Merge branch 'rinderknecht@doc' into 'dev'
Fixed the tutorial. Enabled underscores in tez amounts. Fixed docs on tuple components indexation (zero) See merge request ligolang/ligo!447
This commit is contained in:
commit
4886f540e4
@ -1,24 +1,24 @@
|
||||
---
|
||||
id: entrypoints-contracts
|
||||
title: Access function and Entrypoints
|
||||
title: Main function and Entrypoints
|
||||
---
|
||||
|
||||
## Access Functions
|
||||
|
||||
A LIGO contract is made of a series of constant and function
|
||||
declarations. Only functions having a special type can be called when
|
||||
the contract is activated: we called them *access functions*. An
|
||||
access function takes two parameters, the *contract parameter* and the
|
||||
the contract is activated: we call them *main functions*. A main
|
||||
function takes two parameters, the *contract parameter* and the
|
||||
*on-chain storage*, and returns a pair made of a *list of operations*
|
||||
and a (new) storage.
|
||||
|
||||
When the contract is originated, the initial value of the storage is
|
||||
provided. When an access function is later called, only the parameter
|
||||
is provided, but the type of an access function contains both.
|
||||
provided. When a main function is later called, only the parameter is
|
||||
provided, but the type of a main function contains both.
|
||||
|
||||
The type of the contract parameter and the storage are up to the
|
||||
contract designer, but the type for list operations is not. The return
|
||||
type of an access function is as follows, assuming that the type
|
||||
type of a main function is as follows, assuming that the type
|
||||
`storage` has been defined elsewhere. (Note that you can use any type
|
||||
with any name for the storage.)
|
||||
|
||||
@ -42,13 +42,10 @@ type return = (list (operation), storage);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
The contract storage can only be modified by activating an access
|
||||
function. It is important to understand what that means. What it does
|
||||
*not* mean is that some global variable holding the storage is
|
||||
modified by the access function. Instead, what it *does* mean is that,
|
||||
given the state of the storage *on-chain*, an access function
|
||||
specifies how to create another state for it, depending on a
|
||||
parameter.
|
||||
The contract storage can only be modified by activating a main
|
||||
function: given the state of the storage *on-chain*, a main function
|
||||
specifies how to create another state for it, depending on the
|
||||
contract's parameter.
|
||||
|
||||
Here is an example where the storage is a single natural number that
|
||||
is updated by the parameter.
|
||||
@ -89,17 +86,18 @@ let main = ((action, store): (parameter, storage)) : return =>
|
||||
|
||||
## Entrypoints
|
||||
|
||||
In LIGO, the design pattern is to have *one* access function that
|
||||
dispatches the control flow according to its parameter. Those
|
||||
functions called for those actions are called *entrypoints*.
|
||||
In LIGO, the design pattern is to have *one* main function called
|
||||
`main`, that dispatches the control flow according to its
|
||||
parameter. Those functions called for those actions are called
|
||||
*entrypoints*.
|
||||
|
||||
As an analogy, in the C programming language, the `main` function is
|
||||
the unique access function and any function called from it would be an
|
||||
the unique main function and any function called from it would be an
|
||||
entrypoint.
|
||||
|
||||
The parameter of the contract is then a variant type, and, depending
|
||||
on the constructors of that type, different functions in the contract
|
||||
are called. In other terms, the unique access function dispatches the
|
||||
are called. In other terms, the unique main function dispatches the
|
||||
control flow depending on a *pattern matching* on the contract
|
||||
parameter.
|
||||
|
||||
@ -128,7 +126,7 @@ function entry_A (const n : nat; const store : storage) : return is
|
||||
function entry_B (const s : string; const store : storage) : return is
|
||||
((nil : list (operation)), store with record [name = s])
|
||||
|
||||
function access (const action : parameter; const store : storage): return is
|
||||
function main (const action : parameter; const store : storage): return is
|
||||
case action of
|
||||
Action_A (n) -> entry_A (n, store)
|
||||
| Action_B (s) -> entry_B (s, store)
|
||||
@ -154,7 +152,7 @@ let entry_A (n, store : nat * storage) : return =
|
||||
let entry_B (s, store : string * storage) : return =
|
||||
([] : operation list), {store with name = s}
|
||||
|
||||
let access (action, store: parameter * storage) : return =
|
||||
let main (action, store: parameter * storage) : return =
|
||||
match action with
|
||||
Action_A n -> entry_A (n, store)
|
||||
| Action_B s -> entry_B (s, store)
|
||||
@ -179,7 +177,7 @@ let entry_A = ((n, store): (nat, storage)) : return =>
|
||||
let entry_B = ((s, store): (string, storage)) : return =>
|
||||
(([] : list (operation)), {...store, name : s});
|
||||
|
||||
let access = ((action, store): (parameter, storage)) : return =>
|
||||
let main = ((action, store): (parameter, storage)) : return =>
|
||||
switch (action) {
|
||||
| Action_A (n) => entry_A ((n, store))
|
||||
| Action_B (s) => entry_B ((s, store))
|
||||
@ -196,8 +194,8 @@ how those built-ins can be utilized.
|
||||
|
||||
### Accepting or Declining Tokens in a Smart Contract
|
||||
|
||||
This example shows how `amount` and `failwith` can be used to decline
|
||||
any transaction that sends more tez than `0mutez`, that is, no
|
||||
This example shows how `Tezos.amount` and `failwith` can be used to
|
||||
decline any transaction that sends more tez than `0tez`, that is, no
|
||||
incoming tokens are accepted.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
@ -208,11 +206,13 @@ type storage is unit
|
||||
type return is list (operation) * storage
|
||||
|
||||
function deny (const action : parameter; const store : storage) : return is
|
||||
if amount > 0mutez then
|
||||
if Tezos.amount > 0tez then
|
||||
(failwith ("This contract does not accept tokens.") : return)
|
||||
else ((nil : list (operation)), store)
|
||||
```
|
||||
|
||||
> Note that `amount` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
type parameter = unit
|
||||
@ -220,11 +220,13 @@ type storage = unit
|
||||
type return = operation list * storage
|
||||
|
||||
let deny (action, store : parameter * storage) : return =
|
||||
if amount > 0mutez then
|
||||
(failwith "This contract does not accept tokens.": return)
|
||||
if Tezos.amount > 0tez then
|
||||
(failwith "This contract does not accept tokens." : return)
|
||||
else (([] : operation list), store)
|
||||
```
|
||||
|
||||
> Note that `amount` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
type parameter = unit;
|
||||
@ -232,46 +234,56 @@ type storage = unit;
|
||||
type return = (list (operation), storage);
|
||||
|
||||
let deny = ((action, store): (parameter, storage)) : return => {
|
||||
if (amount > 0mutez) {
|
||||
if (Tezos.amount > 0tez) {
|
||||
(failwith("This contract does not accept tokens."): return); }
|
||||
else { (([] : list (operation)), store); };
|
||||
};
|
||||
```
|
||||
|
||||
> Note that `amount` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
### Access Control
|
||||
|
||||
This example shows how `sender` or `source` can be used to deny access to an entrypoint.
|
||||
This example shows how `Tezos.source` can be used to deny access to an
|
||||
entrypoint.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=c
|
||||
const owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address);
|
||||
|
||||
function filter (const action : parameter; const store : storage) : return is
|
||||
if source =/= owner then (failwith ("Access denied.") : return)
|
||||
else ((nil : list(operation)), store)
|
||||
function main (const action : parameter; const store : storage) : return is
|
||||
if Tezos.source =/= owner then (failwith ("Access denied.") : return)
|
||||
else ((nil : list (operation)), store)
|
||||
```
|
||||
|
||||
> Note that `source` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)
|
||||
|
||||
let filter (action, store: parameter * storage) : return =
|
||||
if source <> owner then (failwith "Access denied." : return)
|
||||
let main (action, store: parameter * storage) : return =
|
||||
if Tezos.source <> owner then (failwith "Access denied." : return)
|
||||
else (([] : operation list), store)
|
||||
```
|
||||
|
||||
> Note that `source` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
let owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address);
|
||||
|
||||
let access = ((action, store): (parameter, storage)) : storage => {
|
||||
if (source != owner) { (failwith ("Access denied.") : return); }
|
||||
let main = ((action, store) : (parameter, storage)) : storage => {
|
||||
if (Tezos.source != owner) { (failwith ("Access denied.") : return); }
|
||||
else { (([] : list (operation)), store); };
|
||||
};
|
||||
```
|
||||
|
||||
> Note that `source` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
### Inter-Contract Invocations
|
||||
@ -329,11 +341,15 @@ const dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address)
|
||||
|
||||
function proxy (const action : parameter; const store : storage): return is
|
||||
block {
|
||||
const counter : contract (parameter) = get_contract (dest);
|
||||
const counter : contract (parameter) =
|
||||
case (Tezos.get_contract_opt (dest) : option (contract (parameter))) of
|
||||
Some (contract) -> contract
|
||||
| None -> (failwith ("Contract not found.") : contract (parameter))
|
||||
end;
|
||||
(* Reuse the parameter in the subsequent
|
||||
transaction or use another one, `mock_param`. *)
|
||||
const mock_param : parameter = Increment (5n);
|
||||
const op : operation = transaction (action, 0mutez, counter);
|
||||
const op : operation = Tezos.transaction (action, 0tez, counter);
|
||||
const ops : list (operation) = list [op]
|
||||
} with (ops, store)
|
||||
```
|
||||
@ -365,14 +381,20 @@ type return = operation list * storage
|
||||
let dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address)
|
||||
|
||||
let proxy (action, store : parameter * storage) : return =
|
||||
let counter : parameter contract = Operation.get_contract dest in
|
||||
let counter : parameter contract =
|
||||
match (Tezos.get_contract_opt (dest) : parameter contract option) with
|
||||
Some contract -> contract
|
||||
| None -> (failwith "Contract not found." : parameter contract) in
|
||||
(* Reuse the parameter in the subsequent
|
||||
transaction or use another one, `mock_param`. *)
|
||||
let mock_param : parameter = Increment (5n) in
|
||||
let op : operation = Operation.transaction action 0mutez counter
|
||||
let op : operation = Tezos.transaction action 0tez counter
|
||||
in [op], store
|
||||
```
|
||||
|
||||
> Note that `Operation.get_contract` and `Operation.transaction` are
|
||||
> *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo skip
|
||||
// counter.religo
|
||||
@ -400,13 +422,20 @@ type return = (list (operation), storage);
|
||||
let dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address);
|
||||
|
||||
let proxy = ((action, store): (parameter, storage)) : return => {
|
||||
let counter : contract (parameter) = Operation.get_contract (dest);
|
||||
let counter : contract (parameter) =
|
||||
switch (Tezos.get_contract_opt (dest) : option (contract (parameter))) {
|
||||
| Some (contract) => contract;
|
||||
| None => (failwith ("Contract not found.") : contract (parameter));
|
||||
};
|
||||
(* Reuse the parameter in the subsequent
|
||||
transaction or use another one, `mock_param`. *)
|
||||
let mock_param : parameter = Increment (5n);
|
||||
let op : operation = Operation.transaction (action, 0mutez, counter);
|
||||
let op : operation = Tezos.transaction (action, 0tez, counter);
|
||||
([op], store)
|
||||
};
|
||||
```
|
||||
|
||||
> Note that `Operation.get_contract` and `Operation.transaction` are
|
||||
> *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -11,13 +11,14 @@ We will be implementing a counter contract.
|
||||
## Dry-running a Contract
|
||||
|
||||
Testing a contract can be quite easy if we utilize LIGO's built-in dry
|
||||
run feature. Dry-run works by simulating the access function
|
||||
execution, as if it were deployed on a real chain. You need to provide
|
||||
the following:
|
||||
run feature. Dry-run works by simulating the main function execution,
|
||||
as if it were deployed on a real chain. You need to provide the
|
||||
following:
|
||||
|
||||
- `file` - contract to run
|
||||
- `entrypoint` - name of the function to execute
|
||||
- `parameter` - parameter passed to the access function (in a theoretical invocation operation)
|
||||
- `parameter` - parameter passed to the main function (in a
|
||||
theoretical invocation operation)
|
||||
- `storage` - a mock storage value, as if it were stored on a real chain
|
||||
|
||||
Here is a full example:
|
||||
@ -33,67 +34,86 @@ ligo dry-run src/basic.ligo main Unit Unit
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
Output of the `dry-run` is the return value of our access function, we
|
||||
can see the operations emited - in our case an empty list, and the new
|
||||
storage value being returned - which in our case is still `Unit`.
|
||||
Output of the `dry-run` is the return value of our main function, we
|
||||
can see the operations emitted (in our case an empty list, and the new
|
||||
storage value being returned) which in our case is still `Unit`.
|
||||
|
||||
## A Counter Contract
|
||||
|
||||
Our counter contract will store a single `int` as it's storage, and
|
||||
will accept an `action` variant in order to re-route our single `main`
|
||||
access function to two entrypoints for `addition` and `subtraction`.
|
||||
function to two entrypoints for `add` (addition) and `sub`
|
||||
(subtraction).
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```
|
||||
type action is
|
||||
type parameter is
|
||||
Increment of int
|
||||
| Decrement of int
|
||||
|
||||
function main (const p : action ; const s : int) : (list(operation) * int) is
|
||||
type storage is int
|
||||
|
||||
type return is list (operation) * storage
|
||||
|
||||
function add (const n : int; const store : storage) : storage is store + n
|
||||
function sub (const n : int; const store : storage) : storage is store - n
|
||||
|
||||
function main (const action : parameter; const store : storage) : return is
|
||||
((nil : list(operation)),
|
||||
(case p of
|
||||
| Increment (n) -> s + n
|
||||
| Decrement (n) -> s - n
|
||||
end))
|
||||
case action of
|
||||
Increment (n) -> add (n, store)
|
||||
| Decrement (n) -> sub (n, store)
|
||||
end)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
type action =
|
||||
| Increment of int
|
||||
type parameter =
|
||||
Increment of int
|
||||
| Decrement of int
|
||||
|
||||
let main (p, s: action * int) : operation list * int =
|
||||
let result =
|
||||
match p with
|
||||
| Increment n -> s + n
|
||||
| Decrement n -> s - n
|
||||
in
|
||||
(([]: operation list), result)
|
||||
type storage = int
|
||||
|
||||
type return = (operation) list * storage
|
||||
|
||||
let add (n, store : int * storage) : storage = store + n
|
||||
let sub (n, store : int * storage) : storage = store - n
|
||||
|
||||
let main (action, store : parameter * storage) : operation list * storage =
|
||||
(([]: operation list),
|
||||
(match action with
|
||||
Increment n -> add (n, store)
|
||||
| Decrement n -> sub (n, store)))
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
type action =
|
||||
| Increment(int)
|
||||
| Decrement(int);
|
||||
type parameter =
|
||||
Increment (int)
|
||||
| Decrement (int)
|
||||
;
|
||||
|
||||
let main = (p_s: (action, int)) : (list(operation), int) => {
|
||||
let p, s = p_s;
|
||||
let result =
|
||||
switch (p) {
|
||||
| Increment(n) => s + n
|
||||
| Decrement(n) => s - n
|
||||
};
|
||||
(([]: list(operation)), result);
|
||||
};
|
||||
type storage = int;
|
||||
|
||||
type return = (list (operation), storage);
|
||||
|
||||
let add = ((n, store) : (int, storage)) : storage => store + n;
|
||||
let sub = ((n, store) : (int, storage)) : storage => store - n;
|
||||
|
||||
let main = ((action, store) : (parameter, storage)) : return =>
|
||||
(([]: list (operation)),
|
||||
(switch (action) {
|
||||
| Increment (n) => add ((n, store))
|
||||
| Decrement (n) => sub ((n, store))
|
||||
}));
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
To dry-run the counter contract, we will use the `main` entrypoint, provide a variant parameter of `Increment(5)` and an initial storage value of `5`.
|
||||
|
||||
To dry-run the counter contract, we will provide the `main` function
|
||||
with a variant parameter of value `Increment (5)` and an initial
|
||||
storage value of `5`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
@ -130,39 +150,30 @@ Command above will output the following Michelson code:
|
||||
{ parameter (or (int %decrement) (int %increment)) ;
|
||||
storage int ;
|
||||
code { DUP ;
|
||||
CAR ;
|
||||
DIP { DUP } ;
|
||||
SWAP ;
|
||||
CDR ;
|
||||
DIP { DUP } ;
|
||||
SWAP ;
|
||||
CAR ;
|
||||
IF_LEFT
|
||||
{ DUP ;
|
||||
DIP 2 { DUP } ;
|
||||
DIG 2 ;
|
||||
DIP { DUP } ;
|
||||
DIP { DIP { DUP } ; SWAP } ;
|
||||
PAIR ;
|
||||
DUP ;
|
||||
CDR ;
|
||||
DIP { DUP ; CAR } ;
|
||||
SUB ;
|
||||
SWAP ;
|
||||
DROP ;
|
||||
SWAP ;
|
||||
DROP }
|
||||
DIP { DROP 2 } }
|
||||
{ DUP ;
|
||||
DIP 2 { DUP } ;
|
||||
DIG 2 ;
|
||||
DIP { DUP } ;
|
||||
DIP { DIP { DUP } ; SWAP } ;
|
||||
PAIR ;
|
||||
DUP ;
|
||||
CDR ;
|
||||
DIP { DUP ; CAR } ;
|
||||
ADD ;
|
||||
SWAP ;
|
||||
DROP ;
|
||||
SWAP ;
|
||||
DROP } ;
|
||||
DIP { DROP 2 } } ;
|
||||
NIL operation ;
|
||||
PAIR ;
|
||||
SWAP ;
|
||||
DROP ;
|
||||
SWAP ;
|
||||
DROP ;
|
||||
SWAP ;
|
||||
DROP } }
|
||||
DIP { DROP 2 } } }
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
@ -179,12 +190,15 @@ ligo compile-storage src/counter.ligo main 5
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
In our case the LIGO storage value maps 1:1 to its Michelson representation, however this will not be the case once the parameter is of a more complex data type, like a record.
|
||||
In our case the LIGO storage value maps 1:1 to its Michelson
|
||||
representation, however this will not be the case once the parameter
|
||||
is of a more complex data type, like a record.
|
||||
|
||||
## Invoking a LIGO contract
|
||||
|
||||
Same rules apply for parameters, as apply for translating LIGO storage values to Michelson. We will need to use `compile-parameter` to compile our `action` variant into Michelson, here's how:
|
||||
Same rules apply for parameters, as apply for translating LIGO storage
|
||||
values to Michelson. We will need to use `compile-parameter` to
|
||||
compile our `action` variant into Michelson, here's how:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
@ -194,6 +208,5 @@ ligo compile-parameter src/counter.ligo main 'Increment(5)'
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
Now we can use `(Right 5)` which is a Michelson value, to invoke our
|
||||
contract - e.g. via `tezos-client`
|
||||
contract - e.g., via `tezos-client`
|
||||
|
17
gitlab-pages/docs/advanced/src/counter.ligo
Normal file
17
gitlab-pages/docs/advanced/src/counter.ligo
Normal file
@ -0,0 +1,17 @@
|
||||
type parameter is
|
||||
Increment of int
|
||||
| Decrement of int
|
||||
|
||||
type storage is int
|
||||
|
||||
type return is list (operation) * storage
|
||||
|
||||
function add (const n : int; const store : storage) : storage is store + n
|
||||
function sub (const n : int; const store : storage) : storage is store - n
|
||||
|
||||
function main (const action : parameter; const store : storage) : return is
|
||||
((nil : list(operation)),
|
||||
case action of
|
||||
Increment (n) -> add (n, store)
|
||||
| Decrement (n) -> sub (n, store)
|
||||
end)
|
9
gitlab-pages/docs/advanced/src/functions.ligo
Normal file
9
gitlab-pages/docs/advanced/src/functions.ligo
Normal file
@ -0,0 +1,9 @@
|
||||
function multiply (const a : int; const b : int) : int is
|
||||
block {
|
||||
const result : int = a * b
|
||||
} with result
|
||||
|
||||
function add (const a : int; const b : int) : int is a + b
|
||||
|
||||
function main (const p : unit; const s : unit) : list (operation) * unit is
|
||||
((nil : list (operation)), s)
|
17
gitlab-pages/docs/advanced/src/multiple-entrypoints.ligo
Normal file
17
gitlab-pages/docs/advanced/src/multiple-entrypoints.ligo
Normal file
@ -0,0 +1,17 @@
|
||||
type parameter is
|
||||
Increment of int
|
||||
| Decrement of int
|
||||
|
||||
type storage is int
|
||||
|
||||
type return is list (operation) * storage
|
||||
|
||||
function add (const n : int; const store : storage) : storage is store + n
|
||||
function sub (const n : int; const store : storage) : storage is store - n
|
||||
|
||||
function main (const action : parameter; const store : storage) : return is
|
||||
((nil : list(operation)),
|
||||
case action of
|
||||
Increment (n) -> add (n, store)
|
||||
| Decrement (n) -> sub (n, store)
|
||||
end)
|
5
gitlab-pages/docs/advanced/src/variables.ligo
Normal file
5
gitlab-pages/docs/advanced/src/variables.ligo
Normal file
@ -0,0 +1,5 @@
|
||||
const four : int = 4
|
||||
const name : string = "John Doe"
|
||||
|
||||
function main (const p : unit; const s : unit) : list (operation) * unit is
|
||||
((nil : list (operation)), s)
|
@ -18,23 +18,29 @@ current timestamp value.
