun { type_value'; simplified } ->
let%bind type_value' = s_type_value' ~v ~expr type_value' in
let%bind simplified = bind_map_option (s_type_expression ~v ~expr) simplified in
and s_type_value : T.type_value w = fun ~substs { type_value'; simplified } ->
let%bind type_value' = s_type_value' ~substs type_value' in
let%bind simplified = bind_map_option (s_type_expression ~substs) simplified in
ok @@ T.{ type_value'; simplified }
and s_literal ~v ~expr : T.literal w = function
and s_literal : T.literal w = fun ~substs -> function
| T.Literal_unit ->
let () = ignore (v, expr) in
let () = ignore @@ substs in
ok @@ T.Literal_unit
| (T.Literal_bool _ as x)
| (T.Literal_int _ as x)
@ -132,144 +134,145 @@ module Substitution = struct
| (T.Literal_chain_id _ as x)
| (T.Literal_operation _ as x) ->
ok @@ x
and s_matching_expr ~v ~expr : T.matching_expr w = fun _ ->
let _TODO = v, expr in
and s_matching_expr : T.matching_expr w = fun ~substs _ ->
let _TODO = substs in
failwith "TODO: subst: unimplemented case s_matching"
and s_named_type_value ~v ~expr : T.named_type_value w = fun _ ->
let _TODO = v, expr in
and s_named_type_value : T.named_type_value w = fun ~substs _ ->
let _TODO = substs in
failwith "TODO: subst: unimplemented case s_named_type_value"
and s_access_path ~v ~expr : T.access_path w = fun _ ->
let _TODO = v, expr in
and s_access_path : T.access_path w = fun ~substs _ ->
let _TODO = substs in
failwith "TODO: subst: unimplemented case s_access_path"
and s_expression ~v ~expr : T.expression w = function
and s_expression : T.expression w = fun ~(substs : substs) -> function
| T.E_literal x ->
let%bind x = s_literal ~v ~expr x in
let%bind x = s_literal ~substs x in
ok @@ T.E_literal x
| T.E_constant (var, vals) ->
let%bind var = s_build_in ~v ~expr var in
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in
let%bind var = s_build_in ~substs var in
let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_constant (var, vals)
| T.E_variable tv ->
let%bind tv = s_variable ~v ~expr tv in
let%bind tv = s_variable ~substs tv in
ok @@ T.E_variable tv
| T.E_application (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_application (val1 , val2)
| T.E_lambda { binder; body } ->
let%bind binder = s_variable ~v ~expr binder in
let%bind body = s_annotated_expression ~v ~expr body in
let%bind binder = s_variable ~substs binder in
let%bind body = s_annotated_expression ~substs body in
ok @@ T.E_lambda { binder; body }
| T.E_let_in { binder; rhs; result; inline } ->
let%bind binder = s_variable ~v ~expr binder in
let%bind rhs = s_annotated_expression ~v ~expr rhs in
let%bind result = s_annotated_expression ~v ~expr result in
let%bind binder = s_variable ~substs binder in
let%bind rhs = s_annotated_expression ~substs rhs in
let%bind result = s_annotated_expression ~substs result in
ok @@ T.E_let_in { binder; rhs; result; inline }
| T.E_tuple vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in
let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_tuple vals
| T.E_tuple_accessor (val_, i) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind val_ = s_annotated_expression ~substs val_ in
let i = i in
ok @@ T.E_tuple_accessor (val_, i)
| T.E_constructor (tvar, val_) ->
let%bind tvar = s_constructor ~v ~expr tvar in
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind tvar = s_constructor ~substs tvar in
let%bind val_ = s_annotated_expression ~substs val_ in
ok @@ T.E_constructor (tvar, val_)
| T.E_record aemap ->
let _TODO = aemap in
failwith "TODO: subst in record"
(* let%bind aemap = TSMap.bind_map_Map (fun ~k:key ~v:val_ ->
* let key = s_type_variable ~v ~expr key in
* let val_ = s_annotated_expression ~v ~expr val_ in
* let key = s_type_variable ~substs key in
* let val_ = s_annotated_expression ~substs val_ in
* ok @@ (key , val_)) aemap in
* ok @@ T.E_record aemap *)
| T.E_record_accessor (val_, l) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind l = s_label ~v ~expr l in
let%bind val_ = s_annotated_expression ~substs val_ in
let l = l in (* Nothing to substitute, this is a label, not a type *)
ok @@ T.E_record_accessor (val_, l)
| T.E_record_update (r, ups) ->
let%bind r = s_annotated_expression ~v ~expr r in
let%bind ups = bind_map_list (fun (l,e) -> let%bind e = s_annotated_expression ~v ~expr e in ok (l,e)) ups in
ok @@ T.E_record_update (r,ups)
| T.E_record_update (r, (l, e)) ->
let%bind r = s_annotated_expression ~substs r in
let%bind e = s_annotated_expression ~substs e in
ok @@ T.E_record_update (r, (l, e))
| T.E_map val_val_list ->
let%bind val_val_list = bind_map_list (fun (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ (val1 , val2)
) val_val_list in
ok @@ T.E_map val_val_list
| T.E_big_map val_val_list ->
let%bind val_val_list = bind_map_list (fun (val1 , val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ (val1 , val2)
) val_val_list in
ok @@ T.E_big_map val_val_list
| T.E_list vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in
let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_list vals
| T.E_set vals ->
let%bind vals = bind_map_list (s_annotated_expression ~v ~expr) vals in
let%bind vals = bind_map_list (s_annotated_expression ~substs) vals in
ok @@ T.E_set vals
| T.E_look_up (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_look_up (val1 , val2)
| T.E_matching (val_ , matching_expr) ->
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind matching = s_matching_expr ~v ~expr matching_expr in