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=a
|
||||
const today : timestamp = now
|
||||
const today : timestamp = Tezos.now
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let today : timestamp = Current.time
|
||||
let today : timestamp = Tezos.now
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
let today : timestamp = Current.time;
|
||||
let today : timestamp = Tezos.now;
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
> When running code, the LIGO CLI option
|
||||
> `--predecessor-timestamp` allows you to control what `now` returns.
|
||||
> When running code, the LIGO CLI option `--predecessor-timestamp`
|
||||
> allows you to control what `Tezos.now` returns.
|
||||
|
||||
### Timestamp Arithmetics
|
||||
|
||||
@ -46,31 +52,37 @@ constraints on your smart contracts. Consider the following scenarios.
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=b
|
||||
const today : timestamp = now
|
||||
const today : timestamp = Tezos.now
|
||||
const one_day : int = 86400
|
||||
const in_24_hrs : timestamp = today + one_day
|
||||
const some_date : timestamp = ("2000-01-01T10:10:10Z" : timestamp)
|
||||
const one_day_later : timestamp = some_date + one_day
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=b
|
||||
let today : timestamp = Current.time
|
||||
let today : timestamp = Tezos.now
|
||||
let one_day : int = 86400
|
||||
let in_24_hrs : timestamp = today + one_day
|
||||
let some_date : timestamp = ("2000-01-01t10:10:10Z" : timestamp)
|
||||
let one_day_later : timestamp = some_date + one_day
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=b
|
||||
let today : timestamp = Current.time;
|
||||
let today : timestamp = Tezos.now;
|
||||
let one_day : int = 86400;
|
||||
let in_24_hrs : timestamp = today + one_day;
|
||||
let some_date : timestamp = ("2000-01-01t10:10:10Z" : timestamp);
|
||||
let one_day_later : timestamp = some_date + one_day;
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
#### 24 hours Ago
|
||||
@ -78,25 +90,32 @@ let one_day_later : timestamp = some_date + one_day;
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=c
|
||||
const today : timestamp = now
|
||||
const today : timestamp = Tezos.now
|
||||
const one_day : int = 86400
|
||||
const in_24_hrs : timestamp = today - one_day
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let today : timestamp = Current.time
|
||||
let today : timestamp = Tezos.now
|
||||
let one_day : int = 86400
|
||||
let in_24_hrs : timestamp = today - one_day
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
let today : timestamp = Current.time;
|
||||
let today : timestamp = Tezos.now;
|
||||
let one_day : int = 86400;
|
||||
let in_24_hrs : timestamp = today - one_day;
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
### Comparing Timestamps
|
||||
@ -107,19 +126,26 @@ applying to numbers.
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=c
|
||||
const not_tommorow : bool = (now = in_24_hrs)
|
||||
const not_tommorow : bool = (Tezos.now = in_24_hrs)
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let not_tomorrow : bool = (Current.time = in_24_hrs)
|
||||
let not_tomorrow : bool = (Tezos.now = in_24_hrs)
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
let not_tomorrow : bool = (Current.time == in_24_hrs);
|
||||
let not_tomorrow : bool = (Tezos.now == in_24_hrs);
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Addresses
|
||||
|
@ -4,7 +4,7 @@ title: Cheat Sheet
|
||||
---
|
||||
<div class="cheatsheet">
|
||||
|
||||
<!--
|
||||
<!--
|
||||
Note that this table is not compiled before production and currently needs to be managed manually.
|
||||
-->
|
||||
|
||||
@ -30,7 +30,7 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Includes|```#include "library.ligo"```|
|
||||
|Functions (short form)|<pre><code>function add (const a : int ; const b : int) : int is<br/> block { skip } with a + b</code></pre>|
|
||||
|Functions (long form)|<pre><code>function add (const a : int ; const b : int) : int is<br/> block { <br/> const result: int = a + b;<br/> } with result</code></pre>|
|
||||
| If Statement | <pre><code>if age < 16 <br/>then fail("Too young to drive."); <br/>else const new_id: int = prev_id + 1;</code></pre>|
|
||||
| If Statement | <pre><code>if age < 16 <br/>then failwith ("Too young to drive."); <br/>else const new_id: int = prev_id + 1;</code></pre>|
|
||||
|Options|<pre><code>type middleName is option(string);<br/>const middleName : middleName = Some("Foo");<br/>const middleName : middleName = None;</code></pre>|
|
||||
|Assignment| ```const age: int = 5;```|
|
||||
|Assignment on an existing variable <br/></br>*⚠️ This feature is not supported at the top-level scope, you can use it e.g. within functions. Works for Records and Maps as well.*| ```age := 18;```, ```p.age := 21``` |
|
||||
@ -41,7 +41,7 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Maps|<pre><code>type prices is map(nat, tez);<br/><br/>const prices : prices = map<br/> 10n -> 60mutez;<br/> 50n -> 30mutez;<br/> 100n -> 10mutez;<br/>end<br/><br/>const price: option(tez) = prices[50n];<br/><br/>prices[200n] := 5mutez;</code></pre>|
|
||||
|Contracts & Accounts|<pre><code>const destinationAddress : address = "tz1...";<br/>const contract : contract(unit) = get_contract(destinationAddress);</code></pre>|
|
||||
|Transactions|<pre><code>const payment : operation = transaction(unit, amount, receiver);</code></pre>|
|
||||
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`|
|
||||
|Exception/Failure|`failwith ("Your descriptive error message for the user goes here.")`|
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
@ -63,7 +63,7 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Types|`type age = int`, `type name = string` |
|
||||
|Includes|```#include "library.mligo"```|
|
||||
|Functions |<pre><code>let add (a : int) (b : int) : int = a + b </code></pre>|
|
||||
| If Statement | <pre><code>let new_id: int = if age < 16 <br/> then failwith("Too young to drive.") <br/> else prev_id + 1</code></pre>|
|
||||
| If Statement | <pre><code>let new_id: int = if age < 16 <br/> then failwith ("Too young to drive.") <br/> else prev_id + 1</code></pre>|
|
||||
|Options|<pre><code>type middle_name = string option<br/>let middle_name : middle_name = Some "Foo"<br/>let middle_name : middle_name = None</code></pre>|
|
||||
|Variable Binding | ```let age: int = 5```|
|
||||
|Type Annotations| ```("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address)```|
|
||||
@ -71,9 +71,9 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Variant *(pattern)* matching|<pre><code>let a: action = Increment 5<br/>match a with<br/>| Increment n -> n + 1<br/>| Decrement n -> n - 1<br/></code></pre>|
|
||||
|Records|<pre><code>type person = {<br/> age: int ;<br/> name: string ;<br/>}<br/><br/>let john : person = {<br/> age = 18;<br/> name = "John Doe";<br/>}<br/><br/>let name: string = john.name</code></pre>|
|
||||
|Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/> (10n, 60mutez);<br/> (50n, 30mutez);<br/> (100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find_opt 50n prices<br/><br/>let prices: prices = Map.update 200n (Some 5mutez) prices</code></pre>|
|
||||
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Operation.get_contract destination_address</code></pre>|
|
||||
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction unit amount receiver</code></pre>|
|
||||
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`|
|
||||
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Tezos.get_contract destination_address</code></pre>|
|
||||
|Transactions|<pre><code>let payment : operation = <br/> Tezos.transaction unit amount receiver</code></pre>|
|
||||
|Exception/Failure|`failwith ("Your descriptive error message for the user goes here.")`|
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
@ -95,7 +95,7 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Types|`type age = int;`, `type name = string;` |
|
||||
|Includes|```#include "library.mligo"```|
|
||||
|Functions |<pre><code>let add = (a: int, b: int) : int => a + b; </code></pre>|
|
||||
| If Statement | <pre><code>let new_id: int = if (age < 16) {<br/> failwith("Too young to drive."); <br/> } else { prev_id + 1; }</code></pre>|
|
||||
| If Statement | <pre><code>let new_id: int = if (age < 16) {<br/> failwith ("Too young to drive."); <br/> } else { prev_id + 1; }</code></pre>|
|
||||
|Options|<pre><code>type middle_name = option(string);<br/>let middle_name : middle_name = Some("Foo");<br/>let middle_name : middle_name = None;</code></pre>|
|
||||
|Variable Binding | ```let age: int = 5;```|
|
||||
|Type Annotations| ```("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address)```|
|
||||
@ -103,9 +103,9 @@ Note that this table is not compiled before production and currently needs to be
|
||||
|Variant *(pattern)* matching|<pre><code>let a: action = Increment(5);<br/>switch(a) {<br/>| Increment(n) => n + 1<br/>| Decrement(n) => n - 1;<br/> } <br/></code></pre>|
|
||||
|Records|<pre><code>type person = {<br/> age: int,<br/> name: string<br/>}<br/><br/>let john : person = {<br/> age: 18,<br/> name: "John Doe"<br/>};<br/><br/>let name: string = john.name;</code></pre>|
|
||||
|Maps|<pre><code>type prices = map(nat, tez);<br/><br/>let prices : prices = Map.literal([<br/> (10n, 60mutez),<br/> (50n, 30mutez),<br/> (100n, 10mutez)<br/>]);<br/><br/>let price: option(tez) = Map.find_opt(50n, prices);<br/><br/>let prices: prices = Map.update(200n, Some (5mutez), prices);</code></pre>|
|
||||
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Operation.get_contract(destination_address);</code></pre>|
|
||||
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, amount, receiver);</code></pre>|
|
||||
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.");`|
|
||||
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Tezos.get_contract(destination_address);</code></pre>|
|
||||
|Transactions|<pre><code>let payment : operation = <br/> Tezos.transaction (unit, amount, receiver);</code></pre>|
|
||||
|Exception/Failure|`failwith ("Your descriptive error message for the user goes here.");`|
|
||||
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -11,8 +11,8 @@ value:
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=a
|
||||
const a : bool = True // Notice the capital letter
|
||||
const b : bool = False // Same.
|
||||
const a : bool = True // Also: true
|
||||
const b : bool = False // Also: false
|
||||
```
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
@ -137,7 +137,7 @@ state.
|
||||
type magnitude is Small | Large // See variant types.
|
||||
|
||||
function compare (const n : nat) : magnitude is
|
||||
if n < 10n then Small (Unit) else Large (Unit) // Unit is needed for now.
|
||||
if n < 10n then Small else Large
|
||||
```
|
||||
|
||||
You can run the `compare` function defined above using the LIGO compiler
|
||||
@ -145,7 +145,7 @@ like this:
|
||||
```shell
|
||||
ligo run-function
|
||||
gitlab-pages/docs/language-basics/boolean-if-else/cond.ligo compare 21n'
|
||||
# Outputs: Large (Unit)
|
||||
# Outputs: Large(Unit)
|
||||
```
|
||||
|
||||
When the branches of the conditional are not a single expression, as
|
||||
@ -161,7 +161,7 @@ else skip;
|
||||
```
|
||||
|
||||
As an exception to the rule, the blocks in a conditional branch do not
|
||||
need to be introduced by the keywor `block`, so, we could have written
|
||||
need to be introduced by the keyword `block`, so we could have written
|
||||
instead:
|
||||
```pascaligo skip
|
||||
if x < y then {
|
||||
@ -187,9 +187,15 @@ gitlab-pages/docs/language-basics/boolean-if-else/cond.mligo compare 21n'
|
||||
# Outputs: Large
|
||||
```
|
||||
|
||||
> Notice that, as in OCaml, in CameLIGO, if a conditional has a branch
|
||||
> `else ()`, that branch can be omitted. The resulting so-called
|
||||
> *dangling else* problem is parsed by associating any `else` to the
|
||||
> closest previous `then`.
|
||||
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=e
|
||||
type magnitude = | Small | Large; // See variant types.
|
||||
type magnitude = Small | Large; // See variant types.
|
||||
|
||||
let compare = (n : nat) : magnitude =>
|
||||
if (n < 10n) { Small; } else { Large; };
|
||||
|
@ -4,7 +4,15 @@ title: Functions
|
||||
---
|
||||
|
||||
LIGO functions are the basic building block of contracts. For example,
|
||||
entrypoints are functions.
|
||||
entrypoints are functions and each smart contract needs a main
|
||||
function that dispatches control to the entrypoints (it is not already
|
||||
the default entrypoint).
|
||||
|
||||
The semantics of function calls in LIGO is that of a *copy of the
|
||||
arguments but also of the environment*. In the case of PascaLIGO, this
|
||||
means that any mutation (assignment) on variables outside the scope of
|
||||
the function will be lost when the function returns, just as the
|
||||
mutations inside the functions will be.
|
||||
|
||||
## Declaring Functions
|
||||
|
||||
@ -230,10 +238,14 @@ function to all its elements.
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=c
|
||||
function incr_map (const l : list (int)) : list (int) is
|
||||
list_map (function (const i : int) : int is i + 1, l)
|
||||
List.map (function (const i : int) : int is i + 1, l)
|
||||
```
|
||||
You can call the function `incr_map` defined above using the LIGO compiler
|
||||
like so:
|
||||
|
||||
> Note that `list_map` is *deprecated*.
|
||||
|
||||
You can call the function `incr_map` defined above using the LIGO
|
||||
compiler like so:
|
||||
|
||||
```shell
|
||||
ligo run-function
|
||||
gitlab-pages/docs/language-basics/src/functions/incr_map.ligo incr_map
|
||||
|
@ -79,17 +79,22 @@ let gcd (x,y : nat * nat) : nat =
|
||||
```
|
||||
|
||||
To ease the writing and reading of the iterated functions (here,
|
||||
`iter`), two predefined functions are provided: `continue` and `stop`:
|
||||
`iter`), two predefined functions are provided: `Loop.resume` and
|
||||
`Loop.stop`:
|
||||
|
||||
```cameligo group=a
|
||||
let iter (x,y : nat * nat) : bool * (nat * nat) =
|
||||
if y = 0n then stop (x,y) else continue (y, x mod y)
|
||||
if y = 0n then Loop.stop (x,y) else Loop.resume (y, x mod y)
|
||||
|
||||
let gcd (x,y : nat * nat) : nat =
|
||||
let x,y = if x < y then y,x else x,y in
|
||||
let x,y = Loop.fold_while iter (x,y)
|
||||
in x
|
||||
```
|
||||
|
||||
> Note that `stop` and `continue` (now `Loop.resume`) are
|
||||
> *deprecated*.
|
||||
|
||||
You can call the function `gcd` defined above using the LIGO compiler
|
||||
like so:
|
||||
```shell
|
||||
@ -131,11 +136,12 @@ let gcd = ((x,y) : (nat, nat)) : nat => {
|
||||
```
|
||||
|
||||
To ease the writing and reading of the iterated functions (here,
|
||||
`iter`), two predefined functions are provided: `continue` and `stop`:
|
||||
`iter`), two predefined functions are provided: `Loop.resume` and
|
||||
`Loop.stop`:
|
||||
|
||||
```reasonligo group=b
|
||||
let iter = ((x,y) : (nat, nat)) : (bool, (nat, nat)) =>
|
||||
if (y == 0n) { stop ((x,y)); } else { continue ((y, x mod y)); };
|
||||
if (y == 0n) { Loop.stop ((x,y)); } else { Loop.resume ((y, x mod y)); };
|
||||
|
||||
let gcd = ((x,y) : (nat, nat)) : nat => {
|
||||
let (x,y) = if (x < y) { (y,x); } else { (x,y); };
|
||||
@ -143,6 +149,10 @@ let gcd = ((x,y) : (nat, nat)) : nat => {
|
||||
x
|
||||
};
|
||||
```
|
||||
|
||||
> Note that `stop` and `continue` (now `Loop.resume`) are
|
||||
> *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Bounded Loops
|
||||
|
@ -19,7 +19,7 @@ Let us first consider and example of record type declaration.
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=a
|
||||
```pascaligo group=records1
|
||||
type user is
|
||||
record [
|
||||
id : nat;
|
||||
@ -29,7 +29,7 @@ type user is
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
```cameligo group=records1
|
||||
type user = {
|
||||
id : nat;
|
||||
is_admin : bool;
|
||||
@ -38,7 +38,7 @@ type user = {
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
```reasonligo group=records1
|
||||
type user = {
|
||||
id : nat,
|
||||
is_admin : bool,
|
||||
@ -51,7 +51,7 @@ And here is how a record value is defined:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=a
|
||||
```pascaligo group=records1
|
||||
const alice : user =
|
||||
record [
|
||||
id = 1n;
|
||||
@ -61,7 +61,7 @@ const alice : user =
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
```cameligo group=records1
|
||||
let alice : user = {
|
||||
id = 1n;
|
||||
is_admin = true;
|
||||
@ -70,7 +70,7 @@ let alice : user = {
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
```reasonligo group=records1
|
||||
let alice : user = {
|
||||
id : 1n,
|
||||
is_admin : true,
|
||||
@ -86,17 +86,17 @@ operator, like so:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=a
|
||||
```pascaligo group=records1
|
||||
const alice_admin : bool = alice.is_admin
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
```cameligo group=records1
|
||||
let alice_admin : bool = alice.is_admin
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
```reasonligo group=records1
|
||||
let alice_admin : bool = alice.is_admin;
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -123,7 +123,7 @@ In PascaLIGO, the shape of that expression is `<record variable> with
|
||||
<record value>`. The record variable is the record to update and the
|
||||
record value is the update itself.
|
||||
|
||||
```pascaligo group=b
|
||||
```pascaligo group=records2
|
||||
type point is record [x : int; y : int; z : int]
|
||||
type vector is record [dx : int; dy : int]
|
||||
|
||||
@ -151,7 +151,7 @@ the blockless function.
|
||||
The syntax for the functional updates of record in CameLIGO follows
|
||||
that of OCaml:
|
||||
|
||||
```cameligo group=b
|
||||
```cameligo group=records2
|
||||
type point = {x : int; y : int; z : int}
|
||||
type vector = {dx : int; dy : int}
|
||||
|
||||
@ -179,7 +179,7 @@ xy_translate "({x=2;y=3;z=1}, {dx=3;dy=4})"
|
||||
The syntax for the functional updates of record in ReasonLIGO follows
|
||||
that of ReasonML:
|
||||
|
||||
```reasonligo group=b
|
||||
```reasonligo group=records2
|
||||
type point = {x : int, y : int, z : int};
|
||||
type vector = {dx : int, dy : int};
|
||||
|
||||
@ -216,7 +216,7 @@ name "patch").
|
||||
Let us consider defining a function that translates three-dimensional
|
||||
points on a plane.
|
||||
|
||||
```pascaligo group=c
|
||||
```pascaligo group=records3
|
||||
type point is record [x : int; y : int; z : int]
|
||||
type vector is record [dx : int; dy : int]
|
||||
|
||||
@ -242,7 +242,7 @@ Of course, we can actually translate the point with only one `patch`,
|
||||
as the previous example was meant to show that, after the first patch,
|
||||
the value of `p` indeed changed. So, a shorter version would be
|
||||
|
||||
```pascaligo group=d
|
||||
```pascaligo group=records4
|
||||
type point is record [x : int; y : int; z : int]
|
||||
type vector is record [dx : int; dy : int]
|
||||
|
||||
@ -267,7 +267,7 @@ Record patches can actually be simulated with functional updates. All
|
||||
we have to do is *declare a new record value with the same name as the
|
||||
one we want to update* and use a functional update, like so:
|
||||
|
||||
```pascaligo group=e
|
||||
```pascaligo group=records5
|
||||
type point is record [x : int; y : int; z : int]
|
||||
type vector is record [dx : int; dy : int]
|
||||
|
||||
@ -298,71 +298,98 @@ values of the same type. The former are called *key* and the latter
|
||||
is that the type of the keys must be *comparable*, in the Michelson
|
||||
sense.
|
||||
|
||||
### Declaring a Map
|
||||
|
||||
Here is how a custom map from addresses to a pair of integers is
|
||||
defined.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
type move is int * int
|
||||
type register is map (address, move)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
type move = int * int
|
||||
type register = (address, move) map
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
type move = (int, int);
|
||||
type register = map (address, move);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
And here is how a map value is defined:
|
||||
### Creating an Empty Map
|
||||
|
||||
Here is how to create an empty map.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
const empty : register = map []
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=maps
|
||||
let empty : register = Map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=maps
|
||||
let empty : register = Map.empty
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
### Creating a Non-empty Map
|
||||
|
||||
And here is how to create a non-empty map value:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
const moves : register =
|
||||
map [
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
|
||||
```
|
||||
|
||||
> Notice the `->` between the key and its value and `;` to separate
|
||||
> individual map entries. The annotated value `("<string value>" :
|
||||
> address)` means that we cast a string into an address. Also, `map`
|
||||
> is a keyword.
|
||||
Notice the `->` between the key and its value and `;` to separate
|
||||
individual map entries. The annotated value `("<string value>" :
|
||||
address)` means that we cast a string into an address. Also, `map` is
|
||||
a keyword.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let moves : register =
|
||||
Map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
|
||||
```
|
||||
|
||||
> The `Map.literal` predefined function builds a map from a list of
|
||||
> key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
|
||||
> separate individual map entries. `("<string value>": address)`
|
||||
> means that we type-cast a string into an address.
|
||||
The `Map.literal` predefined function builds a map from a list of
|
||||
key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
|
||||
separate individual map entries. `("<string value>": address)` means
|
||||
that we type-cast a string into an address. -->
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let moves : register =
|
||||
Map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
|
||||
```
|
||||
|
||||
> The `Map.literal` predefined function builds a map from a list of
|
||||
> key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
|
||||
> separate individual map entries. `("<string value>": address)`
|
||||
> means that we type-cast a string into an address.
|
||||
The `Map.literal` predefined function builds a map from a list of
|
||||
key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
|
||||
separate individual map entries. `("<string value>": address)` means
|
||||
that we type-cast a string into an address. -->
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
@ -375,19 +402,19 @@ In PascaLIGO, we can use the postfix `[]` operator to read the `move`
|
||||
value associated to a given key (`address` here) in the register. Here
|
||||
is an example:
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
const my_balance : option (move) =
|
||||
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let my_balance : move option =
|
||||
Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let my_balance : option (move) =
|
||||
Map.find_opt (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), moves);
|
||||
```
|
||||
@ -400,7 +427,7 @@ the reader to account for a missing key in the map. This requires
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function force_access (const key : address; const moves : register) : move is
|
||||
case moves[key] of
|
||||
Some (move) -> move
|
||||
@ -409,7 +436,7 @@ function force_access (const key : address; const moves : register) : move is
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let force_access (key, moves : address * register) : move =
|
||||
match Map.find_opt key moves with
|
||||
Some move -> move
|
||||
@ -417,7 +444,7 @@ let force_access (key, moves : address * register) : move =
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let force_access = ((key, moves) : (address, register)) : move => {
|
||||
switch (Map.find_opt (key, moves)) {
|
||||
| Some (move) => move
|
||||
@ -431,8 +458,7 @@ let force_access = ((key, moves) : (address, register)) : move => {
|
||||
### Updating a Map
|
||||
|
||||
Given a map, we may want to add a new binding, remove one, or modify
|
||||
one by changing the value associated to an already existing key. We
|
||||
may even want to retain the key but not the associated value. All
|
||||
one by changing the value associated to an already existing key. All
|
||||
those operations are called *updates*.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
@ -443,7 +469,7 @@ The values of a PascaLIGO map can be updated using the usual
|
||||
assignment syntax `<map variable>[<key>] := <new value>`. Let us
|
||||
consider an example.
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function assign (var m : register) : register is
|
||||
block {
|
||||
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
|
||||
@ -453,7 +479,7 @@ function assign (var m : register) : register is
|
||||
If multiple bindings need to be updated, PascaLIGO offers a *patch
|
||||
instruction* for maps, similar to that for records.
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function assignments (var m : register) : register is
|
||||
block {
|
||||
patch m with map [
|
||||
@ -463,35 +489,51 @@ function assignments (var m : register) : register is
|
||||
} with m
|
||||
```
|
||||
|
||||
See further for the removal of bindings.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
We can update a binding in a map in CameLIGO by means of the
|
||||
`Map.update` built-in function:
|
||||
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let assign (m : register) : register =
|
||||
Map.update
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) m
|
||||
```
|
||||
|
||||
> Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
> use `None` instead, that would have meant that the binding is
|
||||
> removed.
|
||||
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
use `None` instead, that would have meant that the binding is removed.
|
||||
|
||||
As a particular case, we can only add a key and its associated value.
|
||||
|
||||
```cameligo group=maps
|
||||
let add (m : register) : register =
|
||||
Map.add
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (4,9) m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
We can update a binding in a map in ReasonLIGO by means of the
|
||||
`Map.update` built-in function:
|
||||
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let assign = (m : register) : register =>
|
||||
Map.update
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), Some ((4,9)), m);
|
||||
```
|
||||
|
||||
> Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
> use `None` instead, that would have meant that the binding is
|
||||
> removed.
|
||||
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
use `None` instead, that would have meant that the binding is removed.
|
||||
|
||||
As a particular case, we can only add a key and its associated value.
|
||||
|
||||
```reasonligo group=maps
|
||||
let add = (m : register) : register =>
|
||||
Map.add
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (4,9), m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
@ -503,7 +545,7 @@ To remove a binding from a map, we need its key.
|
||||
|
||||
In PascaLIGO, there is a special instruction to remove a binding from
|
||||
a map.
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function delete (const key : address; var moves : register) : register is
|
||||
block {
|
||||
remove key from map moves
|
||||
@ -514,7 +556,7 @@ function delete (const key : address; var moves : register) : register is
|
||||
|
||||
In CameLIGO, we use the predefined function `Map.remove` as follows:
|
||||
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let delete (key, moves : address * register) : register =
|
||||
Map.remove key moves
|
||||
```
|
||||
@ -523,7 +565,7 @@ let delete (key, moves : address * register) : register =
|
||||
|
||||
In ReasonLIGO, we use the predefined function `Map.remove` as follows:
|
||||
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let delete = ((key, moves) : (address, register)) : register =>
|
||||
Map.remove (key, moves);
|
||||
```
|
||||
@ -549,34 +591,28 @@ no return value: its only use is to produce side-effects. This can be
|
||||
useful if for example you would like to check that each value inside
|
||||
of a map is within a certain range, and fail with an error otherwise.
|
||||
|
||||
The predefined functional iterator implementing the iterated operation
|
||||
over maps is called `Map.iter`. In the following example, the register
|
||||
of moves is iterated to check that the start of each move is above
|
||||
`3`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over maps is called `map_iter`. In the following
|
||||
example, the register of moves is iterated to check that the start of
|
||||
each move is above `3`.
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function iter_op (const m : register) : unit is
|
||||
block {
|
||||
function iterated (const i : address; const j : move) : unit is
|
||||
if j.1 > 3 then Unit else (failwith ("Below range.") : unit)
|
||||
} with map_iter (iterated, m)
|
||||
} with Map.iter (iterated, m)
|
||||
```
|
||||
|
||||
> The iterated function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `map_iter` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefinded functional iterator implementing the
|
||||
iterated operation over maps is called `Map.iter`. In the following
|
||||
example, the register of moves is iterated to check that the start of
|
||||
each move is above `3`.
|
||||
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let iter_op (m : register) : unit =
|
||||
let predicate = fun (i,j : address * move) -> assert (j.0 > 3)
|
||||
in Map.iter predicate m
|
||||
@ -584,12 +620,7 @@ let iter_op (m : register) : unit =
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over maps is called `Map.iter`. In the following
|
||||
example, the register of moves is iterated to check that the start of
|
||||
each move is above `3`.
|
||||
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let iter_op = (m : register) : unit => {
|
||||
let predicate = ((i,j) : (address, move)) => assert (j[0] > 3);
|
||||
Map.iter (predicate, m);
|
||||
@ -601,32 +632,28 @@ let iter_op = (m : register) : unit => {
|
||||
|
||||
We may want to change all the bindings of a map by applying to them a
|
||||
function. This is called a *map operation*, not to be confused with
|
||||
the map data structure.
|
||||
the map data structure. The predefined functional iterator
|
||||
implementing the map operation over maps is called `Map.map`. In the
|
||||
following example, we add `1` to the ordinate of the moves in the
|
||||
register.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the map
|
||||
operation over maps is called `map_map` and is used as follows:
|
||||
|
||||
```pascaligo group=f
|
||||
```pascaligo group=maps
|
||||
function map_op (const m : register) : register is
|
||||
block {
|
||||
function increment (const i : address; const j : move) : move is
|
||||
(j.0, j.1 + 1);
|
||||
} with map_map (increment, m)
|
||||
(j.0, j.1 + 1)
|
||||
} with Map.map (increment, m)
|
||||
```
|
||||
|
||||
> The mapped function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `map_map` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the map
|
||||
operation over maps is called `Map.map` and is used as follows:
|
||||
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let map_op (m : register) : register =
|
||||
let increment = fun (i,j : address * move) -> j.0, j.1 + 1
|
||||
in Map.map increment m
|
||||
@ -634,10 +661,7 @@ let map_op (m : register) : register =
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iteratir implementing the map
|
||||
operation over maps is called `Map.map` and is used as follows:
|
||||
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let map_op = (m : register) : register => {
|
||||
let increment = ((i,j): (address, move)) => (j[0], j[1] + 1);
|
||||
Map.map (increment, m);
|
||||
@ -653,31 +677,26 @@ function takes two arguments: an *accumulator* and the structure
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
|
||||
The predefined functional iterator implementing the folded operation
|
||||
over maps is called `Map.fold` and is used as follows.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
folded operation over maps is called `map_fold` and is used as
|
||||
follows:
|
||||
|
||||
```pascaligo group=f
|
||||
function fold_op (const m : register) : int is block {
|
||||
function folded (const j : int; const cur : address * move) : int is
|
||||
j + cur.1.1
|
||||
} with map_fold (folded, m, 5)
|
||||
```pascaligo group=maps
|
||||
function fold_op (const m : register) : int is
|
||||
block {
|
||||
function folded (const i : int; const j : address * move) : int is
|
||||
i + j.1.1
|
||||
} with Map.fold (folded, m, 5)
|
||||
```
|
||||
|
||||
> The folded function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `map_fold` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the
|
||||
folded operation over maps is called `Map.fold` and is used as
|
||||
follows:
|
||||
|
||||
```cameligo group=f
|
||||
```cameligo group=maps
|
||||
let fold_op (m : register) : register =
|
||||
let folded = fun (i,j : int * (address * move)) -> i + j.1.1
|
||||
in Map.fold folded m 5
|
||||
@ -685,11 +704,7 @@ let fold_op (m : register) : register =
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
folded operation over maps is called `Map.fold` and is used as
|
||||
follows:
|
||||
|
||||
```reasonligo group=f
|
||||
```reasonligo group=maps
|
||||
let fold_op = (m : register) : register => {
|
||||
let folded = ((i,j): (int, (address, move))) => i + j[1][1];
|
||||
Map.fold (folded, m, 5);
|
||||
@ -709,75 +724,99 @@ were it not for *big maps*. Big maps are a data structure offered by
|
||||
Michelson which handles the scaling concerns for us. In LIGO, the
|
||||
interface for big maps is analogous to the one used for ordinary maps.
|
||||
|
||||
### Declaring a Map
|
||||
|
||||
Here is how we define a big map:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=g
|
||||
```pascaligo group=big_maps
|
||||
type move is int * int
|
||||
|
||||
type register is big_map (address, move)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=g
|
||||
```cameligo group=big_maps
|
||||
type move = int * int
|
||||
|
||||
type register = (address, move) big_map
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=g
|
||||
```reasonligo group=big_maps
|
||||
type move = (int, int);
|
||||
|
||||
type register = big_map (address, move);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
And here is how a map value is created:
|
||||
### Creating an Empty Big Map
|
||||
|
||||
Here is how to create an empty big map.
|
||||
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
const empty : register = big_map []
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=big_maps
|
||||
let empty : register = Big_map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=big_maps
|
||||
let empty : register = Big_map.empty
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
### Creating a Non-empty Map
|
||||
|
||||
And here is how to create a non-empty map value:
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=g
|
||||
```pascaligo group=big_maps
|
||||
const moves : register =
|
||||
big_map [
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
|
||||
```
|
||||
|
||||
> Notice the right arrow `->` between the key and its value and the
|
||||
> semicolon separating individual map entries. The value annotation
|
||||
> `("<string value>" : address)` means that we cast a string into an
|
||||
> address.
|
||||
Notice the right arrow `->` between the key and its value and the
|
||||
semicolon separating individual map entries. The value annotation
|
||||
`("<string value>" : address)` means that we cast a string into an
|
||||
address. -->
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=g
|
||||
```cameligo group=big_maps
|
||||
let moves : register =
|
||||
Big_map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
|
||||
```
|
||||
|
||||
> The predefind function `Big_map.literal` constructs a big map from a
|
||||
> list of key-value pairs `(<key>, <value>)`. Note also the semicolon
|
||||
> separating individual map entries. The annotated value `("<string
|
||||
> value>" : address)` means that we cast a string into an address.
|
||||
The predefind function `Big_map.literal` constructs a big map from a
|
||||
list of key-value pairs `(<key>, <value>)`. Note also the semicolon
|
||||
separating individual map entries. The annotated value `("<string>
|
||||
value>" : address)` means that we cast a string into an address.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=g
|
||||
```reasonligo group=big_maps
|
||||
let moves : register =
|
||||
Big_map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
|
||||
```
|
||||
|
||||
> The predefind function `Big_map.literal` constructs a big map from a
|
||||
> list of key-value pairs `(<key>, <value>)`. Note also the semicolon
|
||||
> separating individual map entries. The annotated value `("<string
|
||||
> value>" : address)` means that we cast a string into an address.
|
||||
The predefind function `Big_map.literal` constructs a big map from a
|
||||
list of key-value pairs `(<key>, <value>)`. Note also the semicolon
|
||||
separating individual map entries. The annotated value `("<string>
|
||||
value>" : address)` means that we cast a string into an address.
|
||||
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -793,21 +832,21 @@ the value we read is an optional value (in our case, of type `option
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=g
|
||||
```pascaligo group=big_maps
|
||||
const my_balance : option (move) =
|
||||
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=g
|
||||
```cameligo group=big_maps
|
||||
let my_balance : move option =
|
||||
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=g
|
||||
```reasonligo group=big_maps
|
||||
let my_balance : option (move) =
|
||||
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, moves);
|
||||
```
|
||||
@ -822,7 +861,7 @@ let my_balance : option (move) =
|
||||
The values of a PascaLIGO big map can be updated using the
|
||||
assignment syntax for ordinary maps
|
||||
|
||||
```pascaligo group=g
|
||||
```pascaligo group=big_maps
|
||||
function add (var m : register) : register is
|
||||
block {
|
||||
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
|
||||
@ -836,7 +875,7 @@ const updated_map : register = add (moves)
|
||||
We can update a big map in CameLIGO using the `Big_map.update`
|
||||
built-in:
|
||||
|
||||
```cameligo group=g
|
||||
```cameligo group=big_maps
|
||||
let updated_map : register =
|
||||
Big_map.update
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) moves
|
||||
@ -847,10 +886,10 @@ let updated_map : register =
|
||||
We can update a big map in ReasonLIGO using the `Big_map.update`
|
||||
built-in:
|
||||
|
||||
```reasonligo group=g
|
||||
```reasonligo group=big_maps
|
||||
let updated_map : register =
|
||||
Big_map.update
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some ((4,9)), moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -867,7 +906,7 @@ syntax.
|
||||
PascaLIGO features a special syntactic construct to remove bindings
|
||||
from maps, of the form `remove <key> from map <map>`. For example,
|
||||
|
||||
```pascaligo group=g
|
||||
```pascaligo group=big_maps
|
||||
function rem (var m : register) : register is
|
||||
block {
|
||||
remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) from map moves
|
||||
@ -881,7 +920,7 @@ const updated_map : register = rem (moves)
|
||||
In CameLIGO, the predefined function which removes a binding in a map
|
||||
is called `Map.remove` and is used as follows:
|
||||
|
||||
```cameligo group=g
|
||||
```cameligo group=big_maps
|
||||
let updated_map : register =
|
||||
Map.remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
```
|
||||
@ -891,7 +930,7 @@ let updated_map : register =
|
||||
In ReasonLIGO, the predefined function which removes a binding in a map
|
||||
is called `Map.remove` and is used as follows:
|
||||
|
||||
```reasonligo group=g
|
||||
```reasonligo group=big_maps
|
||||
let updated_map : register =
|
||||
Map.remove (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves)
|
||||
```
|
||||
|
@ -3,7 +3,28 @@ id: math-numbers-tez
|
||||
title: Math, Numbers & Tez
|
||||
---
|
||||
|
||||
LIGO offers three built-in numerical types: `int`, `nat` and `tez`.
|
||||
LIGO offers three built-in numerical types: `int`, `nat` and
|
||||
`tez`. Values of type `int` are integers; values of type `nat` are
|
||||
natural numbers (integral numbers greater than or equal to zero);
|
||||
values of type `tez` are units of measure of Tezos tokens.
|
||||
|
||||
* Integer literals are the same found in mainstream programming
|
||||
languages, for example, `10`, `-6` and `0`, but there is only one
|
||||
canonical zero: `0` (so, for instance, `-0` and `00` are invalid).
|
||||
|
||||
* Natural numbers are written as digits follwed by the suffix `n`,
|
||||
like so: `12n`, `0n`, and the same restriction on zero as integers
|
||||
applies: `0n` is the only way to specify the natural zero.
|
||||
|
||||
* Tezos tokens can be specified using literals of three kinds:
|
||||
* units of millionth of `tez`, using the suffix `mutez` after a
|
||||
natural literal, like `10000mutez` or `0mutez`;
|
||||
* units of `tez`, using the suffix `tz` or `tez`, like `3tz` or
|
||||
`3tez`;
|
||||
* decimal amounts of `tz` or `tez`, like `12.3tz` or `12.4tez`.
|
||||
|
||||
Note that large integral values can be expressed using underscores to
|
||||
separate groups of digits, like `1_000mutez` or `0.000_004tez`.
|
||||
|
||||
## Addition
|
||||
|
||||
@ -27,7 +48,7 @@ const a : int = 5 + 10
|
||||
const b : int = 5n + 10
|
||||
|
||||
// tez + tez yields tez
|
||||
const c : tez = 5mutez + 10mutez
|
||||
const c : tez = 5mutez + 0.000_010tez
|
||||
|
||||
//tez + int or tez + nat is invalid
|
||||
// const d : tez = 5mutez + 10n
|
||||
@ -57,7 +78,7 @@ let a : int = 5 + 10
|
||||
let b : int = 5n + 10
|
||||
|
||||
// tez + tez yields tez
|
||||
let c : tez = 5mutez + 10mutez
|
||||
let c : tez = 5mutez + 0.000_010tez
|
||||
|
||||
// tez + int or tez + nat is invalid
|
||||
// let d : tez = 5mutez + 10n
|
||||
@ -87,7 +108,7 @@ let a : int = 5 + 10;
|
||||
let b : int = 5n + 10;
|
||||
|
||||
// tez + tez yields tez
|
||||
let c : tez = 5mutez + 10mutez;
|
||||
let c : tez = 5mutez + 0.000_010tez;
|
||||
|
||||
// tez + int or tez + nat is invalid:
|
||||
// let d : tez = 5mutez + 10n;
|
||||
@ -192,7 +213,7 @@ let c : tez = 5n * 5mutez;
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Division
|
||||
## Euclidean Division
|
||||
|
||||
In LIGO you can divide `int`, `nat`, and `tez`. Here is how:
|
||||
|
||||
@ -222,6 +243,46 @@ let c : nat = 10mutez / 3mutez;
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
LIGO also allows you to compute the remainder of the Euclidean
|
||||
division. In LIGO, it is a natural number.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=d
|
||||
const a : int = 120
|
||||
const b : int = 9
|
||||
const rem1 : nat = a mod b // 3
|
||||
const c : nat = 120n
|
||||
const rem2 : nat = c mod b // 3
|
||||
const d : nat = 9n
|
||||
const rem3 : nat = c mod d // 3
|
||||
const rem4 : nat = a mod d // 3
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=d
|
||||
let a : int = 120
|
||||
let b : int = 9
|
||||
let rem1 : nat = a mod b // 3
|
||||
let c : nat = 120n
|
||||
let rem2 : nat = c mod b // 3
|
||||
let d : nat = 9n
|
||||
let rem3 : nat = c mod d // 3
|
||||
let rem4 : nat = a mod d // 3
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=d
|
||||
let a : int = 120;
|
||||
let b : int = 9;
|
||||
let rem1 : nat = a mod b; // 3
|
||||
let c : nat = 120n;
|
||||
let rem2 : nat = c mod b; // 3
|
||||
let d : nat = 9n;
|
||||
let rem3 : nat = c mod d; // 3
|
||||
let rem4 : nat = a mod d; // 3
|
||||
```
|
||||
|
||||
## From `int` to `nat` and back
|
||||
|
||||
You can *cast* an `int` to a `nat` and vice versa. Here is how:
|
||||
@ -244,7 +305,6 @@ let b : nat = abs (1)
|
||||
let a : int = int (1n);
|
||||
let b : nat = abs (1);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Checking a `nat`
|
||||
|
@ -3,13 +3,14 @@ id: operators
|
||||
title: Operators
|
||||
---
|
||||
|
||||
## Available operators
|
||||
## Available Operators
|
||||
|
||||
> This list is non-exhaustive. More operators will be added in upcoming LIGO releases.