let%bind val_ = s_annotated_expression ~substs val_ in
let%bind matching = s_matching_expr ~substs matching_expr in
ok @@ T.E_matching (val_ , matching)
| T.E_sequence (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_sequence (val1 , val2)
| T.E_loop (val1, val2) ->
let%bind val1 = s_annotated_expression ~v ~expr val1 in
let%bind val2 = s_annotated_expression ~v ~expr val2 in
let%bind val1 = s_annotated_expression ~substs val1 in
let%bind val2 = s_annotated_expression ~substs val2 in
ok @@ T.E_loop (val1 , val2)
| T.E_assign (named_tval, access_path, val_) ->
let%bind named_tval = s_named_type_value ~v ~expr named_tval in
let%bind access_path = s_access_path ~v ~expr access_path in
let%bind val_ = s_annotated_expression ~v ~expr val_ in
let%bind named_tval = s_named_type_value ~substs named_tval in
let%bind access_path = s_access_path ~substs access_path in
let%bind val_ = s_annotated_expression ~substs val_ in
ok @@ T.E_assign (named_tval, access_path, val_)
and s_annotated_expression ~v ~expr : T.annotated_expression w = fun { expression; type_annotation; environment; location } ->
let%bind expression = s_expression ~v ~expr expression in
let%bind type_annotation = s_type_value ~v ~expr type_annotation in
let%bind environment = s_full_environment ~v ~expr environment in
and s_annotated_expression : T.annotated_expression w = fun ~substs { expression; type_annotation; environment; location } ->
let%bind expression = s_expression ~substs expression in
let%bind type_annotation = s_type_value ~substs type_annotation in
let%bind environment = s_full_environment ~substs environment in
let location = location in
ok T.{ expression; type_annotation; environment; location }
and s_named_expression ~v ~expr : T.named_expression w = fun { name; annotated_expression } ->
let%bind name = s_variable ~v ~expr name in
let%bind annotated_expression = s_annotated_expression ~v ~expr annotated_expression in
and s_named_expression : T.named_expression w = fun ~substs { name; annotated_expression } ->
let name = name in (* Nothing to substitute, this is a variable name *)
let%bind annotated_expression = s_annotated_expression ~substs annotated_expression in
ok T.{ name; annotated_expression }
and s_declaration ~v ~expr : T.declaration w =
and s_declaration : T.declaration w = fun ~substs ->
function
Ast_typed.Declaration_constant (e, i, (env1, env2)) ->
let%bind e = s_named_expression ~v ~expr e in
let%bind env1 = s_full_environment ~v ~expr env1 in
let%bind env2 = s_full_environment ~v ~expr env2 in
ok @@ Ast_typed.Declaration_constant (e, i, (env1, env2))
Ast_typed.Declaration_constant (e, inline, (env1, env2)) ->
let%bind e = s_named_expression ~substs e in
let%bind env1 = s_full_environment ~substs env1 in
let%bind env2 = s_full_environment ~substs env2 in
ok @@ Ast_typed.Declaration_constant (e, inline, (env1, env2))
and s_declaration_wrap ~v ~expr : T.declaration Location.wrap w = fun d ->
Trace.bind_map_location (s_declaration ~v ~expr) d
and s_declaration_wrap : T.declaration Location.wrap w = fun ~substs d ->
Trace.bind_map_location (s_declaration ~substs) d
(* Replace the type variable ~v with ~expr everywhere within the
program ~p. TODO: issues with scoping/shadowing. *)
and program ~(p : Ast_typed.program) ~(v:type_variable) ~expr : Ast_typed.program Trace.result =
Trace.bind_map_list (s_declaration_wrap ~v ~expr) p
and s_program : Ast_typed.program w = fun ~substs p ->
Trace.bind_map_list (s_declaration_wrap ~substs) p
(*
Computes `P[v := expr]`.
*)
and type_value ~tv ~v ~expr =
let self tv = type_value ~tv ~v ~expr in
and type_value ~tv ~substs =
let self tv = type_value ~tv ~substs in
let (v, expr) = substs in
match tv with
| P_variable v' when v' = v -> expr
| P_variable v' when Var.equal v' v -> expr
| P_variable _ -> tv
| P_constant (x , lst) -> (
let lst' = List.map self lst in
@ -280,7 +283,7 @@ module Substitution = struct
P_apply ab'
)
| P_forall p -> (
let aux c = constraint_ ~c ~v ~expr in
let aux c = constraint_ ~c ~substs in
let constraints = List.map aux p.constraints in
if (p.binder = v) then (
P_forall { p with constraints }
@ -290,31 +293,33 @@ module Substitution = struct
)
)
and constraint_ ~c ~v ~expr =
and constraint_ ~c ~substs =
match c with
| C_equation ab -> (
let ab' = pair_map (fun tv -> type_value ~tv ~v ~expr) ab in
let ab' = pair_map (fun tv -> type_value ~tv ~substs) ab in
C_equation ab'
)
| C_typeclass (tvs , tc) -> (
let tvs' = List.map (fun tv -> type_value ~tv ~v ~expr) tvs in
let tc' = typeclass ~tc ~v ~expr in
let tvs' = List.map (fun tv -> type_value ~tv ~substs) tvs in
let tc' = typeclass ~tc ~substs in
C_typeclass (tvs' , tc')
)
| C_access_label (tv , l , v') -> (
let tv' = type_value ~tv ~v ~expr in
let tv' = type_value ~tv ~substs in
C_access_label (tv' , l , v')
)
and typeclass ~tc ~v ~expr =
List.map (List.map (fun tv -> type_value ~tv ~v ~expr)) tc
and typeclass ~tc ~substs =
List.map (List.map (fun tv -> type_value ~tv ~substs)) tc
let program = s_program
(* Performs beta-reduction at the root of the type *)
let eval_beta_root ~(tv : type_value) =
match tv with
P_apply (P_forall { binder; constraints; body }, arg) ->
let constraints = List.map (fun c -> constraint_ ~c ~v:binder ~expr:arg) constraints in
(type_value ~tv:body ~v:binder ~expr:arg , constraints)
let constraints = List.map (fun c -> constraint_ ~c ~substs:(mk_substs ~v:binder ~expr:arg)) constraints in
(type_value ~tv:body ~substs:(mk_substs ~v:binder ~expr:arg) , constraints)
| _ -> (tv , [])
end

View File

@ -0,0 +1,11 @@
type myrec is record
foo : nat;
bar : string;
end;
const a : myrec = record
foo = 0n;
bar = "bar";
end;
const b : int = 2 ;

139
src/test/contracts/id.mligo Normal file
View File

@ -0,0 +1,139 @@
type id = int
type id_details = {
owner: address;
controller: address;
profile: bytes;
}
type buy = bytes * address option
type update_owner = id * address
type update_details = id * bytes option * address option
type action =
| Buy of buy
| Update_owner of update_owner
| Update_details of update_details
| Skip of unit
(* The prices kept in storage can be changed by bakers, though they should only be
adjusted down over time, not up. *)
type storage = (id, id_details) big_map * int * (tez * tez)
(** Preliminary thoughts on ids:
I very much like the simplicity of http://gurno.com/adam/mne/.
5 three letter words means you have a 15 character identity, not actually more
annoying than an IP address and a lot more memorable than the raw digits. This
can be stored as a single integer which is then translated into the corresponding
series of 5 words.
I in general like the idea of having a 'skip' mechanism, but it does need to cost
something so people don't eat up the address space. 256 ^ 5 means you have a lot
of address space, but if people troll by skipping a lot that could be eaten up.
Should probably do some napkin calculations for how expensive skipping needs to
be to deter people from doing it just to chew up address space.
*)
let buy (parameter, storage: (bytes * address option) * storage) =
let void: unit =
if amount = storage.2.0
then ()
else (failwith "Incorrect amount paid.": unit)
in
let profile, initial_controller = parameter in
let identities, new_id, prices = storage in
let controller: address =
match initial_controller with
| Some addr -> addr
| None -> sender
in
let new_id_details: id_details = {
owner = sender ;
controller = controller ;
profile = profile ;
}
in
let updated_identities: (id, id_details) big_map =
Big_map.update new_id (Some new_id_details) identities
in
([]: operation list), (updated_identities, new_id + 1, prices)
let update_owner (parameter, storage: (id * address) * storage) =
if (amount <> 0mutez)
then (failwith "Updating owner doesn't cost anything.": (operation list) * storage)
else
let id, new_owner = parameter in
let identities, last_id, prices = storage in
let current_id_details: id_details =
match Big_map.find_opt id identities with
| Some id_details -> id_details
| None -> (failwith "This ID does not exist.": id_details)
in
let is_allowed: bool =
if sender = current_id_details.owner
then true
else (failwith "You are not the owner of this ID.": bool)
in
let updated_id_details: id_details = {
owner = new_owner;
controller = current_id_details.controller;
profile = current_id_details.profile;
}
in
let updated_identities = Big_map.update id (Some updated_id_details) identities in
([]: operation list), (updated_identities, last_id, prices)
let update_details (parameter, storage: (id * bytes option * address option) * storage) =
if (amount <> 0mutez)
then (failwith "Updating details doesn't cost anything.": (operation list) * storage)
else
let id, new_profile, new_controller = parameter in
let identities, last_id, prices = storage in
let current_id_details: id_details =
match Big_map.find_opt id identities with
| Some id_details -> id_details
| None -> (failwith "This ID does not exist.": id_details)
in
let is_allowed: bool =
if (sender = current_id_details.controller) || (sender = current_id_details.owner)
then true
else (failwith ("You are not the owner or controller of this ID."): bool)
in
let owner: address = current_id_details.owner in
let profile: bytes =
match new_profile with
| None -> (* Default *) current_id_details.profile
| Some new_profile -> new_profile
in
let controller: address =
match new_controller with
| None -> (* Default *) current_id_details.controller
| Some new_controller -> new_controller
in
let updated_id_details: id_details = {
owner = owner;
controller = controller;
profile = profile;
}
in
let updated_identities: (id, id_details) big_map =
Big_map.update id (Some updated_id_details) identities in
([]: operation list), (updated_identities, last_id, prices)
(* Let someone skip the next identity so nobody has to take one that's undesirable *)
let skip (p,storage: unit * storage) =
let void: unit =
if amount = storage.2.1
then ()
else (failwith "Incorrect amount paid.": unit)
in
let identities, last_id, prices = storage in
([]: operation list), (identities, last_id + 1, prices)
let main (action, storage: action * storage) : operation list * storage =
match action with
| Buy b -> buy (b, storage)
| Update_owner uo -> update_owner (uo, storage)
| Update_details ud -> update_details (ud, storage)
| Skip s -> skip ((), storage)