|
||||
> This list is non-exhaustive. More operators will be added in
|
||||
> upcoming LIGO releases.
|
||||
|
||||
|Michelson |Pascaligo |Description |
|
||||
|--- |--- |--- |
|
||||
| `SENDER` | `sender` | Address that initiated the current transaction
|
||||
| `SOURCE` | `source` | Address that initiated the transaction, which triggered the current transaction. (useful e.g. when there's a transaction sent by another contract)
|
||||
| `AMOUNT` | `amount` | Amount of tez sent by the transaction that invoked the contract
|
||||
| `NOW` | `now` | Timestamp of the block whose validation triggered execution of the contract, i.e. current time when the contract is run.
|
||||
| `SENDER` | `Tezos.sender` | Address that initiated the current transaction
|
||||
| `SOURCE` | `Tezos.source` | Address that initiated the transaction, which triggered the current transaction. (useful e.g. when there's a transaction sent by another contract)
|
||||
| `AMOUNT` | `Tezos.amount` | Amount of tez sent by the transaction that invoked the contract
|
||||
| `NOW` | `Tezos.now` | Timestamp of the block whose validation triggered execution of the contract, i.e. current time when the contract is run.
|
||||
|
@ -62,32 +62,28 @@ Accessing the components of a tuple in OCaml is achieved by
|
||||
[pattern matching](language-basics/unit-option-pattern-matching.md). LIGO
|
||||
currently supports tuple patterns only in the parameters of functions,
|
||||
not in pattern matching. However, we can access components by their
|
||||
position in their tuple, which cannot be done in OCaml.
|
||||
position in their tuple, which cannot be done in OCaml. *Tuple
|
||||
components are zero-indexed*, that is, the first component has index
|
||||
`0`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
Tuple components are one-indexed and accessed like so:
|
||||
|
||||
```pascaligo group=tuple
|
||||
const first_name : string = full_name.1
|
||||
const first_name : string = full_name.0
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
Tuple elements are zero-indexed and accessed like so:
|
||||
|
||||
```cameligo group=tuple
|
||||
let first_name : string = full_name.0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
Tuple components are one-indexed and accessed like so:
|
||||
|
||||
```reasonligo group=tuple
|
||||
let first_name : string = full_name[1];
|
||||
let first_name : string = full_name[0];
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -103,7 +99,7 @@ called the *head*, and the sub-list after the head is called the
|
||||
think of a list a *stack*, where the top is written on the left.
|
||||
|
||||
> 💡 Lists are needed when returning operations from a smart
|
||||
> contract's access function.
|
||||
> contract's main function.
|
||||
|
||||
### Defining Lists
|
||||
|
||||
@ -128,7 +124,6 @@ let my_list : list (int) = [1, 2, 2]; // The head is 1
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
### Adding to Lists
|
||||
|
||||
Lists can be augmented by adding an element before the head (or, in
|
||||
@ -180,49 +175,36 @@ There are three kinds of functional iterations over LIGO lists: the
|
||||
*iterated operation*, the *map operation* (not to be confused with the
|
||||
*map data structure*) and the *fold operation*.
|
||||
|
||||
> 💡 Lists can be iterated, folded or mapped to different values. You
|
||||
> can find additional examples
|
||||
> [here](https://gitlab.com/ligolang/ligo/tree/dev/src/test/contracts)
|
||||
> and other built-in operators
|
||||
> [here](https://gitlab.com/ligolang/ligo/blob/dev/src/passes/operators/operators.ml#L59)
|
||||
|
||||
#### Iterated Operation over Lists
|
||||
|
||||
The first, the *iterated operation*, is an iteration over the list
|
||||
with a unit return value. It is useful to enforce certain invariants
|
||||
on the element of a list, or fail. For example you might want to check
|
||||
that each value inside of a list is within a certain range, and fail
|
||||
otherwise.
|
||||
on the element of a list, or fail.
|
||||
|
||||
For example you might want to check that each value inside of a list
|
||||
is within a certain range, and fail otherwise. The predefined
|
||||
functional iterator implementing the iterated operation over lists is
|
||||
called `List.iter`.
|
||||
|
||||
In the following example, a list is iterated to check that all its
|
||||
elements (integers) are strictly greater than `3`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over lists is called `list_iter`.
|
||||
|
||||
In the following example, a list is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```pascaligo group=lists
|
||||
function iter_op (const l : list (int)) : unit is
|
||||
block {
|
||||
function iterated (const i : int) : unit is
|
||||
if i > 2 then Unit else (failwith ("Below range.") : unit)
|
||||
} with list_iter (iterated, l)
|
||||
if i > 3 then Unit else (failwith ("Below range.") : unit)
|
||||
} with List.iter (iterated, l)
|
||||
```
|
||||
|
||||
> The iterated function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `list_iter` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over lists is called `List.iter`.
|
||||
|
||||
In the following example, a list is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```cameligo group=lists
|
||||
let iter_op (l : int list) : unit =
|
||||
let predicate = fun (i : int) -> assert (i > 3)
|
||||
@ -231,12 +213,6 @@ let iter_op (l : int list) : unit =
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over lists is called `List.iter`.
|
||||
|
||||
In the following example, a list is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```reasonligo group=lists
|
||||
let iter_op = (l : list (int)) : unit => {
|
||||
let predicate = (i : int) => assert (i > 3);
|
||||
@ -251,32 +227,25 @@ let iter_op = (l : list (int)) : unit => {
|
||||
|
||||
We may want to change all the elements of a given list by applying to
|
||||
them a function. This is called a *map operation*, not to be confused
|
||||
with the map data structure.
|
||||
with the map data structure. The predefined functional iterator
|
||||
implementing the mapped operation over lists is called `List.map` and
|
||||
is used as follows.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over lists is called `list_map` and is used as
|
||||
follows:
|
||||
|
||||
```pascaligo group=lists
|
||||
function increment (const i : int): int is i + 1
|
||||
|
||||
// Creates a new list with all elements incremented by 1
|
||||
const plus_one : list (int) = list_map (increment, larger_list)
|
||||
const plus_one : list (int) = List.map (increment, larger_list)
|
||||
```
|
||||
|
||||
> The mapped function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `list_map` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over lists is called `List.map` and is used as
|
||||
follows:
|
||||
|
||||
```cameligo group=lists
|
||||
let increment (i : int) : int = i + 1
|
||||
|
||||
@ -286,10 +255,6 @@ let plus_one : int list = List.map increment larger_list
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over lists is called `List.map` and is used as
|
||||
follows:
|
||||
|
||||
```reasonligo group=lists
|
||||
let increment = (i : int) : int => i + 1;
|
||||
|
||||
@ -305,29 +270,23 @@ A *folded operation* is the most general of iterations. The folded
|
||||
function takes two arguments: an *accumulator* and the structure
|
||||
*element* at hand, with which it then produces a new accumulator. This
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
traversal of the data structure is over. The predefined functional
|
||||
iterator implementing the folded operation over lists is called
|
||||
`List.fold` and is used as follows.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
folded operation over lists is called `list_fold` and is used as
|
||||
follows:
|
||||
|
||||
```pascaligo group=lists
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
const sum_of_elements : int = list_fold (sum, my_list, 0)
|
||||
const sum_of_elements : int = List.fold (sum, my_list, 0)
|
||||
```
|
||||
|
||||
> The folded function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `list_fold` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the folded
|
||||
operation over lists is called `List.fold` and is used as follows:
|
||||
|
||||
```cameligo group=lists
|
||||
let sum (acc, i: int * int) : int = acc + i
|
||||
let sum_of_elements : int = List.fold sum my_list 0
|
||||
@ -335,10 +294,6 @@ let sum_of_elements : int = List.fold sum my_list 0
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
folded operation over lists is called `List.fold` and is used as
|
||||
follows:
|
||||
|
||||
```reasonligo group=lists
|
||||
let sum = ((result, i): (int, int)): int => result + i;
|
||||
let sum_of_elements : int = List.fold (sum, my_list, 0);
|
||||
@ -350,7 +305,7 @@ let sum_of_elements : int = List.fold (sum, my_list, 0);
|
||||
Sets are unordered collections of values of the same type, like lists
|
||||
are ordered collections. Like the mathematical sets and lists, sets
|
||||
can be empty and, if not, elements of sets in LIGO are *unique*,
|
||||
whereas they can be repeated in a list.
|
||||
whereas they can be repeated in a *list*.
|
||||
|
||||
### Empty Sets
|
||||
|
||||
@ -476,36 +431,34 @@ in a set as follows:
|
||||
```reasonligo group=sets
|
||||
let contains_3 : bool = Set.mem (3, my_set);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
### Cardinal of Sets
|
||||
|
||||
The predefined function `Set.size` returns the number of
|
||||
elements in a given set as follows.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined function `size` returns the number of
|
||||
elements in a given set as follows:
|
||||
|
||||
```pascaligo group=sets
|
||||
const set_size : nat = size (my_set)
|
||||
const cardinal : nat = Set.size (my_set)
|
||||
```
|
||||
|
||||
> Note that `size` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined function `Set.size` returns the number of
|
||||
elements in a given set as follows:
|
||||
|
||||
```cameligo group=sets
|
||||
let set_size : nat = Set.size my_set
|
||||
let cardinal : nat = Set.size my_set
|
||||
```
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined function `Set.size` returns the number
|
||||
of elements in a given set as follows:
|
||||
|
||||
```reasonligo group=sets
|
||||
let set_size : nat = Set.size (my_set);
|
||||
let cardinal : nat = Set.size (my_set);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -513,20 +466,23 @@ let set_size : nat = Set.size (my_set);
|
||||
|
||||
### Updating Sets
|
||||
|
||||
There are two ways to update a set, that is to add or remove from
|
||||
it.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, there are two ways to update a set, that is to add or
|
||||
remove from it. Either we create a new set from the given one, or we
|
||||
In PascaLIGO, either we create a new set from the given one, or we
|
||||
modify it in-place. First, let us consider the former way:
|
||||
|
||||
```pascaligo group=sets
|
||||
const larger_set : set (int) = set_add (4, my_set)
|
||||
|
||||
const smaller_set : set (int) = set_remove (3, my_set)
|
||||
const larger_set : set (int) = Set.add (4, my_set)
|
||||
const smaller_set : set (int) = Set.remove (3, my_set)
|
||||
```
|
||||
|
||||
> Note that `set_add` and `set_remove` are *deprecated*.
|
||||
|
||||
If we are in a block, we can use an instruction to modify the set
|
||||
bound to a given variable. This is called a *patch*. It is only
|
||||
possible to add elements by means of a patch, not remove any: it is
|
||||
@ -548,23 +504,23 @@ const new_set : set (int) = update (my_set)
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, we update a given set by creating another one, with or
|
||||
In CameLIGO, we can use the predefined functions `Set.add` and
|
||||
`Set.remove`. We update a given set by creating another one, with or
|
||||
without some elements.
|
||||
|
||||
```cameligo group=sets
|
||||
let larger_set : int set = Set.add 4 my_set
|
||||
|
||||
let smaller_set : int set = Set.remove 3 my_set
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, we update a given set by creating another one, with or
|
||||
In ReasonLIGO, we can use the predefined functions `Set.add` and
|
||||
`Set.remove`. We update a given set by creating another one, with or
|
||||
without some elements.
|
||||
|
||||
```reasonligo group=sets
|
||||
let larger_set : set (int) = Set.add (4, my_set);
|
||||
|
||||
let smaller_set : set (int) = Set.remove (3, my_set);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
@ -588,35 +544,27 @@ no return value: its only use is to produce side-effects. This can be
|
||||
useful if for example you would like to check that each value inside
|
||||
of a map is within a certain range, and fail with an error otherwise.
|
||||
|
||||
The predefined functional iterator implementing the iterated operation
|
||||
over sets is called `Set.iter`. In the following example, a set is
|
||||
iterated to check that all its elements (integers) are greater than
|
||||
`3`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over sets is called `set_iter`.
|
||||
|
||||
In the following example, a set is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```pascaligo group=sets
|
||||
function iter_op (const s : set (int)) : unit is
|
||||
block {
|
||||
function iterated (const i : int) : unit is
|
||||
if i > 2 then Unit else (failwith ("Below range.") : unit)
|
||||
} with set_iter (iterated, s)
|
||||
} with Set.iter (iterated, s)
|
||||
```
|
||||
|
||||
> The iterated function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `set_iter` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over sets is called `Set.iter`.
|
||||
|
||||
In the following example, a set is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```cameligo group=sets
|
||||
let iter_op (s : int set) : unit =
|
||||
let predicate = fun (i : int) -> assert (i > 3)
|
||||
@ -625,12 +573,6 @@ let iter_op (s : int set) : unit =
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
iterated operation over sets is called `Set.iter`.
|
||||
|
||||
In the following example, a set is iterated to check that all its
|
||||
elements (integers) are greater than `3`:
|
||||
|
||||
```reasonligo group=sets
|
||||
let iter_op = (s : set (int)) : unit => {
|
||||
let predicate = (i : int) => assert (i > 3);
|
||||
@ -641,51 +583,51 @@ let iter_op = (s : set (int)) : unit => {
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
#### Mapped Operation (NOT IMPLEMENTED YET)
|
||||
<!-- #### Mapped Operation (NOT IMPLEMENTED YET) -->
|
||||
|
||||
We may want to change all the elements of a given set by applying to
|
||||
them a function. This is called a *mapped operation*, not to be
|
||||
confused with the map data structure.
|
||||
<!-- We may want to change all the elements of a given set by applying to -->
|
||||
<!-- them a function. This is called a *mapped operation*, not to be -->
|
||||
<!-- confused with the map data structure. -->
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!-- <\!--DOCUSAURUS_CODE_TABS-\-> -->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
<!-- <\!--PascaLIGO-\-> -->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over sets is called `set_map` and is used as follows:
|
||||
<!-- In PascaLIGO, the predefined functional iterator implementing the -->
|
||||
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
|
||||
|
||||
```pascaligo skip
|
||||
function increment (const i : int): int is i + 1
|
||||
<!-- ```pascaligo skip -->
|
||||
<!-- function increment (const i : int): int is i + 1 -->
|
||||
|
||||
// Creates a new set with all elements incremented by 1
|
||||
const plus_one : set (int) = set_map (increment, larger_set)
|
||||
```
|
||||
<!-- // Creates a new set with all elements incremented by 1 -->
|
||||
<!-- const plus_one : set (int) = Set.map (increment, larger_set) -->
|
||||
<!-- ``` -->
|
||||
|
||||
<!--CameLIGO-->
|
||||
<!-- <\!--CameLIGO-\-> -->
|
||||
|
||||
In CameLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over sets is called `Set.map` and is used as follows:
|
||||
<!-- In CameLIGO, the predefined functional iterator implementing the -->
|
||||
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
|
||||
|
||||
```cameligo skip
|
||||
let increment (i : int) : int = i + 1
|
||||
<!-- ```cameligo skip -->
|
||||
<!-- let increment (i : int) : int = i + 1 -->
|
||||
|
||||
// Creates a new set with all elements incremented by 1
|
||||
let plus_one : int set = Set.map increment larger_set
|
||||
```
|
||||
<!-- // Creates a new set with all elements incremented by 1 -->
|
||||
<!-- let plus_one : int set = Set.map increment larger_set -->
|
||||
<!-- ``` -->
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
<!-- <\!--ReasonLIGO-\-> -->
|
||||
|
||||
In ReasonLIGO, the predefined functional iterator implementing the
|
||||
mapped operation over sets is called `Set.map` and is used as follows:
|
||||
<!-- In ReasonLIGO, the predefined functional iterator implementing the -->
|
||||
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
|
||||
|
||||
```reasonligo skip
|
||||
let increment = (i : int) : int => i + 1;
|
||||
<!-- ```reasonligo skip -->
|
||||
<!-- let increment = (i : int) : int => i + 1; -->
|
||||
|
||||
// Creates a new set with all elements incremented by 1
|
||||
let plus_one : set (int) = Set.map (increment, larger_set);
|
||||
```
|
||||
<!-- // Creates a new set with all elements incremented by 1 -->
|
||||
<!-- let plus_one : set (int) = Set.map (increment, larger_set); -->
|
||||
<!-- ``` -->
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
<!-- <\!--END_DOCUSAURUS_CODE_TABS-\-> -->
|
||||
|
||||
#### Folded Operation
|
||||
|
||||
@ -693,24 +635,17 @@ A *folded operation* is the most general of iterations. The folded
|
||||
function takes two arguments: an *accumulator* and the structure
|
||||
*element* at hand, with which it then produces a new accumulator. This
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
traversal of the data structure is over. The predefined fold over sets
|
||||
is called `Set.fold`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
In PascaLIGO, the predefined functional iterator implementing the
|
||||
folded operation over sets is called `set_fold` and is used as
|
||||
follows:
|
||||
|
||||
```pascaligo group=sets
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
|
||||
const sum_of_elements : int = set_fold (sum, my_set, 0)
|
||||
const sum_of_elements : int = Set.fold (sum, my_set, 0)
|
||||
```
|
||||
|
||||
> The folded function must be pure, that is, it cannot mutate
|
||||
> variables.
|
||||
> Note that `set_fold` is *deprecated*.
|
||||
|
||||
It is possible to use a *loop* over a set as well.
|
||||
|
||||
@ -724,22 +659,14 @@ function loop (const s : set (int)) : int is block {
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
In CameLIGO, the predefined fold over sets is called `Set.fold`.
|
||||
|
||||
```cameligo group=sets
|
||||
let sum (acc, i : int * int) : int = acc + i
|
||||
|
||||
let sum_of_elements : int = Set.fold sum my_set 0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
In ReasonLIGO, the predefined fold over sets is called `Set.fold`.
|
||||
|
||||
```reasonligo group=sets
|
||||
let sum = ((acc, i) : (int, int)) : int => acc + i;
|
||||
|
||||
let sum_of_elements : int = Set.fold (sum, my_set, 0);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -1,4 +1,4 @@
|
||||
type magnitude is Small | Large // See variant types
|
||||
|
||||
function compare (const n : nat) : magnitude is
|
||||
if n < 10n then Small (Unit) else Large (Unit)
|
||||
if n < 10n then Small else Large
|
||||
|
@ -2,4 +2,4 @@ function increment (const b : int) : int is
|
||||
(function (const a : int) : int is a + 1) (b)
|
||||
|
||||
function incr_map (const l : list (int)) : list (int) is
|
||||
list_map (function (const i : int) : int is i + 1, l)
|
||||
List.map (function (const i : int) : int is i + 1, l)
|
||||
|
@ -4,9 +4,8 @@ const larger_list : int_list = 5 # my_list
|
||||
|
||||
function increment (const i : int): int is i + 1
|
||||
|
||||
// Creates a new list with all elements incremented by 1
|
||||
const plus_one : list (int) = list_map (increment, larger_list);
|
||||
const plus_one : list (int) = List.map (increment, larger_list);
|
||||
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
|
||||
const sum_of_elements : int = list_fold (sum, my_list, 0)
|
||||
const sum_of_elements : int = List.fold (sum, my_list, 0)
|
||||
|
@ -6,9 +6,9 @@ const contains_3 : bool = my_set contains 3
|
||||
|
||||
const set_size : nat = size (my_set)
|
||||
|
||||
const larger_set : int_set = set_add (4, my_set)
|
||||
const larger_set : int_set = Set.add (4, my_set)
|
||||
|
||||
const smaller_set : int_set = set_remove (3, my_set)
|
||||
const smaller_set : int_set = Set.remove (3, my_set)
|
||||
|
||||
function update (var s : set (int)) : set (int) is block {
|
||||
patch s with set [4; 7]
|
||||
@ -18,7 +18,7 @@ const new_set : set (int) = update (my_set)
|
||||
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
|
||||
const sum_of_elements : int = set_fold (sum, my_set, 0)
|
||||
const sum_of_elements : int = Set.fold (sum, my_set, 0)
|
||||
|
||||
function loop (const s : set (int)) : int is block {
|
||||
var sum : int := 0;
|
||||
|
@ -2,6 +2,6 @@ type coin is Head | Tail
|
||||
|
||||
function flip (const c : coin) : coin is
|
||||
case c of
|
||||
Head -> Tail (Unit) // Unit needed because of a bug
|
||||
| Tail -> Head (Unit) // Unit needed because of a bug
|
||||
Head -> Tail
|
||||
| Tail -> Head
|
||||
end
|
||||
|
@ -59,21 +59,27 @@ Strings can be sliced using a built-in function:
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=b
|
||||
const name : string = "Alice"
|
||||
const slice : string = string_slice (0n, 1n, name)
|
||||
const slice : string = String.slice (0n, 1n, name)
|
||||
```
|
||||
|
||||
> Note that `string_slide` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=b
|
||||
let name : string = "Alice"
|
||||
let slice : string = String.slice 0n 1n name
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=b
|
||||
let name : string = "Alice";
|
||||
let slice : string = String.slice (0n, 1n, name);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
> ⚠️ Notice that the offset and length of the slice are natural numbers.
|
||||
> ⚠️ Notice that the offset and length of the slice are natural
|
||||
> numbers.
|
||||
|
||||
## Length of Strings
|
||||
|
||||
@ -83,8 +89,11 @@ The length of a string can be found using a built-in function:
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=c
|
||||
const name : string = "Alice"
|
||||
const length : nat = size (name) // length = 5
|
||||
const length : nat = String.length (name) // length = 5
|
||||
```
|
||||
|
||||
> Note that `size` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let name : string = "Alice"
|
||||
|
@ -26,9 +26,11 @@ functionality can be accessed from within LIGO.
|
||||
```pascaligo group=a
|
||||
function id_string (const p : string) : option (string) is block {
|
||||
const packed : bytes = bytes_pack (p)
|
||||
} with (bytes_unpack (packed) : option (string))
|
||||
} with (Bytes.unpack (packed) : option (string))
|
||||
```
|
||||
|
||||
> Note that `bytes_unpack` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let id_string (p : string) : string option =
|
||||
@ -103,9 +105,11 @@ function check_signature
|
||||
(const pk : key;
|
||||
const signed : signature;
|
||||
const msg : bytes) : bool
|
||||
is crypto_check (pk, signed, msg)
|
||||
is Crypto.check (pk, signed, msg)
|
||||
```
|
||||
|
||||
> Note that `crypto_check` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let check_signature (pk, signed, msg : key * signature * bytes) : bool =
|
||||
@ -124,27 +128,29 @@ let check_signature =
|
||||
## Contract's Own Address
|
||||
|
||||
Often you want to get the address of the contract being executed. You
|
||||
can do it with `self_address`.
|
||||
can do it with `Tezos.self_address`.
|
||||
|
||||
> ⚠️ Due to limitations in Michelson, `self_address` in a contract is
|
||||
> only allowed at the top-level. Using it in an embedded function will
|
||||
> cause an error.
|
||||
> Note that `self_address` is *deprecated*.
|
||||
|
||||
> ⚠️ Due to limitations in Michelson, `Tezos.self_address` in a
|
||||
> contract is only allowed at the top-level. Using it in an embedded
|
||||
> function will cause an error.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=d
|
||||
const current_addr : address = self_address
|
||||
const current_addr : address = Tezos.self_address
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=d
|
||||
let current_addr : address = Current.self_address
|
||||
let current_addr : address = Tezos.self_address
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=d
|
||||
let current_addr : address = Current.self_address;
|
||||
let current_addr : address = Tezos.self_address;
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -229,7 +229,7 @@ type return = operation list * storage
|
||||
|
||||
let back (param, store : unit * storage) : return =
|
||||
let no_op : operation list = [] in
|
||||
if Current.time > store.deadline then
|
||||
if Tezos.now > store.deadline then
|
||||
(failwith "Deadline passed." : return) // Annotation
|
||||
else
|
||||
match Map.find_opt sender store.backers with
|
||||
@ -255,7 +255,7 @@ type return = (list (operation), storage);
|
||||
|
||||
let back = ((param, store) : (unit, storage)) : return => {
|
||||
let no_op : list (operation) = [];
|
||||
if (Current.time > store.deadline) {
|
||||
if (Tezos.now > store.deadline) {
|
||||
(failwith ("Deadline passed.") : return); // Annotation
|
||||
}
|
||||
else {
|
||||
|
@ -56,8 +56,8 @@ else):
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=b
|
||||
type coin is Head | Tail
|
||||
const head : coin = Head (Unit) // Unit needed for now.
|
||||
const tail : coin = Tail (Unit) // Unit needed for now.
|
||||
const head : coin = Head
|
||||
const tail : coin = Tail
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
@ -69,14 +69,16 @@ let tail : coin = Tail
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=b
|
||||
type coin = | Head | Tail;
|
||||
type coin = Head | Tail;
|
||||
let head : coin = Head;
|
||||
let tail : coin = Tail;
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
The names `Head` and `Tail` in the definition of the type `coin` are
|
||||
called *data constructors*, or *variants*.
|
||||
called *data constructors*, or *variants*. In this particular, they
|
||||
carry no information beyond their names, so they are called *constant
|
||||
constructors*.
|
||||
|
||||
In general, it is interesting for variants to carry some information,
|
||||
and thus go beyond enumerated types. In the following, we show how to
|
||||
@ -94,7 +96,7 @@ type user is
|
||||
| Guest
|
||||
|
||||
const u : user = Admin (1000n)
|
||||
const g : user = Guest (Unit) // Unit needed because of a bug
|
||||
const g : user = Guest
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
@ -125,6 +127,9 @@ let g : user = Guest;
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
In LIGO, a constant constructor is equivalent to the same constructor
|
||||
taking an argument of type `unit`, so, for example, `Guest` is the
|
||||
same value as `Guest (unit)`.
|
||||
|
||||
## Optional values
|
||||
|
||||
@ -172,8 +177,8 @@ type coin is Head | Tail
|
||||
|
||||
function flip (const c : coin) : coin is
|
||||
case c of
|
||||
Head -> Tail (Unit) // Unit needed because of a bug
|
||||
| Tail -> Head (Unit) // Unit needed because of a bug
|
||||
Head -> Tail
|
||||
| Tail -> Head
|
||||
end
|
||||
```
|
||||
|
||||
@ -181,7 +186,7 @@ You can call the function `flip` by using the LIGO compiler like so:
|
||||
```shell
|
||||
ligo run-function
|
||||
gitlab-pages/docs/language-basics/src/unit-option-pattern-matching/flip.ligo
|
||||
flip "(Head (Unit))"
|
||||
flip "Head"
|
||||
# Outputs: Tail(Unit)
|
||||
```
|
||||
|
||||
|
@ -60,7 +60,10 @@ a *global scope*, but they can be declared and used within functions,
|
||||
or as function parameters.
|
||||
|
||||
> ⚠️ Please be wary that mutation only works within the function scope
|
||||
> itself, values outside of the function scope will not be affected.
|
||||
> itself, values outside of the function scope will not be
|
||||
> affected. In other words, when a function is called, its arguments
|
||||
> are copied, *as well as the environment*. Any side-effect to that
|
||||
> environment is therefore lost when the function returns.
|
||||
|
||||
|
||||
```pascaligo group=b
|
||||
|
@ -1,268 +1,164 @@
|
||||
---
|
||||
id: big-map-reference
|
||||
title: Big Map — Scalable hashmap primitive
|
||||
title: Big Maps — Scalable Maps
|
||||
---
|
||||
|
||||
## Defining A Big Map Type
|
||||
Ordinary maps are fine for contracts with a finite lifespan or a
|
||||
bounded number of users. For many contracts however, the intention is
|
||||
to have a map holding *many* entries, potentially millions of
|
||||
them. The cost of loading those entries into the environment each time
|
||||
a user executes the contract would eventually become too expensive
|
||||
were it not for *big maps*. Big maps are a data structure offered by
|
||||
Michelson which handles the scaling concerns for us. In LIGO, the
|
||||
interface for big maps is analogous to the one used for ordinary maps.
|
||||
|
||||
# Declaring a Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
type move is (int * int)
|
||||
type moveset is big_map (address, move)
|
||||
type foo is big_map (int, int)
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
type move is int * int
|
||||
type register is big_map (address, move)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
```cameligo group=big_maps
|
||||
type move = int * int
|
||||
type moveset = (address, move) big_map
|
||||
type foo = (int, int) big_map
|
||||
type register = (address, move) big_map
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
```reasonligo group=big_maps
|
||||
type move = (int, int);
|
||||
type moveset = big_map(address, move);
|
||||
type foo = big_map(int, int);
|
||||
type register = big_map (address, move);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Creating A Map
|
||||
|
||||
# Creating an Empty Big Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
|
||||
```pascaligo
|
||||
const moves: moveset =
|
||||
big_map
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
|
||||
end
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
const empty : register = big_map []
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let moves: moveset =
|
||||
Big_map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
|
||||
]
|
||||
```cameligo group=big_maps
|
||||
let empty : register = Big_map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let moves: moveset =
|
||||
Big_map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0,3)),
|
||||
]);
|
||||
```reasonligo group=big_maps
|
||||
let empty : register = Big_map.empty
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.find_opt(k: a', m: (a',b') big_map) : b' option
|
||||
|
||||
Retrieve the value associated with a particular key. This version returns an option
|
||||
which can either shift logic in response to a missing value or throw an error.
|
||||
# Creating a Non-empty Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
const my_balance : option(move) =
|
||||
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)]
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
const moves : register =
|
||||
big_map [
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=big_maps
|
||||
let moves : register =
|
||||
Big_map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
|
||||
```
|
||||
|
||||
```cameligo
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=big_maps
|
||||
let moves : register =
|
||||
Big_map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Accessing Values
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
const my_balance : option (move) =
|
||||
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=big_maps
|
||||
let my_balance : move option =
|
||||
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let my_balance : option(move) =
|
||||
Big_map.find_opt("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
|
||||
```reasonligo group=big_maps
|
||||
let my_balance : option (move) =
|
||||
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, moves);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.find(k: a', m: (a', b') big_map) : b'
|
||||
|
||||
Forcefully retrieve the value associated with a particular key. If that value
|
||||
doesn't exist, this function throws an error.
|
||||
# Updating Big Maps
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
const my_balance : move =
|
||||
get_force (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let my_balance : move =
|
||||
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let my_balance : move =
|
||||
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.update(k: a', v: b', m: (a', b') big_map) : (a', b') big_map
|
||||
|
||||
Change the value associated with a particular key, if that value doesn't already
|
||||
exist add it.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--Pascaligo-->
|
||||
|
||||
The values of a PascaLIGO big map can be updated using the ordinary
|
||||
assignment syntax:
|
||||
|
||||
```pascaligo
|
||||
|
||||
function set_ (var m : moveset) : moveset is
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=big_maps
|
||||
function add (var m : register) : register is
|
||||
block {
|
||||
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
|
||||
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
|
||||
} with m
|
||||
|
||||
const updated_map : register = add (moves)
|
||||
```
|
||||
|
||||
<!--Cameligo-->
|
||||
|
||||
```cameligo
|
||||
let updated_map : moveset =
|
||||
Big_map.update ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) (Some (4,9)) moves
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=big_maps
|
||||
let updated_map : register =
|
||||
Big_map.update
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) moves
|
||||
```
|
||||
|
||||
<!--Reasonligo-->
|
||||
|
||||
```reasonligo
|
||||
let updated_map : moveset =
|
||||
Big_map.update(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=big_maps
|
||||
let updated_map : register =
|
||||
Big_map.update
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some ((4,9)), moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.add(k: a', v: b', m: (a', b') big_map) : (a', b') big_map
|
||||
|
||||
Add a key and its associated value to the big map.
|
||||
# Removing Bindings
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function set_ (var n : int ; var m : foo) : foo is block {
|
||||
m[23] := n ;
|
||||
} with m
|
||||
```pascaligo group=big_maps
|
||||
function rem (var m : register) : register is
|
||||
block {
|
||||
remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) from map moves
|
||||
} with m
|
||||
|
||||
const updated_map : register = rem (moves)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let add (n,m : int * foo) : foo = Big_map.add 23 n m
|
||||
```cameligo group=big_maps
|
||||
let updated_map : register =
|
||||
Map.remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let add = ((n,m): (int, foo)): foo => Big_map.add(23, n, m);
|
||||
```reasonligo group=big_maps
|
||||
let updated_map : register =
|
||||
Map.remove (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves)
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.remove(k: a', m: (a', b') big_map) : (a', b') big_map
|
||||
|
||||
Remove a key and its associated value from the big map.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function rm (var m : foo) : foo is block {
|
||||
remove 42 from map m;
|
||||
} with m
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let rm (m : foo) : foo = Big_map.remove 42 m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let rm = (m: foo): foo => Big_map.remove(42, m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Big_map.literal(key_value_pair_list: (a', b') list) : (a', b') big_map
|
||||
|
||||
Constructs a big map from a list of key-value pair tuples.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
|
||||
```pascaligo
|
||||
const moves: moveset =
|
||||
big_map
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
|
||||
end
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let moves: moveset =
|
||||
Big_map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
|
||||
]
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let moves: moveset =
|
||||
Big_map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0,3)),
|
||||
]);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Big_map.empty() : (a', b') big_map
|
||||
|
||||
Create an empty big map.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
const empty_big_map : big_map(int,int) = big_map end
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let empty_map : foo = Big_map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let empty_map: foo = Big_map.empty;
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
---
|
||||
id: current-reference
|
||||
title: Current - Things relating to the current execution context
|
||||
title: Tezos - Things relating to the current execution context
|
||||
---
|
||||
|
||||
## Current.balance() : tez
|
||||
# Tezos.balance
|
||||
|
||||
Get the balance for the contract.
|
||||
|
||||
@ -11,26 +11,36 @@ Get the balance for the contract.
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p : unit; const s: tez) : list(operation) * tez is
|
||||
((nil : list(operation)), balance)
|
||||
function main (const p : unit; const s: tez) : list (operation) * tez is
|
||||
((nil : list (operation)), Tezos.balance)
|
||||
```
|
||||
|
||||
> Note that `balance` and `Current.balance` are *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p, s : unit * tez) =
|
||||
([] : operation list), balance
|
||||
let main (p,s : unit * tez) = ([] : operation list), Tezos.balance
|
||||
```
|
||||
|
||||
> Note that `balance` and `Current.balance` are *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = ((p,s): (unit, tez)) => ([]: list(operation), balance);
|
||||
let main = ((p,s) : (unit, tez)) =>
|
||||
([]: list (operation), Tezos.balance);
|
||||
```
|
||||
|
||||
> Note that `balance` and `Current.balance` are *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.time() : timestamp
|
||||
## Tezos.now
|
||||
|
||||
Returns the current time as a [unix timestamp](https://en.wikipedia.org/wiki/Unix_time).
|
||||
Returns the current time as a [unix timestamp](https://en.wikipedia.org/wiki/Unix_time).
|
||||
|
||||
In LIGO, timestamps are type compatible in operations with `int`(s). This lets you set e.g. time constraints for your smart contracts like this:
|
||||
In LIGO, timestamps are type compatible in operations with
|
||||
integers. This lets you set for instance time constraints for your
|
||||
smart contracts like this:
|
||||
|
||||
### Examples
|
||||
|
||||
@ -38,118 +48,134 @@ In LIGO, timestamps are type compatible in operations with `int`(s). This lets y
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=b
|
||||
const today: timestamp = now;
|
||||
const one_day: int = 86400;
|
||||
const today: timestamp = Tezos.now;
|
||||
const one_day: int = 86_400;
|
||||
const in_24_hrs: timestamp = today + one_day;
|
||||
const some_date: timestamp = ("2000-01-01T10:10:10Z" : timestamp);
|
||||
const one_day_later: timestamp = some_date + one_day;
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=b
|
||||
let today: timestamp = Current.time
|
||||
let one_day: int = 86400
|
||||
let today: timestamp = Tezos.now
|
||||
let one_day: int = 86_400
|
||||
let in_24_hrs: timestamp = today + one_day
|
||||
let some_date: timestamp = ("2000-01-01t10:10:10Z" : timestamp)
|
||||
let one_day_later: timestamp = some_date + one_day
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=b
|
||||
let today: timestamp = Current.time;
|
||||
let one_day: int = 86400;
|
||||
let today: timestamp = Tezos.now;
|
||||
let one_day: int = 86_400;
|
||||
let in_24_hrs: timestamp = today + one_day;
|
||||
let some_date: timestamp = ("2000-01-01t10:10:10Z" : timestamp);
|
||||
let one_day_later: timestamp = some_date + one_day;
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
#### 24 hours ago
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=c
|
||||
const today: timestamp = now;
|
||||
const one_day: int = 86400;
|
||||
const today: timestamp = Tezos.now;
|
||||
const one_day: int = 86_400;
|
||||
const in_24_hrs: timestamp = today - one_day;
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let today: timestamp = Current.time
|
||||
let one_day: int = 86400
|
||||
let today: timestamp = Tezos.now
|
||||
let one_day: int = 86_400
|
||||
let in_24_hrs: timestamp = today - one_day
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
let today: timestamp = Current.time;
|
||||
let one_day: int = 86400;
|
||||
let today: timestamp = Tezos.now;
|
||||
let one_day: int = 86_400;
|
||||
let in_24_hrs: timestamp = today - one_day;
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
#### Comparing timestamps
|
||||
#### Comparing Timestamps
|
||||
|
||||
You can also compare timestamps using the same comparison operators as for numbers:
|
||||
You can also compare timestamps using the same comparison operators as
|
||||
for numbers
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=c
|
||||
const not_tommorow: bool = (now = in_24_hrs)
|
||||
const not_tommorow: bool = (Tezos.now = in_24_hrs)
|
||||
```
|
||||
|
||||
> Note that `now` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=c
|
||||
let not_tomorrow: bool = (Current.time = in_24_hrs)
|
||||
let not_tomorrow: bool = (Tezos.now = in_24_hrs)
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=c
|
||||
let not_tomorrow: bool = (Current.time == in_24_hrs);
|
||||
let not_tomorrow: bool = (Tezos.now == in_24_hrs);
|
||||
```
|
||||
|
||||
> Note that `Current.time` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Current.amount() : tez
|
||||
## Amount
|
||||
|
||||
Get the amount of tez provided by the sender to complete this transaction.
|
||||
Get the amount of tez provided by the sender to complete this
|
||||
transaction.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function check (const p: unit) : int is
|
||||
begin
|
||||
var result : int := 0;
|
||||
if amount = 100tz then
|
||||
result := 42
|
||||
else
|
||||
result := 0
|
||||
end with result
|
||||
function threshold (const p : unit) : int is
|
||||
if Tezos.amount = 100tz then 42 else 0
|
||||
```
|
||||
|
||||
> Note that `amount` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let check_ (p: unit) : int = if Current.amount = 100tz then 42 else 0
|
||||
let threshold (p : unit) : int = if Tezos.amount = 100tz then 42 else 0
|
||||
```
|
||||
|
||||
> Note that `Current.amount` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let check_ = (p: unit) : int =>
|
||||
if (Current.amount == 100tz) {
|
||||
42;
|
||||
}
|
||||
else {
|
||||
0;
|
||||
};
|
||||
let threshold = (p : unit) : int =>
|
||||
if (Tezos.amount == 100tz) { 42; } else { 0; };
|
||||
```
|
||||
|
||||
> Note that `Current.amount` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.sender() : address
|
||||
## Sender
|
||||
|
||||
Get the address that initiated the current transaction.
|
||||
|
||||
@ -157,52 +183,67 @@ Get the address that initiated the current transaction.