View File

@ -64,5 +64,5 @@ end
function modify_inner (const r : double_record) : double_record is
block {
r := r with record inner = r.inner with record b = 2048; end; end;
r := r with record inner.b = 2048; end;
} with r

View File

@ -50,4 +50,4 @@ type double_record = {
inner : abc;
}
let modify_inner (r : double_record) : double_record = {r with inner = {r.inner with b = 2048 }}
let modify_inner (r : double_record) : double_record = {r with inner.b = 2048 }

View File

@ -50,4 +50,4 @@ type double_record = {
inner : abc,
};
let modify_inner = (r : double_record) : double_record => {...r,inner : {...r.inner, b : 2048 } };
let modify_inner = (r : double_record) : double_record => {...r,inner.b : 2048 };

View File

@ -0,0 +1,22 @@
type storage = {
next_use: timestamp;
interval: int;
execute: unit -> operation list;
}
let main (p,s: unit * storage) : operation list * storage =
(* Multiple calls to Current.time give different values *)
let now: timestamp = Current.time in
if now > s.next_use
then
let s: storage = {
next_use = now + s.interval;
interval = s.interval;
execute = s.execute;
}
in
(s.execute (), s)
else
(* TODO: Add the time until next use to this message *)
(failwith "You have to wait before you can execute this contract again.":
operation list * storage)

View File

@ -8,16 +8,16 @@ type action =
| Increment of int
| Decrement of int
let add (a: int) (b: int) : int = a + b
let sub (a: int) (b: int) : int = a - b
let add (a,b: int * int) : int = a + b
let sub (a,b: int * int) : int = a - b
(* real entrypoint that re-routes the flow based on the action provided *)
let main (p,s: action * storage) =
let storage =
match p with
| Increment n -> add s n
| Decrement n -> sub s n
| Increment n -> add (s, n)
| Decrement n -> sub (s, n)
in ([] : operation list), storage
(* IF YOU CHANGE THIS, CHANGE THE EXAMPLE ON THE FRONT PAGE OF THE WEBSITE *)

View File

@ -8,20 +8,18 @@ type action =
| Increment(int)
| Decrement(int);
let add = (a: int, b: int): int => a + b;
let sub = (a: int, b: int): int => a - b;
let add = ((a,b): (int, int)): int => a + b;
let sub = ((a,b): (int, int)): int => a - b;
/* real entrypoint that re-routes the flow based on the action provided */
let main2 = (p: action, storage) => {
let main = ((p,storage): (action, storage)) => {
let storage =
switch (p) {
| Increment(n) => add(storage, n)
| Decrement(n) => sub(storage, n)
| Increment(n) => add((storage, n))
| Decrement(n) => sub((storage, n))
};
([]: list(operation), storage);
};
let main = (x: (action, storage)) => main2(x[0],x[1]);
(* IF YOU CHANGE THIS, CHANGE THE EXAMPLE ON THE FRONT PAGE OF THE WEBSITE *)