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p: unit) : address is sender
|
||||
function main (const p : unit) : address is Tezos.sender
|
||||
```
|
||||
|
||||
> Note that `sender` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p: unit) : address = Current.sender
|
||||
let main (p: unit) : address = Tezos.sender
|
||||
```
|
||||
|
||||
> Note that `Current.sender` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = (p: unit) : address => Current.sender;
|
||||
let main = (p : unit) : address => Tezos.sender;
|
||||
```
|
||||
|
||||
> Note that `Current.sender` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.address(c: a' contract) : address
|
||||
|
||||
Get the address associated with a `contract`.
|
||||
## Address
|
||||
|
||||
Get the address associated with a value of type `contract`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p : key_hash) : address is block {
|
||||
const c : contract(unit) = implicit_account(p) ;
|
||||
} with address(c)
|
||||
const c : contract (unit) = Tezos.implicit_account (p)
|
||||
} with Tezos.address(c)
|
||||
```
|
||||
|
||||
> Note that `implicit_account` and `address` are *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p : key_hash) =
|
||||
let c : unit contract = Current.implicit_account p in
|
||||
Current.address c
|
||||
let c : unit contract = Tezos.implicit_account p
|
||||
in Tezos.address c
|
||||
```
|
||||
|
||||
> Note that `Current.implicit_account` and `Current.address` are
|
||||
> *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = (p : key_hash) : address => {
|
||||
let c : contract(unit) = Current.implicit_account(p) ;
|
||||
Current.address(c) ;
|
||||
let c : contract (unit) = Tezos.implicit_account (p);
|
||||
Tezos.address (c);
|
||||
};
|
||||
```
|
||||
|
||||
> Note that `Current.implicit_account` and `Current.address` are
|
||||
> *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.self_address() : address
|
||||
## Self Address
|
||||
|
||||
Get the address of the currently running contract.
|
||||
|
||||
@ -210,110 +251,137 @@ Get the address of the currently running contract.
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p: unit) : address is self_address
|
||||
function main (const p : unit) : address is Tezos.self_address
|
||||
```
|
||||
|
||||
> Note that `self_address` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p: unit) : address = Current.self_address
|
||||
let main (p : unit) : address = Tezos.self_address
|
||||
```
|
||||
|
||||
> Note that `Current.self_address` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = (p: unit): address => Current.self_address;
|
||||
let main = (p : unit) : address => Tezos.self_address;
|
||||
```
|
||||
|
||||
> Note that `Current.self_address` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.implicit_account(p: key_hash) : a' contract
|
||||
## Implicit Account
|
||||
|
||||
Get the default contract associated with an on-chain keypair. This contract
|
||||
doesn't execute code, instead it exists to receive money on behalf of a keys
|
||||
owner.
|
||||
Get the default contract associated with an on-chain key-pair. This
|
||||
contract does not execute code, instead it exists to receive tokens on
|
||||
behalf of a key's owner.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const kh: key_hash) : contract(unit) is implicit_account(kh)
|
||||
function main (const kh: key_hash) : contract (unit) is
|
||||
Tezos.implicit_account (kh)
|
||||
```
|
||||
|
||||
> Note that `implicit_account` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (kh: key_hash) : unit contract = Current.implicit_account kh
|
||||
let main (kh : key_hash) : unit contract = Tezos.implicit_account kh
|
||||
```
|
||||
|
||||
> Note that `Current.implicit_account` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = (kh: key_hash): contract(unit) => Current.implicit_account(kh);
|
||||
let main = (kh : key_hash): contract (unit) =>
|
||||
Tezos.implicit_account (kh);
|
||||
```
|
||||
|
||||
> Note that `Current.implicit_account` is *deprecated*.
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.source() : address
|
||||
## Source
|
||||
|
||||
Get the _originator_ of the current transaction. That is, if a chain of transactions
|
||||
led to the current execution get the address that began the chain. Not to be confused
|
||||
with `Current.sender`, which gives the address of the contract or user which directly
|
||||
caused the current transaction.
|
||||
Get the _originator_ (address) of the current transaction. That is, if
|
||||
a chain of transactions led to the current execution get the address
|
||||
that began the chain. Not to be confused with `Tezos.sender`, which
|
||||
gives the address of the contract or user which directly caused the
|
||||
current transaction.
|
||||
|
||||
> ⚠️
|
||||
> There are a few caveats you should keep in mind before using `SOURCE` over `SENDER`:
|
||||
> ⚠️ There are a few caveats you should keep in mind before using
|
||||
> `Tezos.source` over `Tezos.sender`:
|
||||
>
|
||||
> 1. SOURCE will never be a contract, so if you want to allow contracts (multisigs etc) to operate your contract, you need to use SENDER
|
||||
> 2. https://vessenes.com/tx-origin-and-ethereum-oh-my/ -- in general it is somewhat unsafe to assume that SOURCE understands everything that's going to happen in a transaction. If SOURCE transfers to a malicious (or sufficiently attackable) contract, that contract might potentially transfer to yours, without SOURCE's consent. So if you are using SOURCE for authentication, you risk being confused. A good historical example of this is bakers paying out delegation rewards. Naive bakers did (and probably still do) just use tezos-client to transfer to whatever KT1 delegates they had, even if those KT1 were malicious scripts.
|
||||
> 1. `Tezos.source` will never be a contract, so if you want to allow
|
||||
> contracts (multisigs etc) to operate your contract, you need to
|
||||
> use `Tezos.sender`
|
||||
> 2. https://vessenes.com/tx-origin-and-ethereum-oh-my/ -- in general
|
||||
> it is somewhat unsafe to assume that `Tezos.source` understands
|
||||
> everything that is going to happen in a transaction. If
|
||||
> `Tezos.source` transfers to a malicious (or sufficiently
|
||||
> attackable) contract, that contract might potentially transfer to
|
||||
> yours, without `Tezos.source`'s consent. So if you are using
|
||||
> `Tezos.source` for authentication, you risk being confused. A
|
||||
> good historical example of this is bakers paying out delegation
|
||||
> rewards. Naive bakers did (and probably still do) just use
|
||||
> tezos-client to transfer to whatever KT1 delegates they had, even
|
||||
> if those KT1 were malicious scripts.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p: unit) : address is source
|
||||
function main (const p: unit) : address is Tezos.source
|
||||
```
|
||||
|
||||
> Note that `source` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p: unit) : address = Current.source
|
||||
let main (p : unit) : address = Tezos.source
|
||||
```
|
||||
|
||||
> Note that `Current.source` is *deprecated*.
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = (p: unit) : address => Current.source;
|
||||
let main = (p : unit) : address => Tezos.source;
|
||||
```
|
||||
|
||||
> Note that `Current.source` is *deprecated*.
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Current.failwith(error_message: string) : a'
|
||||
## Failwith
|
||||
|
||||
Cause the contract to fail with an error message.
|
||||
|
||||
> ⚠ Using this currently requires a type annotation on the failwith to unify it
|
||||
> with the type of whatever other code branch it's on.
|
||||
> ⚠ Using this currently requires in general a type annotation on the
|
||||
> `failwith` call.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function main (const p : int; const s : unit) : list(operation) * unit is
|
||||
function main (const p : int; const s : unit) : list (operation) * unit is
|
||||
block {
|
||||
if p > 10 then failwith("fail") else skip;
|
||||
if p > 10 then failwith ("Failure.") else skip
|
||||
}
|
||||
with ((nil : list(operation)), s)
|
||||
with ((nil : list (operation)), s)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let main (p,s: unit * unit) =
|
||||
if true then failwith "This contract always fails" else ()
|
||||
let main (p,s : int * unit) = if p > 10 then failwith "Failure."
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let main = ((p,s): (unit, unit)) =>
|
||||
if (true) {
|
||||
failwith("This contract always fails");
|
||||
} else {
|
||||
();
|
||||
};
|
||||
let main = ((p,s) : (int, unit)) =>
|
||||
if (p > 10) { failwith ("Failure."); };
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -1,9 +1,191 @@
|
||||
---
|
||||
id: list-reference
|
||||
title: List — Ordered collection of a type
|
||||
title: Lists — Linear Collections
|
||||
---
|
||||
|
||||
## List.size(lst: a' list) : nat
|
||||
Lists are linear collections of elements of the same type. Linear
|
||||
means that, in order to reach an element in a list, we must visit all
|
||||
the elements before (sequential access). Elements can be repeated, as
|
||||
only their order in the collection matters. The first element is
|
||||
called the *head*, and the sub-list after the head is called the
|
||||
*tail*. For those familiar with algorithmic data structure, you can
|
||||
think of a list a *stack*, where the top is written on the left.
|
||||
|
||||
# Defining Lists
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=lists
|
||||
const empty_list : list (int) = nil // Or list []
|
||||
const my_list : list (int) = list [1; 2; 2] // The head is 1
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=lists
|
||||
let empty_list : int list = []
|
||||
let my_list : int list = [1; 2; 2] // The head is 1
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=lists
|
||||
let empty_list : list (int) = [];
|
||||
let my_list : list (int) = [1, 2, 2]; // The head is 1
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Adding to Lists
|
||||
|
||||
Lists can be augmented by adding an element before the head (or, in
|
||||
terms of stack, by *pushing an element on top*).
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=lists
|
||||
const larger_list : list (int) = 5 # my_list // [5;1;2;2]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=lists
|
||||
let larger_list : int list = 5 :: my_list // [5;1;2;2]
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=lists
|
||||
let larger_list : list (int) = [5, ...my_list]; // [5,1,2,2]
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
# Functional Iteration over Lists
|
||||
|
||||
A *functional iterator* is a function that traverses a data structure
|
||||
and calls in turn a given function over the elements of that structure
|
||||
to compute some value. Another approach is possible in PascaLIGO:
|
||||
*loops* (see the relevant section).
|
||||
|
||||
There are three kinds of functional iterations over LIGO lists: the
|
||||
*iterated operation*, the *map operation* (not to be confused with the
|
||||
*map data structure*) and the *fold operation*.
|
||||
|
||||
## Iterated Operation over Lists
|
||||
|
||||
The first, the *iterated operation*, is an iteration over the list
|
||||
with a unit return value. It is useful to enforce certain invariants
|
||||
on the element of a list, or fail.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=lists
|
||||
function iter_op (const l : list (int)) : unit is
|
||||
block {
|
||||
function iterated (const i : int) : unit is
|
||||
if i > 3 then Unit else (failwith ("Below range.") : unit)
|
||||
} with List.iter (iterated, l)
|
||||
```
|
||||
|
||||
> Note that `list_iter` is *deprecated*.
|
||||
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=lists
|
||||
let iter_op (l : int list) : unit =
|
||||
let predicate = fun (i : int) -> assert (i > 3)
|
||||
in List.iter predicate l
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=lists
|
||||
let iter_op = (l : list (int)) : unit => {
|
||||
let predicate = (i : int) => assert (i > 3);
|
||||
List.iter (predicate, l);
|
||||
};
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Mapped Operation over Lists
|
||||
|
||||
We may want to change all the elements of a given list by applying to
|
||||
them a function. This is called a *map operation*, not to be confused
|
||||
with the map data structure.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=lists
|
||||
function increment (const i : int): int is i + 1
|
||||
|
||||
// Creates a new list with all elements incremented by 1
|
||||
const plus_one : list (int) = List.map (increment, larger_list)
|
||||
```
|
||||
|
||||
> Note that `list_map` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=lists
|
||||
let increment (i : int) : int = i + 1
|
||||
|
||||
// Creates a new list with all elements incremented by 1
|
||||
let plus_one : int list = List.map increment larger_list
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=lists
|
||||
let increment = (i : int) : int => i + 1;
|
||||
|
||||
// Creates a new list with all elements incremented by 1
|
||||
let plus_one : list (int) = List.map (increment, larger_list);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Folded Operation over Lists
|
||||
|
||||
A *folded operation* is the most general of iterations. The folded
|
||||
function takes two arguments: an *accumulator* and the structure
|
||||
*element* at hand, with which it then produces a new accumulator. This
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=lists
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
const sum_of_elements : int = List.fold (sum, my_list, 0)
|
||||
```
|
||||
|
||||
> Note that `list_fold` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=lists
|
||||
let sum (acc, i: int * int) : int = acc + i
|
||||
let sum_of_elements : int = List.fold sum my_list 0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=lists
|
||||
let sum = ((result, i): (int, int)): int => result + i;
|
||||
let sum_of_elements : int = List.fold (sum, my_list, 0);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# List Length
|
||||
|
||||
Get the number of elements in a list.
|
||||
|
||||
@ -11,130 +193,19 @@ Get the number of elements in a list.
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function size_ (const m : list(int)) : nat is size(m)
|
||||
function size_of (const l : list (int)) : nat is List.length (l)
|
||||
```
|
||||
|
||||
> Note that `size` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let size_ (s: int list) : nat = List.size s
|
||||
let size_of (l : int list) : nat = List.length l
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let size_ = (s: list(int)): nat => List.size(s);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## List.length(lst: a' list) : nat
|
||||
|
||||
Alias of `List.size`.
|
||||
|
||||
## List.map(map_function: a' -> b', lst: a' list) : 'b list
|
||||
|
||||
Apply an operation defined by `map_function` to each element of a list and return
|
||||
a list of the modified elements.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=b
|
||||
function increment(const i: int): int is i + 1;
|
||||
// Creates a new list with elements incremented by 1
|
||||
const incremented_list: list(int) = list_map(increment, list 1; 2; 3; end );
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=b
|
||||
let increment (i: int) : int = i + 1
|
||||
(* Creates a new list with elements incremented by 1 *)
|
||||
let incremented_list: int list = List.map increment [1; 2; 3]
|
||||
```
|
||||
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=b
|
||||
let increment = (i: int): int => i + 1;
|
||||
(* Creates a new list with elements incremented by 1 *)
|
||||
let incremented_list: list(int) = List.map(increment, [1, 2, 3]);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## List.iter(iter_function: a' -> unit, lst: a' list) : unit
|
||||
|
||||
Apply a side effecting function `iter_function` to each element of a list with no
|
||||
return value. This is useful for asserting that each element of a list satisfies
|
||||
a particular property.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function iter_op (const s : list(int)) : int is
|
||||
begin
|
||||
var r : int := 0 ;
|
||||
function aggregate (const i : int) : unit is
|
||||
begin
|
||||
r := r + i ;
|
||||
end with unit ;
|
||||
list_iter(aggregate, s) ;
|
||||
end with r
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let iter_op (s : int list) : unit =
|
||||
let do_nothing = fun (_: int) -> unit
|
||||
in List.iter do_nothing s
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let iter_op = (s: list(int)): unit => {
|
||||
let do_nothing = (z: int) => unit;
|
||||
List.iter(do_nothing, s);
|
||||
};
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## List.fold(fold_function: (a' * a') -> a', lst: a' list, acc: a') : 'a
|
||||
|
||||
Combine the elements of a list into one value using the operation defined by
|
||||
`fold_function'. For example, you could define summation by folding a list of
|
||||
integers. Starting with some initial accumulator value `acc`, the fold:
|
||||
|
||||
1. Consumes an element of the list.
|
||||
2. Passes the accumulator value to `fold_function` along with the element to produce
|
||||
a new accumulated value.
|
||||
3. The new accumulated value replaces the previous one.
|
||||
4. IF there are still elements in the list go back to 1, ELSE return the accumulator
|
||||
|
||||
Summation would be defined then by using a `fold_function` that takes two integers and
|
||||
adds them together. Each step of the fold would consume an element from the list
|
||||
and add it to the total until you've summed over the list.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=b
|
||||
function sum(const result: int; const i: int): int is result + i;
|
||||
const sum_of_a_list: int = list_fold(sum, list 1; 2; 3; end, 0);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=b
|
||||
let sum (result, i: int * int) : int = result + i
|
||||
let sum_of_a_list: int = List.fold sum [1; 2; 3] 0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=b
|
||||
let sum = ((result, i): (int, int)): int => result + i;
|
||||
let sum_of_a_list: int = List.fold(sum, [1, 2, 3], 0);
|
||||
let size_of = (l : list (int)) : nat => List.length (l);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -1,392 +1,357 @@
|
||||
---
|
||||
id: map-reference
|
||||
title: Map — Hashmaps that it makes sense to iterate over
|
||||
title: Maps
|
||||
---
|
||||
|
||||
## Defining A Map Type
|
||||
*Maps* are a data structure which associate values of the same type to
|
||||
values of the same type. The former are called *key* and the latter
|
||||
*values*. Together they make up a *binding*. An additional requirement
|
||||
is that the type of the keys must be *comparable*, in the Michelson
|
||||
sense.
|
||||
|
||||
# Declaring a Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
type move is int * int
|
||||
type moveset is map(address, move)
|
||||
type register is map (address, move)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
```cameligo group=maps
|
||||
type move = int * int
|
||||
type moveset = (address, move) map
|
||||
type register = (address, move) map
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
```reasonligo group=maps
|
||||
type move = (int, int);
|
||||
type moveset = map(address, move);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Creating A Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
|
||||
```pascaligo
|
||||
const moves: moveset = map
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1, 2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0, 3);
|
||||
end
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let moves: moveset = Map.literal
|
||||
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ;
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0, 3)) ;
|
||||
]
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let moves : moveset =
|
||||
Map.literal([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1, 2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0, 3)),
|
||||
]);
|
||||
type register = map (address, move);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.find_opt(k: a', m: (a',b') map) : b' option
|
||||
|
||||
Retrieve the value associated with a particular key. This version returns an option
|
||||
which can either shift logic in response to a missing value or throw an error.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
const my_balance : option(move) = moves[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)];
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let my_balance : move option = Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let my_balance : option(move) =
|
||||
Map.find_opt("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.find(k: a', m: (a', b') map) : b'
|
||||
|
||||
Forcefully retrieve the value associated with a particular key. If that value
|
||||
doesn't exist, this function throws an error.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
const my_balance : move = get_force(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let my_balance : move = Map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let my_balance : move =
|
||||
Map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.update(k: a', v: b', m: (a', b') map) : (a', b') map
|
||||
|
||||
Change the value associated with a particular key, if that value doesn't already
|
||||
exist add it.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--Pascaligo-->
|
||||
|
||||
The values of a PascaLIGO map can be updated using the ordinary assignment syntax:
|
||||
|
||||
```pascaligo
|
||||
|
||||
function set_ (var m: moveset) : moveset is
|
||||
block {
|
||||
m[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
|
||||
} with m
|
||||
```
|
||||
|
||||
<!--Cameligo-->
|
||||
|
||||
We can update a map in CameLIGO using the `Map.update` built-in:
|
||||
|
||||
```cameligo
|
||||
|
||||
let updated_map: moveset = Map.update ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) (Some (4,9)) moves
|
||||
```
|
||||
|
||||
<!--Reasonligo-->
|
||||
|
||||
We can update a map in ReasonLIGO using the `Map.update` built-in:
|
||||
|
||||
```reasonligo
|
||||
|
||||
let updated_map: moveset = Map.update(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.add(k: a', v: b', m: (a', b') map) : (a', b') map
|
||||
# Creating an Empty Map
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function set_ (var n : int ; var m : map(int, int)) : map(int, int) is block {
|
||||
m[23] := n ;
|
||||
} with m
|
||||
```pascaligo group=maps
|
||||
const empty : register = map []
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let add (n,m: int * (int, int) map) : foobar = Map.add 23 n m
|
||||
```cameligo group=maps
|
||||
let empty : register = Map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let add = (n: int, m: map(int, int)) : foobar => Map.add(23, n, m);
|
||||
```reasonligo group=maps
|
||||
let empty : register = Map.empty
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.remove(k: a', m: (a', b') map) : (a', b') map
|
||||
# Creating a Non-empty Map
|
||||
|
||||
Remove a key and its associated value from the map.
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
const moves : register =
|
||||
map [
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=maps
|
||||
let moves : register =
|
||||
Map.literal [
|
||||
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=maps
|
||||
let moves : register =
|
||||
Map.literal ([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Accessing Map Bindings
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
const my_balance : option (move) =
|
||||
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=maps
|
||||
let my_balance : move option =
|
||||
Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=maps
|
||||
let my_balance : option (move) =
|
||||
Map.find_opt (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), moves);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
Notice how the value we read is an optional value: this is to force
|
||||
the reader to account for a missing key in the map. This requires
|
||||
*pattern matching*.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function rm (var m : map(int, int)) : map(int, int) is block {
|
||||
remove 42 from map m
|
||||
} with m
|
||||
```pascaligo group=maps
|
||||
function force_access (const key : address; const moves : register) : move is
|
||||
case moves[key] of
|
||||
Some (move) -> move
|
||||
| None -> (failwith ("No move.") : move)
|
||||
end
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let rm (m: (int, int) map) : (int, int) map = Map.remove 42 m
|
||||
```cameligo group=maps
|
||||
let force_access (key, moves : address * register) : move =
|
||||
match Map.find_opt key moves with
|
||||
Some move -> move
|
||||
| None -> (failwith "No move." : move)
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let rm = (m: map(int, int)): map(int, int) => Map.remove(42, m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.iter(iterator_function: (a', b') -> unit, m: (a', b') map) : unit
|
||||
|
||||
Run a function returning unit over the contents of a map's key-value pairs.
|
||||
For example an assertion.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
function iter_op (const m : moveset) : unit is
|
||||
block {
|
||||
function aggregate (const i : address ; const j : move) : unit is block
|
||||
{ if j.1 > 1 then skip else failwith("fail") } with unit
|
||||
} with map_iter(aggregate, m);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let iter_op (m : moveset) : unit =
|
||||
let assert_eq = fun (i,j: address * move) -> assert (j.0 > 1)
|
||||
in Map.iter assert_eq m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let iter_op = (m: moveset): unit => {
|
||||
let assert_eq = ((i,j): (address, move)) => assert (j[0] > 1);
|
||||
Map.iter(assert_eq, m);
|
||||
```reasonligo group=maps
|
||||
let force_access = ((key, moves) : (address, register)) : move => {
|
||||
switch (Map.find_opt (key, moves)) {
|
||||
| Some (move) => move
|
||||
| None => failwith ("No move.") : move
|
||||
}
|
||||
};
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Updating a Map
|
||||
|
||||
## Map.map(mapping_function: (a', b') -> b', m: (a', b') map) : (a', b') map
|
||||
|
||||
Update the values associated with every key in the map according to some update
|
||||
rule `mapping_function`.
|
||||
Given a map, we may want to add a new binding, remove one, or modify
|
||||
one by changing the value associated to an already existing key. All
|
||||
those operations are called *updates*.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
function map_op (const m : moveset) : moveset is
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
function assign (var m : register) : register is
|
||||
block {
|
||||
function increment (const i : address ; const j : move) : move is (j.0, j.1 + 1);
|
||||
} with map_map (increment, m);
|
||||
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
|
||||
} with m
|
||||
```
|
||||
|
||||
If multiple bindings need to be updated, PascaLIGO offers a *patch
|
||||
instruction* for maps, similar to that for records.
|
||||
|
||||
```pascaligo group=maps
|
||||
function assignments (var m : register) : register is
|
||||
block {
|
||||
patch m with map [
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (4,9);
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2)
|
||||
]
|
||||
} with m
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let map_op (m : moveset) : moveset =
|
||||
let increment = fun (i,j: address * move) -> (j.0, j.1 + 1)
|
||||
```cameligo group=maps
|
||||
let assign (m : register) : register =
|
||||
Map.update
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) m
|
||||
```
|
||||
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
use `None` instead, that would have meant that the binding is removed.
|
||||
|
||||
As a particular case, we can only add a key and its associated value.
|
||||
|
||||
```cameligo group=maps
|
||||
let add (m : register) : register =
|
||||
Map.add
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (4,9) m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=maps
|
||||
let assign = (m : register) : register =>
|
||||
Map.update
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), Some ((4,9)), m);
|
||||
```
|
||||
|
||||
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
|
||||
use `None` instead, that would have meant that the binding is removed.
|
||||
|
||||
As a particular case, we can only add a key and its associated value.
|
||||
|
||||
```reasonligo group=maps
|
||||
let add = (m : register) : register =>
|
||||
Map.add
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (4,9), m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
To remove a binding from a map, we need its key.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=maps
|
||||
function delete (const key : address; var moves : register) : register is
|
||||
block {
|
||||
remove key from map moves
|
||||
} with moves
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=maps
|
||||
let delete (key, moves : address * register) : register =
|
||||
Map.remove key moves
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=maps
|
||||
let delete = ((key, moves) : (address, register)) : register =>
|
||||
Map.remove (key, moves);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
# Functional Iteration over Maps
|
||||
|
||||
A *functional iterator* is a function that traverses a data structure
|
||||
and calls in turn a given function over the elements of that structure
|
||||
to compute some value. Another approach is possible in PascaLIGO:
|
||||
*loops* (see the relevant section).
|
||||
|
||||
There are three kinds of functional iterations over LIGO maps: the
|
||||
*iterated operation*, the *map operation* (not to be confused with the
|
||||
*map data structure*) and the *fold operation*.
|
||||
|
||||
## Iterated Operation over Maps
|
||||
|
||||
The first, the *iterated operation*, is an iteration over the map with
|
||||
no return value: its only use is to produce side-effects. This can be
|
||||
useful if for example you would like to check that each value inside
|
||||
of a map is within a certain range, and fail with an error otherwise.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=maps
|
||||
function iter_op (const m : register) : unit is
|
||||
block {
|
||||
function iterated (const i : address; const j : move) : unit is
|
||||
if j.1 > 3 then Unit else (failwith ("Below range.") : unit)
|
||||
} with Map.iter (iterated, m)
|
||||
```
|
||||
|
||||
> Note that `map_iter` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=maps
|
||||
let iter_op (m : register) : unit =
|
||||
let predicate = fun (i,j : address * move) -> assert (j.0 > 3)
|
||||
in Map.iter predicate m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=maps
|
||||
let iter_op = (m : register) : unit => {
|
||||
let predicate = ((i,j) : (address, move)) => assert (j[0] > 3);
|
||||
Map.iter (predicate, m);
|
||||
};
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map Operations over Maps
|
||||
|
||||
We may want to change all the bindings of a map by applying to them a
|
||||
function. This is called a *map operation*, not to be confused with
|
||||
the map data structure. The predefined functional iterator
|
||||
implementing the map operation over maps is called `Map.map`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=maps
|
||||
function map_op (const m : register) : register is
|
||||
block {
|
||||
function increment (const i : address; const j : move) : move is
|
||||
(j.0, j.1 + 1)
|
||||
} with Map.map (increment, m)
|
||||
```
|
||||
|
||||
> Note that `map_map` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=maps
|
||||
let map_op (m : register) : register =
|
||||
let increment = fun (i,j : address * move) -> j.0, j.1 + 1
|
||||
in Map.map increment m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let map_op = (m: moveset): moveset => {
|
||||
|
||||
```reasonligo group=maps
|
||||
let map_op = (m : register) : register => {
|
||||
let increment = ((i,j): (address, move)) => (j[0], j[1] + 1);
|
||||
Map.map(increment, m);
|
||||
Map.map (increment, m);
|
||||
};
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.fold(folding_function: (b', (a', b')) -> b', m: (a', b') map, initial: b') : b'
|
||||
## Folded Operations over Maps
|
||||
|
||||
Combine every value in the map together according to a fold rule `folding_function`.
|
||||
A *folded operation* is the most general of iterations. The folded
|
||||
function takes two arguments: an *accumulator* and the structure
|
||||
*element* at hand, with which it then produces a new accumulator. This
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo
|
||||
function fold_op (const m : moveset) : int is
|
||||
|
||||
<!--PascaLIGO-->
|
||||
|
||||
```pascaligo group=maps
|
||||
function fold_op (const m : register) : int is
|
||||
block {
|
||||
function aggregate (const j : int; const cur : address * (int * int)) : int is j + cur.1.1
|
||||
} with map_fold(aggregate, m, 5)
|
||||
function folded (const i : int; const j : address * move) : int is
|
||||
i + j.1.1
|
||||
} with Map.fold (folded, m, 5)
|
||||
```
|
||||
|
||||
> Note that `map_fold` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let fold_op (m : moveset) : moveset =
|
||||
let aggregate = fun (i,j: int * (address * (int * int))) -> i + j.1.1
|
||||
in Map.fold aggregate m 5
|
||||
```cameligo group=maps
|
||||
let fold_op (m : register) : register =
|
||||
let folded = fun (i,j : int * (address * move)) -> i + j.1.1
|
||||
in Map.fold folded m 5
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let fold_op = (m: moveset): moveset => {
|
||||
let aggregate = ((i,j): (int, (address, (int,int)))) => i + j[1][1];
|
||||
Map.fold(aggregate, m, 5);
|
||||
```reasonligo group=maps
|
||||
let fold_op = (m : register) : register => {
|
||||
let folded = ((i,j): (int, (address, move))) => i + j[1][1];
|
||||
Map.fold (folded, m, 5);
|
||||
};
|
||||
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Map.mem(k: a', m: (a', b') map) : bool
|
||||
|
||||
Test whether a particular key `k` exists in a given map `m`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function mem (const k: int; const m: map(int, int)) : bool is map_mem(k, m)
|
||||
```
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let mem (k,m: int * (int, int) map) : bool = Map.mem k m
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let mem = ((k,m): (int, map(int,int))): bool => Map.mem(k, m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.empty() : (a', b') map
|
||||
|
||||
Create an empty map.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
const empty_map : map(int, int) = map end
|
||||
```
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let empty_map : (int, int) map = Map.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let empty_map: map(int, int) = Map.empty;
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.literal(key_value_pair_list: (a', b') list) : (a', b') map
|
||||
|
||||
Constructs a map from a list of key-value pair tuples.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--Pascaligo-->
|
||||
|
||||
```pascaligo
|
||||
const moves: moveset = map
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1, 2);
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0, 3);
|
||||
end
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo
|
||||
let moves: moveset = Map.literal
|
||||
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ;
|
||||
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0, 3)) ;
|
||||
]
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo
|
||||
let moves : moveset =
|
||||
Map.literal([
|
||||
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1, 2)),
|
||||
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0, 3)),
|
||||
]);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Map.size(m: (a', b') map) : nat
|
||||
|
||||
Get the size of a given map `m`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
function size_ (const m : map(int, int)) : nat is
|
||||
block {skip} with (size(m))
|
||||
```
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let size_ (m: (int, int) map) : nat = Map.size m
|
||||
```
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let size_ = (m: map(int, int)): nat => Map.size(m);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -1,201 +1,220 @@
|
||||
---
|
||||
id: set-reference
|
||||
title: Set — Unordered unique collection of a type
|
||||
title: Sets — Unordered unique collection of a type
|
||||
---
|
||||
|
||||
## Defining a set
|
||||
Sets are unordered collections of values of the same type, like lists
|
||||
are ordered collections. Like the mathematical sets and lists, sets
|
||||
can be empty and, if not, elements of sets in LIGO are *unique*,
|
||||
whereas they can be repeated in a *list*.
|
||||
|
||||
# Empty Sets
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
type int_set is set (int);
|
||||
const my_set : int_set = set 1; 2; 3 end
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=sets
|
||||
const my_set : set (int) = set []
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
type int_set = int set
|
||||
let my_set : int_set =
|
||||
Set.add 3 (Set.add 2 (Set.add 1 (Set.empty: int set)))
|
||||
```cameligo group=sets
|
||||
let my_set : int set = Set.empty
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
type int_set = set (int);
|
||||
let my_set : int_set =
|
||||
Set.add (3, Set.add (2, Set.add (1, Set.empty: set (int))));
|
||||
```reasonligo group=sets
|
||||
let my_set : set (int) = Set.empty;
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Set.mem(is_member: a', s: a' set) : bool
|
||||
|
||||
Check if a set `s` contains the element `is_member`.
|
||||
# Non-empty Sets
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
const contains_three : bool = my_set contains 3
|
||||
// or alternatively
|
||||
const contains_three_fn: bool = set_mem (3, my_set);
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=sets
|
||||
const my_set : set (int) = set [3; 2; 2; 1]
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let contains_three: bool = Set.mem 3 my_set
|
||||
```
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
let contains_three: bool = Set.mem(3, my_set);
|
||||
```cameligo group=sets
|
||||
let my_set : int set =
|
||||
Set.add 3 (Set.add 2 (Set.add 2 (Set.add 1 (Set.empty : int set))))
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=sets
|
||||
let my_set : set (int) =
|
||||
Set.add (3, Set.add (2, Set.add (2, Set.add (1, Set.empty : set (int)))));
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Set.empty() : a' set
|
||||
|
||||
Create a new empty set. Needs to be annotated with the set type.
|
||||
# Set Membership
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
const my_set: int_set = set end
|
||||
const my_set_2: int_set = set_empty
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=sets
|
||||
const contains_3 : bool = my_set contains 3
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let my_set: int_set = (Set.empty: int set)
|
||||
```cameligo group=sets
|
||||
let contains_3 : bool = Set.mem 3 my_set
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
let my_set: int_set = (Set.empty: set (int));
|
||||
```reasonligo group=sets
|
||||
let contains_3 : bool = Set.mem (3, my_set);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Set.literal(element_list_literal: 'a list) : 'a set
|
||||
# Cardinal of Sets
|
||||
|
||||
Create a set from the elements of a list. Note that **you must pass a list literal**
|
||||
to this function, a variable will not work.
|
||||
The predefined function `Set.size` returns the number of
|
||||
elements in a given set as follows.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=sets
|
||||
const cardinal : nat = Set.size (my_set)
|
||||
```
|
||||
|
||||
> Note that `size` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=sets
|
||||
let cardinal : nat = Set.size my_set
|
||||
```
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=sets
|
||||
let cardinal : nat = Set.size (my_set);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Updating Sets
|
||||
|
||||
There are two ways to update a set, that is to add or remove from it.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
In PascaLIGO, either we create a new set from the given one, or we
|
||||
modify it in-place. First, let us consider the former way:
|
||||
```pascaligo group=sets
|
||||
const larger_set : set (int) = Set.add (4, my_set)
|
||||
const smaller_set : set (int) = Set.remove (3, my_set)
|
||||
```
|
||||
|
||||
> Note that `set_add` and `set_remove` are *deprecated*.
|
||||
|
||||
If we are in a block, we can use an instruction to modify the set
|
||||
bound to a given variable. This is called a *patch*. It is only
|
||||
possible to add elements by means of a patch, not remove any: it is
|
||||
the union of two sets.
|
||||
|
||||
```pascaligo group=sets
|
||||
function update (var s : set (int)) : set (int) is block {
|
||||
patch s with set [4; 7]
|
||||
} with s
|
||||
|
||||
const new_set : set (int) = update (my_set)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=sets
|
||||
let larger_set : int set = Set.add 4 my_set
|
||||
let smaller_set : int set = Set.remove 3 my_set
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=sets
|
||||
let larger_set : set (int) = Set.add (4, my_set);
|
||||
let smaller_set : set (int) = Set.remove (3, my_set);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
# Functional Iteration over Sets
|
||||
|
||||
A *functional iterator* is a function that traverses a data structure
|
||||
and calls in turn a given function over the elements of that structure
|
||||
to compute some value. Another approach is possible in PascaLIGO:
|
||||
*loops* (see the relevant section).
|
||||
|
||||
There are three kinds of functional iterations over LIGO maps: the
|
||||
*iterated operation*, the *mapped operation* (not to be confused with
|
||||
the *map data structure*) and the *folded operation*.
|
||||
|
||||
## Iterated Operation
|
||||
|
||||
The first, the *iterated operation*, is an iteration over the map with
|
||||
no return value: its only use is to produce side-effects. This can be
|
||||
useful if for example you would like to check that each value inside
|
||||
of a map is within a certain range, and fail with an error otherwise.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo group=sets
|
||||
function iter_op (const s : set (int)) : unit is
|
||||
block {
|
||||
function iterated (const i : int) : unit is
|
||||
if i > 2 then Unit else (failwith ("Below range.") : unit)
|
||||
} with Set.iter (iterated, s)
|
||||
```
|
||||
|
||||
> Note that `set_iter` is *deprecated*.
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=sets
|
||||
let iter_op (s : int set) : unit =
|
||||
let predicate = fun (i : int) -> assert (i > 3)
|
||||
in Set.iter predicate s
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=sets
|
||||
let iter_op = (s : set (int)) : unit => {
|
||||
let predicate = (i : int) => assert (i > 3);
|
||||
Set.iter (predicate, s);
|
||||
};
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Folded Operation
|
||||
|
||||
A *folded operation* is the most general of iterations. The folded
|
||||
function takes two arguments: an *accumulator* and the structure
|
||||
*element* at hand, with which it then produces a new accumulator. This
|
||||
enables having a partial result that becomes complete when the
|
||||
traversal of the data structure is over.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
<!--PascaLIGO-->
|
||||
```pascaligo
|
||||
const s_fb : set(string) = set [
|
||||
"foo" ;
|
||||
"bar" ;
|
||||
]
|
||||
```pascaligo group=sets
|
||||
function sum (const acc : int; const i : int): int is acc + i
|
||||
const sum_of_elements : int = Set.fold (sum, my_set, 0)
|
||||
```
|
||||
|
||||
> Note that `set_fold` is *deprecated*.
|
||||
|
||||
It is possible to use a *loop* over a set as well.
|
||||
|
||||
```pascaligo group=sets
|
||||
function loop (const s : set (int)) : int is block {
|
||||
var sum : int := 0;
|
||||
for element in set s block {
|
||||
sum := sum + element
|
||||
}
|
||||
} with sum
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo
|
||||
let literal_op (p: unit) : string set =
|
||||
Set.literal ["foo"; "bar"; "foobar"]
|
||||
```cameligo group=sets
|
||||
let sum (acc, i : int * int) : int = acc + i
|
||||
let sum_of_elements : int = Set.fold sum my_set 0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo
|
||||
let literal_op = (p: unit) : set(string) => Set.literal(["foo", "bar", "foobar"]);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Set.add(addition: a', s: a' set) : a' set
|
||||
|
||||
Add the element `addition` to a set `s`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
function add_op (const s : set(string)) : set(string) is
|
||||
begin skip end with set_add("foobar" , s)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
type int_set = int set
|
||||
let my_set : int_set =
|
||||
Set.add 3 (Set.add 2 (Set.add 1 (Set.empty: int set)))
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
type int_set = set (int);
|
||||
let my_set : int_set =
|
||||
Set.add (3, Set.add (2, Set.add (1, Set.empty: set (int))));
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Set.remove(removal: a', s: a' set) : a' set
|
||||
|
||||
Remove the element `removal` from a set `s`.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
const smaller_set: int_set = set_remove(3, my_set);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
|
||||
```cameligo group=a
|
||||
let smaller_set: int_set = Set.remove 3 my_set
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
|
||||
```reasonligo group=a
|
||||
let smaller_set: int_set = Set.remove(3, my_set);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
|
||||
## Set.fold(folding_function: a' -> a' -> a', s: a' set, initial: a') : a'
|
||||
|
||||
Combine the elements of a set into a single value using a folding function.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
function sum(const result: int; const i: int): int is result + i;
|
||||
// Outputs 6
|
||||
const sum_of_a_set: int = set_fold(sum, my_set, 0);
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let sum (result, i: int * int) : int = result + i
|
||||
let sum_of_a_set: int = Set.fold sum my_set 0
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
let sum = (result_i: (int, int)): int => result_i[0] + result_i[1];
|
||||
let sum_of_a_set: int = Set.fold(sum, my_set, 0);
|
||||
```reasonligo group=sets
|
||||
let sum = ((acc, i) : (int, int)) : int => acc + i;
|
||||
let sum_of_elements : int = Set.fold (sum, my_set, 0);
|
||||
```
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
||||
## Set.size(s: a' set) : nat
|
||||
|
||||
Get the number of elements in a set.
|
||||
|
||||
<!--DOCUSAURUS_CODE_TABS-->
|
||||
<!--Pascaligo-->
|
||||
```pascaligo group=a
|
||||
const set_size: nat = size (my_set)
|
||||
```
|
||||
|
||||
<!--CameLIGO-->
|
||||
```cameligo group=a
|
||||
let set_size: nat = Set.size my_set
|
||||
```
|
||||
|
||||
<!--ReasonLIGO-->
|
||||
```reasonligo group=a
|
||||
let set_size: nat = Set.size (my_set);
|
||||
```
|
||||
|
||||
<!--END_DOCUSAURUS_CODE_TABS-->
|
||||
|
@ -1,37 +1,46 @@
|
||||
type taco_supply is record
|
||||
type taco_supply is
|
||||
record [
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
const ownerAddress: address = "tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV";
|
||||
const donationAddress: address = "tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx";
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
const ownerAddress : address = "tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV"
|
||||
const donationAddress : address = "tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx"
|
||||
|
||||
function buy_taco (const taco_kind_index : nat; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock;
|
||||
|
||||
if amount =/= current_purchase_price then
|
||||
// we won't sell tacos if the amount isn't correct
|
||||
fail("Sorry, the taco you're trying to purchase has a different price");
|
||||
else
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// We won't sell tacos if the amount is not correct
|
||||
failwith ("Sorry, the taco you are trying to purchase has a different price");
|
||||
else skip;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
|
||||
const receiver: contract(unit) = get_contract(ownerAddress);
|
||||
const donationReceiver: contract(unit) = get_contract(donationAddress);
|
||||
const receiver : contract (unit) = get_contract (ownerAddress);
|
||||
const donationReceiver : contract (unit) = get_contract (donationAddress);
|
||||
|
||||
const donationAmount: tez = amount / 10n;
|
||||
const donationAmount : tez = amount / 10n;
|
||||
|
||||
const operations : list(operation) = list
|
||||
transaction(unit, amount - donationAmount, receiver);
|
||||
transaction(unit, donationAmount, donationReceiver);
|
||||
end;
|
||||
|
||||
end with (operations, taco_shop_storage)
|
||||
const operations : list (operation) = list [
|
||||
transaction (unit, amount - donationAmount, receiver);
|
||||
transaction (unit, donationAmount, donationReceiver);
|
||||
]
|
||||
} with (operations, taco_shop_storage)
|
||||
|
@ -3,8 +3,14 @@ id: tezos-taco-shop-payout
|
||||
title: Paying out profits from the Taco Shop
|
||||
---
|
||||
|
||||
In the [previous tutorial](tutorials/get-started/tezos-taco-shop-smart-contract.md) we've learned how to setup & interact with the LIGO CLI. Followed by implementation of a simple Taco Shop smart contract for our entepreneur Pedro. In this tutorial we'll make sure Pedro has access to tokens that people have spent at his shop when buying tacos.