485
src/test/id_tests.ml Normal file
View File

@ -0,0 +1,485 @@
open Trace
open Test_helpers
open Ast_simplified
let mtype_file f =
let%bind simplified = Ligo.Compile.Of_source.compile f (Syntax_name "cameligo") in
let%bind typed,state = Ligo.Compile.Of_simplified.compile simplified in
ok (typed,state)
let get_program =
let s = ref None in
fun () -> match !s with
| Some s -> ok s
| None -> (
let%bind program = mtype_file "./contracts/id.mligo" in
s := Some program ;
ok program
)
let compile_main () =
let%bind simplified = Ligo.Compile.Of_source.compile "./contracts/id.mligo" (Syntax_name "cameligo") in
let%bind typed_prg,_ = Ligo.Compile.Of_simplified.compile simplified in
let%bind mini_c_prg = Ligo.Compile.Of_typed.compile typed_prg in
let%bind michelson_prg = Ligo.Compile.Of_mini_c.aggregate_and_compile_contract mini_c_prg "main" in
let%bind (_contract: Tezos_utils.Michelson.michelson) =
(* fails if the given entry point is not a valid contract *)
Ligo.Compile.Of_michelson.build_contract michelson_prg in
ok ()
let (first_owner , first_contract) =
let open Proto_alpha_utils.Memory_proto_alpha in
let id = List.nth dummy_environment.identities 0 in
let kt = id.implicit_contract in
Protocol.Alpha_context.Contract.to_b58check kt , kt
let buy_id () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1)]) ;
e_int 1;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.one) ()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let param = e_pair owner_website (e_some (e_address new_addr)) in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let%bind () = expect_eq ~options program "buy"
(e_pair param storage)
(e_pair (e_list []) new_storage)
in ok ()
let buy_id_sender_addr () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1)]) ;
e_int 1;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.one) ()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let param = e_pair owner_website (e_typed_none t_address) in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let%bind () = expect_eq ~options program "buy"
(e_pair param storage)
(e_pair (e_list []) new_storage)
in ok ()
(* Test that contract fails if we attempt to buy an ID for the wrong amount *)
let buy_id_wrong_amount () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1)]) ;
e_int 1;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.fifty_cents) ()
in
let param = e_pair owner_website (e_some (e_address new_addr)) in
let%bind () = expect_string_failwith ~options program "buy"
(e_pair param storage)
"Incorrect amount paid."
in ok ()
let update_details_owner () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address owner_addr) ;
("profile", new_website)]
in
let id_details_2_diff = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)] in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2_diff)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let details = e_bytes_string "ligolang.org" in
let param = e_tuple [e_int 1 ;
e_some details ;
e_some (e_address new_addr)] in
let%bind () = expect_eq ~options program "update_details"
(e_pair param storage)
(e_pair (e_list []) new_storage)
in ok ()
let update_details_controller () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let id_details_2_diff = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", new_website)] in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2_diff)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let details = e_bytes_string "ligolang.org" in
let param = e_tuple [e_int 1 ;
e_some details ;
e_some (e_address owner_addr)] in
let%bind () = expect_eq ~options program "update_details"
(e_pair param storage)
(e_pair (e_list []) new_storage)
in ok ()
(* Test that contract fails when we attempt to update details of nonexistent ID *)
let update_details_nonexistent () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let details = e_bytes_string "ligolang.org" in
let param = e_tuple [e_int 2 ;
e_some details ;
e_some (e_address owner_addr)] in
let%bind () = expect_string_failwith ~options program "update_details"
(e_pair param storage)
"This ID does not exist."
in ok ()
(* Test that contract fails when we attempt to update details from wrong addr *)
let update_details_wrong_addr () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let details = e_bytes_string "ligolang.org" in
let param = e_tuple [e_int 0 ;
e_some details ;
e_some (e_address owner_addr)] in
let%bind () = expect_string_failwith ~options program "update_details"
(e_pair param storage)
"You are not the owner or controller of this ID."
in ok ()
(* Test that giving none on both profile and controller address is a no-op *)
let update_details_unchanged () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let param = e_tuple [e_int 1 ;
e_typed_none t_bytes ;
e_typed_none t_address] in
let%bind () = expect_eq ~options program "update_details"
(e_pair param storage)
(e_pair (e_list []) storage)
in ok ()
let update_owner () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let id_details_2_diff = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)] in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2_diff)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let param = e_pair (e_int 1) (e_address owner_addr) in
let%bind () = expect_eq ~options program "update_owner"
(e_pair param storage)
(e_pair (e_list []) new_storage)
in ok ()
(* Test that contract fails when we attempt to update owner of nonexistent ID *)
let update_owner_nonexistent () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let param = e_pair (e_int 2) (e_address new_addr) in
let%bind () = expect_string_failwith ~options program "update_owner"
(e_pair param storage)
"This ID does not exist."
in ok ()
(* Test that contract fails when we attempt to update owner from non-owner addr *)
let update_owner_wrong_addr () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.zero)
()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let param = e_pair (e_int 0) (e_address new_addr) in
let%bind () = expect_string_failwith ~options program "update_owner"
(e_pair param storage)
"You are not the owner of this ID."
in ok ()
let skip () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.one) ()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let new_storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 3;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let%bind () = expect_eq ~options program "skip"
(e_pair (e_unit ()) storage)
(e_pair (e_list []) new_storage)
in ok ()
(* Test that contract fails if we try to skip without paying the right amount *)
let skip_wrong_amount () =
let%bind program, _ = get_program () in
let owner_addr = addr 5 in
let owner_website = e_bytes_string "ligolang.org" in
let id_details_1 = e_ez_record [("owner", e_address owner_addr) ;
("controller", e_address owner_addr) ;
("profile", owner_website)]
in
let new_addr = first_owner in
let options = Proto_alpha_utils.Memory_proto_alpha.make_options
~payer:first_contract
~amount:(Memory_proto_alpha.Protocol.Alpha_context.Tez.fifty_cents) ()
in
let new_website = e_bytes_string "ligolang.org" in
let id_details_2 = e_ez_record [("owner", e_address new_addr) ;
("controller", e_address new_addr) ;
("profile", new_website)]
in
let storage = e_tuple [(e_big_map [(e_int 0, id_details_1) ;
(e_int 1, id_details_2)]) ;
e_int 2;
e_tuple [e_mutez 1000000 ; e_mutez 1000000]]
in
let%bind () = expect_string_failwith ~options program "skip"
(e_pair (e_unit ()) storage)
"Incorrect amount paid."
in ok ()
let main = test_suite "ID Layer" [
test "buy" buy_id ;
test "buy (sender addr)" buy_id_sender_addr ;
test "buy (wrong amount)" buy_id_wrong_amount ;
test "update_details (owner)" update_details_owner ;
test "update_details (controller)" update_details_controller ;
test "update_details_nonexistent" update_details_nonexistent ;
test "update_details_wrong_addr" update_details_wrong_addr ;
test "update_details_unchanged" update_details_unchanged ;
test "update_owner" update_owner ;
test "update_owner_nonexistent" update_owner_nonexistent ;
test "update_owner_wrong_addr" update_owner_wrong_addr ;
test "skip" skip ;
test "skip (wrong amount)" skip_wrong_amount ;
]

View File

@ -410,13 +410,13 @@ let string_arithmetic_religo () : unit result =
let bytes_arithmetic () : unit result =
let%bind program = type_file "./contracts/bytes_arithmetic.ligo" in
let%bind foo = e_bytes "0f00" in
let%bind foototo = e_bytes "0f007070" in
let%bind toto = e_bytes "7070" in
let%bind empty = e_bytes "" in
let%bind tata = e_bytes "7a7a7a7a" in
let%bind at = e_bytes "7a7a" in
let%bind ba = e_bytes "ba" in
let%bind foo = e_bytes_hex "0f00" in
let%bind foototo = e_bytes_hex "0f007070" in
let%bind toto = e_bytes_hex "7070" in
let%bind empty = e_bytes_hex "" in
let%bind tata = e_bytes_hex "7a7a7a7a" in
let%bind at = e_bytes_hex "7a7a" in
let%bind ba = e_bytes_hex "ba" in
let%bind () = expect_eq program "concat_op" foo foototo in
let%bind () = expect_eq program "concat_op" empty toto in
let%bind () = expect_eq program "slice_op" tata at in
@ -430,13 +430,13 @@ let bytes_arithmetic () : unit result =
let bytes_arithmetic_mligo () : unit result =
let%bind program = mtype_file "./contracts/bytes_arithmetic.mligo" in
let%bind foo = e_bytes "0f00" in
let%bind foototo = e_bytes "0f007070" in
let%bind toto = e_bytes "7070" in
let%bind empty = e_bytes "" in
let%bind tata = e_bytes "7a7a7a7a" in
let%bind at = e_bytes "7a7a" in
let%bind ba = e_bytes "ba" in
let%bind foo = e_bytes_hex "0f00" in
let%bind foototo = e_bytes_hex "0f007070" in
let%bind toto = e_bytes_hex "7070" in
let%bind empty = e_bytes_hex "" in
let%bind tata = e_bytes_hex "7a7a7a7a" in
let%bind at = e_bytes_hex "7a7a" in
let%bind ba = e_bytes_hex "ba" in
let%bind () = expect_eq program "concat_op" foo foototo in
let%bind () = expect_eq program "concat_op" empty toto in
let%bind () = expect_eq program "slice_op" tata at in
@ -450,13 +450,13 @@ let bytes_arithmetic_mligo () : unit result =
let bytes_arithmetic_religo () : unit result =
let%bind program = retype_file "./contracts/bytes_arithmetic.religo" in
let%bind foo = e_bytes "0f00" in
let%bind foototo = e_bytes "0f007070" in
let%bind toto = e_bytes "7070" in
let%bind empty = e_bytes "" in
let%bind tata = e_bytes "7a7a7a7a" in
let%bind at = e_bytes "7a7a" in
let%bind ba = e_bytes "ba" in
let%bind foo = e_bytes_hex "0f00" in
let%bind foototo = e_bytes_hex "0f007070" in
let%bind toto = e_bytes_hex "7070" in
let%bind empty = e_bytes_hex "" in
let%bind tata = e_bytes_hex "7a7a7a7a" in
let%bind at = e_bytes_hex "7a7a" in
let%bind ba = e_bytes_hex "ba" in
let%bind () = expect_eq program "concat_op" foo foototo in
let%bind () = expect_eq program "concat_op" empty toto in
let%bind () = expect_eq program "slice_op" tata at in
@ -1931,7 +1931,7 @@ let check_signature () : unit result =
let%bind program = type_file "./contracts/check_signature.ligo" in
let make_input = e_tuple [e_key pk_str ;
e_signature (Signature.to_b58check signed) ;
e_bytes_ofbytes (Bytes.of_string "hello world")] in
e_bytes_string "hello world"] in
let make_expected = e_bool true in
let%bind () = expect_eq program "check_signature" make_input make_expected in
ok ()
@ -1944,7 +1944,7 @@ let check_signature_mligo () : unit result =
let%bind program = mtype_file "./contracts/check_signature.mligo" in
let make_input = e_tuple [e_key pk_str ;
e_signature (Signature.to_b58check signed) ;
e_bytes_ofbytes (Bytes.of_string "hello world")] in
e_bytes_string "hello world"] in
let make_expected = e_bool true in
let%bind () = expect_eq program "check_signature" make_input make_expected in
ok ()
@ -1957,7 +1957,7 @@ let check_signature_religo () : unit result =
let%bind program = retype_file "./contracts/check_signature.religo" in
let make_input = e_tuple [e_key pk_str ;
e_signature (Signature.to_b58check signed) ;
e_bytes_ofbytes (Bytes.of_string "hello world")] in
e_bytes_string "hello world"] in
let make_expected = e_bool true in
let%bind () = expect_eq program "check_signature" make_input make_expected in
ok ()

View File

@ -56,7 +56,7 @@ let storage {state_hash ; threshold ; max_proposal ; max_msg_size ; id_counter_l
([],[])
id_counter_list in
e_ez_record [
("state_hash" , e_bytes_ofbytes state_hash ) ;
("state_hash" , e_bytes_raw state_hash ) ;
("threshold" , e_nat threshold ) ;
("max_proposal" , e_nat max_proposal ) ;
("max_message_size" , e_nat max_msg_size ) ;
@ -101,7 +101,7 @@ let message_size_exceeded () =
let maximum_number_of_proposal () =
let%bind program,_ = get_program () in
let%bind packed_payload1 = pack_payload program (send_param empty_message) in
let bytes1 = e_bytes_ofbytes packed_payload1 in
let bytes1 = e_bytes_raw packed_payload1 in
let init_storage = storage {
threshold = 1 ; max_proposal = 1 ; max_msg_size = 15 ; state_hash = Bytes.empty ;
id_counter_list = [1,1] ;
@ -119,7 +119,7 @@ let maximum_number_of_proposal () =
let send_already_accounted () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let init_storage = storage {
threshold = 2 ; max_proposal = 1 ; max_msg_size = 15 ; state_hash = Bytes.empty ;
id_counter_list = [1,1 ; 2,0] ;
@ -135,7 +135,7 @@ let send_already_accounted () =
let send_never_accounted () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let init_storage' = {
threshold = 2 ; max_proposal = 1 ; max_msg_size = 15 ; state_hash = Bytes.empty ;
id_counter_list = [1,0 ; 2,0] ;
@ -156,7 +156,7 @@ let send_never_accounted () =
let withdraw_already_accounted_one () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let param = withdraw_param in
let init_storage' = {
threshold = 2 ; max_proposal = 1 ; max_msg_size = 1 ; state_hash = Bytes.empty ;
@ -177,7 +177,7 @@ let withdraw_already_accounted_one () =
let withdraw_already_accounted_two () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let param = withdraw_param in
let init_storage' = {
threshold = 2 ; max_proposal = 2 ; max_msg_size = 1 ; state_hash = Bytes.empty ;
@ -198,7 +198,7 @@ let withdraw_already_accounted_two () =
let counters_reset () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let param = send_param empty_message in
let hash_after_msg = sha_256_hash (Bytes.concat Bytes.empty [Bytes.empty ; packed_payload]) in
let init_storage' = {
@ -236,7 +236,7 @@ let withdraw_never_accounted () =
let succeeded_storing () =
let%bind program,_ = get_program () in
let%bind packed_payload = pack_payload program empty_message in
let bytes = e_bytes_ofbytes packed_payload in
let bytes = e_bytes_raw packed_payload in
let init_storage th = {
threshold = th ; max_proposal = 1 ; max_msg_size = 15 ; state_hash = Bytes.empty ;
id_counter_list = [1,0 ; 2,0 ; 3,0] ;

View File

@ -10,9 +10,11 @@ let () =
Typer_tests.main ;
Coase_tests.main ;
Vote_tests.main ;
Id_tests.main ;
Multisig_tests.main ;
Multisig_v2_tests.main ;
Replaceable_id_tests.main ;
Time_lock_tests.main ;
Time_lock_repeat_tests.main ;
] ;
()

View File

@ -0,0 +1,78 @@
open Trace
open Test_helpers
open Ast_simplified
let type_file f =
let%bind simplified = Ligo.Compile.Of_source.compile f (Syntax_name "cameligo") in
let%bind typed,state = Ligo.Compile.Of_simplified.compile simplified in
ok @@ (typed,state)
let get_program =
let s = ref None in
fun () -> match !s with
| Some s -> ok s
| None -> (
let%bind program = type_file "./contracts/timelock_repeat.mligo" in
s := Some program ;
ok program
)
let compile_main () =
let%bind simplified = Ligo.Compile.Of_source.compile "./contracts/timelock_repeat.mligo" (Syntax_name "cameligo") in
let%bind typed_prg,_ = Ligo.Compile.Of_simplified.compile simplified in
let%bind mini_c_prg = Ligo.Compile.Of_typed.compile typed_prg in
let%bind michelson_prg = Ligo.Compile.Of_mini_c.aggregate_and_compile_contract mini_c_prg "main" in
let%bind (_contract: Tezos_utils.Michelson.michelson) =
(* fails if the given entry point is not a valid contract *)
Ligo.Compile.Of_michelson.build_contract michelson_prg in
ok ()
let empty_op_list =
(e_typed_list [] t_operation)
let empty_message = e_lambda (Var.of_name "arguments")
(Some t_unit) (Some (t_list t_operation))
empty_op_list
let call msg = e_constructor "Call" msg
let mk_time st =
match Memory_proto_alpha.Protocol.Alpha_context.Timestamp.of_notation st with
| Some s -> ok s
| None -> simple_fail "bad timestamp notation"
let to_sec t = Tezos_utils.Time.Protocol.to_seconds t
let storage st interval execute =
e_ez_record [("next_use", e_timestamp (Int64.to_int @@ to_sec st)) ;
("interval", e_int interval) ;
("execute", execute)]
let early_call () =
let%bind program,_ = get_program () in
let%bind predecessor_timestamp = mk_time "2000-01-01T00:10:10Z" in
let%bind lock_time = mk_time "2000-01-01T10:10:10Z" in
let init_storage = storage lock_time 86400 empty_message in
let options =
Proto_alpha_utils.Memory_proto_alpha.make_options ~predecessor_timestamp () in
let exp_failwith = "You have to wait before you can execute this contract again." in
expect_string_failwith ~options program "main"
(e_pair (e_unit ()) init_storage) exp_failwith
let fake_uncompiled_empty_message = e_string "[lambda of type: (lambda unit (list operation)) ]"
(* Test that when we use the contract the next use time advances by correct interval *)
let interval_advance () =
let%bind program,_ = get_program () in
let%bind predecessor_timestamp = mk_time "2000-01-01T10:10:10Z" in
let%bind lock_time = mk_time "2000-01-01T00:10:10Z" in
let init_storage = storage lock_time 86400 empty_message in
(* It takes a second for Current.now to be called, awful hack *)
let%bind new_timestamp = mk_time "2000-01-02T10:10:11Z" in
let new_storage_fake = storage new_timestamp 86400 fake_uncompiled_empty_message in
let options =
Proto_alpha_utils.Memory_proto_alpha.make_options ~predecessor_timestamp () in
expect_eq ~options program "main"
(e_pair (e_unit ()) init_storage) (e_pair empty_op_list new_storage_fake)
let main = test_suite "Time Lock Repeating" [
test "compile" compile_main ;
test "early call" early_call ;
test "interval advance" interval_advance ;
]

View File

@ -27,14 +27,14 @@ let compile_main () =
ok ()
open Ast_simplified
let empty_op_list =
let empty_op_list =
(e_typed_list [] t_operation)
let empty_message = e_lambda (Var.of_name "arguments")
(Some t_unit) (Some (t_list t_operation))
empty_op_list
let call msg = e_constructor "Call" msg
let mk_time st =
let mk_time st =
match Memory_proto_alpha.Protocol.Alpha_context.Timestamp.of_notation st with
| Some s -> ok s
| None -> simple_fail "bad timestamp notation"
@ -66,4 +66,4 @@ let main = test_suite "Time lock" [
test "compile" compile_main ;
test "early call" early_call ;
test "call on time" call_on_time ;
]
]

View File

@ -12,7 +12,7 @@ let int () : unit result =
let open Typer in
let e = Environment.full_empty in
let state = Typer.Solver.initial_state in
let%bind (post , new_state) = type_expression e state pre in
let%bind (post , new_state) = type_expression_subst e state pre in
let () = Typer.Solver.discard_state new_state in
let open! Typed in
let open Combinators in
@ -27,7 +27,7 @@ module TestExpressions = struct
let pre = expr in
let open Typer in
let open! Typed in
let%bind (post , new_state) = type_expression env state pre in
let%bind (post , new_state) = type_expression_subst env state pre in
let () = Typer.Solver.discard_state new_state in
let%bind () = assert_type_value_eq (post.type_annotation, test_expected_ty) in
ok ()
@ -37,11 +37,11 @@ module TestExpressions = struct
module E = O
let unit () : unit result = test_expression I.(e_unit ()) O.(t_unit ())
let int () : unit result = test_expression I.(e_int 32) O.(t_int ())
let int () : unit result = test_expression I.(e_int 32) O.(t_int ())
let bool () : unit result = test_expression I.(e_bool true) O.(t_bool ())
let string () : unit result = test_expression I.(e_string "s") O.(t_string ())
let bytes () : unit result =
let%bind b = I.e_bytes "0b" in
let%bind b = I.e_bytes_hex "0b" in
test_expression b O.(t_bytes ())
let lambda () : unit result =

View File

@ -38,12 +38,10 @@ module Make (Item: Partition.Item) =
(* Printing *)
let print (p: partition) =
let buffer = Buffer.create 80 in
let print ppf p =
let print src dst =
let link =
Printf.sprintf "%s -> %s\n"
(Item.to_string src) (Item.to_string dst)
in Buffer.add_string buffer link
in (ItemMap.iter print p; buffer)
Format.fprintf ppf "%s -> %s (%s)\n"
(Item.to_string src) (Item.to_string dst) (Item.to_string (repr src p))
in ItemMap.iter print p
end