|
||||
In the
|
||||
[previous tutorial](tutorials/get-started/tezos-taco-shop-smart-contract.md)
|
||||
we have learnt how to setup & interact with the LIGO CLI. Followed an
|
||||
implementation of a simple Taco Shop smart contract for our
|
||||
entrepreneur Pedro.
|
||||
|
||||
In this tutorial we will make sure Pedro has access to tokens that
|
||||
people have spent at his shop when buying tacos.
|
||||
|
||||
<br/>
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-payout/get-money.svg" width="50%" />
|
||||
@ -14,133 +20,173 @@ In the [previous tutorial](tutorials/get-started/tezos-taco-shop-smart-contract.
|
||||
</div>
|
||||
|
||||
|
||||
## Analyzing the current contract
|
||||
## Analyzing the Current Contract
|
||||
|
||||
### **`taco-shop.ligo`**
|
||||
```pascaligo group=a
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) :
|
||||
(list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function buy_taco (const taco_kind_index : nat ; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock;
|
||||
|
||||
if amount =/= current_purchase_price then
|
||||
// we won't sell tacos if the amount isn't correct
|
||||
failwith("Sorry, the taco you're trying to purchase has a different price");
|
||||
else
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// We won't sell tacos if the amount is not correct
|
||||
failwith ("Sorry, the taco you are trying to purchase has a different price");
|
||||
else skip;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
end with ((nil : list(operation)), taco_shop_storage)
|
||||
taco_shop_storage[taco_kind_index] := taco_kind
|
||||
} with ((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
### Purchase price formula
|
||||
Pedro's Taco Shop contract currently enables customers to buy tacos, at a computed price based on a simple formula.
|
||||
### Purchase Price Formula
|
||||
|
||||
Pedro's Taco Shop contract currently enables customers to buy tacos,
|
||||
at a price based on a simple formula.
|
||||
|
||||
```pascaligo skip
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock
|
||||
```
|
||||
|
||||
### Replacing *spendable* smart contracts
|
||||
However, due to the [recent protocol upgrade](http://tezos.gitlab.io/mainnet/protocols/004_Pt24m4xi.html) of the Tezos mainnet, Pedro can't access the tokens stored in his Shop's contract directly. This was previously possible via `spendable` smart contracts, which are no longer available in the new protocol. We will have to implement a solution to access tokens from the contract programatically.
|
||||
### Replacing *spendable* Smart Contracts
|
||||
|
||||
However, due to the
|
||||
[recent protocol upgrade](http://tezos.gitlab.io/mainnet/protocols/004_Pt24m4xi.html)
|
||||
of the Tezos `mainnet`, Pedro cannot access the tokens stored in his
|
||||
shop's contract directly. This was previously possible via *spendable
|
||||
smart contracts*, which are no longer available in the new
|
||||
protocol. We will have to implement a solution to access tokens from
|
||||
the contract programatically.
|
||||
|
||||
---
|
||||
|
||||
## Designing a payout scheme
|
||||
## Designing a Payout Scheme
|
||||
|
||||
Pedro is a standalone bussines owner, and in our case, he doesn't have to split profits / earnings of the taco shop with anyone. So for the sake of simplicity, we'll payout all the earned XTZ directly to Pedro right after a succesful taco purchase.
|
||||
Pedro is a standalone bussines owner, and in our case, he does not
|
||||
have to split profits and earnings of the taco shop with anyone. So
|
||||
for the sake of simplicity, we will payout all the earned XTZ directly
|
||||
to Pedro right after a succesful purchase.
|
||||
|
||||
This means that after all the *purchase conditions* of our contract are met - e.g. correct amount is sent to the contract - we'll not only decrease the supply of the individual purchased *taco kind*, but we'll also transfer this amount in a *subsequent transaction* to Pedro's personal address.
|
||||
This means that after all the *purchase conditions* of our contract
|
||||
are met, e.g., the correct amount is sent to the contract, we will not
|
||||
only decrease the supply of the individual purchased *taco kind*, but
|
||||
we will also transfer this amount in a *subsequent transaction* to
|
||||
Pedro's personal address.
|
||||
|
||||
## Forging a payout transaction
|
||||
## Forging a Payout Transaction
|
||||
|
||||
### Defining the recipient
|
||||
In order to send tokens, we will need a receiver address - which in our case will be Pedro's personal account. Additionally we'll wrap the given address as a *`contract(unit)`* - which represents either a contract with no parameters, or an implicit account.
|
||||
### Defining the Recipient
|
||||
|
||||
In order to send tokens, we will need a receiver address, which, in
|
||||
our case, will be Pedro's personal account. Additionally we will wrap
|
||||
the given address as a *`contract (unit)`*, which represents either a
|
||||
contract with no parameters, or an implicit account.
|
||||
|
||||
```pascaligo group=ex1
|
||||
const ownerAddress : address = ("tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV" : address);
|
||||
const receiver : contract(unit) = get_contract(ownerAddress);
|
||||
const receiver : contract (unit) = get_contract (ownerAddress);
|
||||
```
|
||||
|
||||
> Would you like to learn more about addresses, contracts and operations in LIGO? Check out the [LIGO cheat sheet](api/cheat-sheet.md)
|
||||
> Would you like to learn more about addresses, contracts and
|
||||
> operations in LIGO? Check out the
|
||||
> [LIGO cheat sheet](api/cheat-sheet.md)
|
||||
|
||||
### Adding the transaction to the list of output operations
|
||||
Now we can transfer the `amount` received by `buy_taco` to Pedro's `ownerAddress`. We will do so by forging a `transaction(unit, amount, receiver)` within a list of operations returned at the end of our contract.
|
||||
### Adding the Transaction to the List of Output Operations
|
||||
|
||||
Now we can transfer the amount received by `buy_taco` to Pedro's
|
||||
`ownerAddress`. We will do so by forging a `transaction (unit, amount,
|
||||
receiver)` within a list of operations returned at the end of our
|
||||
contract.
|
||||
|
||||
```pascaligo group=ex1
|
||||
const payoutOperation : operation = transaction(unit, amount, receiver) ;
|
||||
const operations : list(operation) = list
|
||||
payoutOperation
|
||||
end;
|
||||
const payoutOperation : operation = transaction (unit, amount, receiver) ;
|
||||
const operations : list (operation) = list [payoutOperation];
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Finalizing the contract
|
||||
## Finalizing the Contract
|
||||
|
||||
### **`taco-shop.ligo`**
|
||||
```pascaligo group=b
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
const ownerAddress: address = ("tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV" : address);
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
const ownerAddress : address =
|
||||
("tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV" : address)
|
||||
|
||||
function buy_taco (const taco_kind_index : nat ; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock;
|
||||
|
||||
if amount =/= current_purchase_price then
|
||||
// we won't sell tacos if the amount isn't correct
|
||||
failwith("Sorry, the taco you're trying to purchase has a different price");
|
||||
else
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// We won't sell tacos if the amount is not correct
|
||||
failwith ("Sorry, the taco you are trying to purchase has a different price");
|
||||
else skip;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
|
||||
const receiver : contract(unit) = get_contract(ownerAddress);
|
||||
const payoutOperation : operation = transaction(unit, amount, receiver);
|
||||
const operations : list(operation) = list
|
||||
payoutOperation
|
||||
end;
|
||||
|
||||
end with (operations, taco_shop_storage)
|
||||
const receiver : contract(unit) = get_contract (ownerAddress);
|
||||
const payoutOperation : operation = transaction (unit, amount, receiver);
|
||||
const operations : list(operation) = list [payoutOperation]
|
||||
} with ((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
### Dry-run the Contract
|
||||
|
||||
### Dry-run the contract
|
||||
|
||||
To confirm that our contract is valid, we can dry run it. As a result we see a *new operation* in the list of returned operations to be executed subsequently.
|
||||
To confirm that our contract is valid, we can dry-run it. As a result,
|
||||
we see a *new operation* in the list of returned operations to be
|
||||
executed subsequently.
|
||||
|
||||
```pascaligo skip
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo --amount 1 buy_taco 1n "map
|
||||
1n -> record
|
||||
current_stock = 50n;
|
||||
max_price = 50000000mutez;
|
||||
end;
|
||||
2n -> record
|
||||
current_stock = 20n;
|
||||
max_price = 75000000mutez;
|
||||
end;
|
||||
end"
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo --amount 1 buy_taco 1n "map [
|
||||
1n -> record [
|
||||
current_stock = 50n;
|
||||
max_price = 50tez
|
||||
];
|
||||
2n -> record [
|
||||
current_stock = 20n;
|
||||
max_price = 75tez
|
||||
];
|
||||
]"
|
||||
```
|
||||
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-payout/dry-run-1.png" />
|
||||
@ -150,32 +196,34 @@ end"
|
||||
|
||||
<br/>
|
||||
|
||||
**Done! Our tokens are no longer locked in the contract, and instead they are sent to Pedro's personal account/wallet.**
|
||||
**Done! Our tokens are no longer locked in the contract, and instead
|
||||
they are sent to Pedro's personal account/wallet.**
|
||||
|
||||
---
|
||||
|
||||
## 👼 Bonus: donating part of the profits
|
||||
## 👼 Bonus: Donating Part of the Profits
|
||||
|
||||
Because Pedro is a member of the (STA) Specialty Taco Association, he has decided to donate **10%** of the earnings to the STA. We'll just add a `donationAddress` to the contract, and compute a 10% donation sum from each taco purchase.
|
||||
Because Pedro is a member of the Specialty Taco Association (STA), he
|
||||
has decided to donate **10%** of the earnings to the STA. We will just
|
||||
add a `donationAddress` to the contract, and compute a 10% donation
|
||||
sum from each taco purchase.
|
||||
|
||||
```pascaligo group=bonus
|
||||
const ownerAddress: address = ("tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV" : address);
|
||||
const donationAddress: address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address);
|
||||
```
|
||||
const ownerAddress : address = ("tz1TGu6TN5GSez2ndXXeDX6LgUDvLzPLqgYV" : address);
|
||||
const donationAddress : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address);
|
||||
|
||||
```pascaligo group=bonus
|
||||
const receiver : contract(unit) = get_contract(ownerAddress);
|
||||
const donationReceiver : contract(unit) = get_contract(donationAddress);
|
||||
const receiver : contract (unit) = get_contract (ownerAddress);
|
||||
const donationReceiver : contract(unit) = get_contract (donationAddress);
|
||||
|
||||
const donationAmount: tez = amount / 10n;
|
||||
const donationAmount : tez = amount / 10n;
|
||||
|
||||
const operations : list(operation) = list
|
||||
const operations : list (operation) = list [
|
||||
// Pedro will get 90% of the amount
|
||||
transaction(unit, amount - donationAmount, receiver);
|
||||
transaction(unit, donationAmount, donationReceiver);
|
||||
end;
|
||||
transaction (unit, amount - donationAmount, receiver);
|
||||
transaction (unit, donationAmount, donationReceiver)
|
||||
];
|
||||
```
|
||||
|
||||
This will result into two operations being subsequently executed on the blockchain:
|
||||
- Donation transfer (10%)
|
||||
- Pedro's profits (90%)
|
||||
- Pedro's profits (90%)
|
||||
|
@ -1,23 +1,33 @@
|
||||
type taco_supply is record
|
||||
type taco_supply is
|
||||
record [
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function buy_taco (const taco_kind_index : nat ; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock;
|
||||
|
||||
if amount =/= current_purchase_price then
|
||||
// we won't sell tacos if the amount isn't correct
|
||||
fail("Sorry, the taco you're trying to purchase has a different price");
|
||||
else
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// We won't sell tacos if the amount is not correct
|
||||
failwith ("Sorry, the taco you are trying to purchase has a different price");
|
||||
else skip;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
end with ((nil : list(operation)), taco_shop_storage)
|
||||
taco_shop_storage[taco_kind_index] := taco_kind
|
||||
} with ((nil : list (operation)), taco_shop_storage)
|
||||
|
@ -1,13 +1,18 @@
|
||||
---
|
||||
id: tezos-taco-shop-smart-contract
|
||||
title: Taco shop smart contract
|
||||
title: The Taco Shop Smart Contract
|
||||
---
|
||||
|
||||
<div>
|
||||
|
||||
Meet **Pedro**, our *artisan taco chef* who has decided to open a Taco shop on the Tezos blockchain, using a smart contract. He sells two different kinds of tacos, the **el clásico** and the **especial del chef**.
|
||||
Meet **Pedro**, our *artisan taco chef*, who has decided to open a
|
||||
Taco shop on the Tezos blockchain, using a smart contract. He sells
|
||||
two different kinds of tacos: **el Clásico** and the **Especial
|
||||
del Chef**.
|
||||
|
||||
To help Pedro open his dream taco shop, we'll implement a smart contract, that will manage supply, pricing & sales of his tacos to the consumers.
|
||||
To help Pedro open his dream taco shop, we will implement a smart
|
||||
contract that will manage supply, pricing & sales of his tacos to the
|
||||
consumers.
|
||||
|
||||
<br/>
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/taco-stand.svg" width="50%" />
|
||||
@ -18,95 +23,124 @@ To help Pedro open his dream taco shop, we'll implement a smart contract, that w
|
||||
|
||||
## Pricing
|
||||
|
||||
Pedro's tacos are a rare delicacy, so their **price goes up**, as the **stock for the day begins to deplete**.
|
||||
Pedro's tacos are a rare delicacy, so their **price goes up** as the
|
||||
**stock for the day begins to deplete**.
|
||||
|
||||
Each taco kind, has its own `max_price` that it sells for, and a finite supply for the current sales lifecycle.
|
||||
Each taco kind, has its own `max_price` that it sells for, and a
|
||||
finite supply for the current sales lifecycle.
|
||||
|
||||
> For the sake of simplicity, we won't implement replenishing of the supply after it runs out.
|
||||
> For the sake of simplicity, we will not implement the replenishing
|
||||
> of the supply after it has run out.
|
||||
|
||||
### Daily offer
|
||||
### Daily Offer
|
||||
|
||||
|**kind** |id |**available_stock**| **max_price**|
|
||||
|---|---|---|---|
|
||||
|el clásico | `1n` | `50n` | `50000000mutez` |
|
||||
|especial del chef | `2n` | `20n` | `75000000mutez` |
|
||||
|Clásico | `1n` | `50n` | `50tez` |
|
||||
|Especial del Chef | `2n` | `20n` | `75tez` |
|
||||
|
||||
### Calculating the current purchase price
|
||||
### Calculating the Current Purchase Price
|
||||
|
||||
Current purchase price is calculated with the following equation:
|
||||
The current purchase price is calculated with the following formula:
|
||||
|
||||
```pascaligo skip
|
||||
current_purchase_price = max_price / available_stock
|
||||
```
|
||||
|
||||
#### El clásico
|
||||
#### El Clásico
|
||||
|**available_stock**|**max_price**|**current_purchase_price**|
|
||||
|---|---|---|
|
||||
| `50n` | `50000000mutez` | `1tz`|
|
||||
| `20n` | `50000000mutez` | `2.5tz` |
|
||||
| `5n` | `50000000mutez` | `10tz` |
|
||||
| `50n` | `50tez` | `1tez`|
|
||||
| `20n` | `50tez` | `2.5tez` |
|
||||
| `5n` | `50tez` | `10tez` |
|
||||
|
||||
#### Especial del chef
|
||||
|**available_stock**|**max_price**|**current_purchase_price**|
|
||||
|---|---|---|
|
||||
| `20n` | `75000000mutez` | `3.75tz` |
|
||||
| `10n` | `75000000mutez` | `7.5tz`|
|
||||
| `5n` | `75000000mutez` | `15tz` |
|
||||
| `20n` | `75tez` | `3.75tez` |
|
||||
| `10n` | `75tez` | `7.5tez`|
|
||||
| `5n` | `75tez` | `15tez` |
|
||||
|
||||
---
|
||||
|
||||
## Installing LIGO
|
||||
|
||||
In this tutorial, we'll use LIGO's dockerized version for the sake of simplicity. You can find the installation instructions [here](intro/installation.md#dockerized-installation-recommended).
|
||||
In this tutorial, we will use LIGO's dockerized version, for the sake
|
||||
of simplicity. You can find the installation instructions
|
||||
[here](intro/installation.md#dockerized-installation-recommended).
|
||||
|
||||
The best way to install the dockerized LIGO is as a **global executable** through the installation script, as shown in the screenshot below:
|
||||
The best way to install the dockerized LIGO is as a **global
|
||||
executable** through the installation script, as shown in the
|
||||
screenshot below:
|
||||
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/install-ligo.png" />
|
||||
<div style="opacity: 0.7; text-align: center; font-size: 12px; margin-top:-24px;">Installing the <b>next</b> version of LIGO's CLI</div>
|
||||
|
||||
## Implementing our first entry point
|
||||
## Implementing our First `main` Function
|
||||
|
||||
> From now on we'll get a bit more technical. If you run into something we have not covered yet - please try checking out the [LIGO cheat sheet](api/cheat-sheet.md) for some extra tips & tricks.
|
||||
> From now on we will get a bit more technical. If you run into
|
||||
> something we have not covered yet - please try checking out the
|
||||
> [LIGO cheat sheet](api/cheat-sheet.md) for some extra tips & tricks.
|
||||
|
||||
To begin implementing our smart contract, we need an entry point. We'll call it `main` and it'll specify our contract's storage (`int`) and input parameter (`int`). Of course this is not the final storage/parameter of our contract, but it is something to get us started and test our LIGO installation as well.
|
||||
To begin implementing our smart contract, we need a *main function*,
|
||||
that is the first function being executed. We will call it `main` and
|
||||
it will specify our contract's storage (`int`) and input parameter
|
||||
(`int`). Of course this is not the final storage/parameter of our
|
||||
contract, but it is something to get us started and test our LIGO
|
||||
installation as well.
|
||||
|
||||
### `taco-shop.ligo`
|
||||
```pascaligo group=a
|
||||
function main (const parameter: int; const contractStorage: int) : (list(operation) * int) is
|
||||
block {skip} with ((nil : list(operation)), contractStorage + parameter)
|
||||
function main (const parameter : int; const contractStorage : int) :
|
||||
list (operation) * int is
|
||||
((nil : list (operation)), contractStorage + parameter)
|
||||
```
|
||||
|
||||
Let's break down the contract above to make sure we understand each bit of the LIGO syntax:
|
||||
Let us break down the contract above to make sure we understand each
|
||||
bit of the LIGO syntax:
|
||||
|
||||
- **`function main`** - definition of a function that serves as an entry point
|
||||
- **`(const parameter : int; const contractStorage : int)`** - parameters passed to the function
|
||||
- **`const parameter : int`** - parameter provided by a transaction that invokes our contract
|
||||
- **`const contractStorage : int`** - definition of our storage (`int`)
|
||||
- **`(list(operation) * int)`** - return type of our function, in our case a touple with a list of operations, and an int
|
||||
- **`block {skip}`** - our function has no body, so we instruct LIGO to `skip` it
|
||||
- **`with ((nil : list(operation)), contractStorage + parameter)`** - essentially a return statement
|
||||
- **`(nil : list(operation))`** - a `nil` value annotated as a list of operations, because that's required by our return type specified above
|
||||
- **`contractStorage + parameter`** - a new storage value for our contract, sum of previous storage and a transaction parameter
|
||||
### Running LIGO for the first time
|
||||
- **`function main`** - definition of the main function, which takes
|
||||
a the parameter of the contract and the storage
|
||||
- **`(const parameter : int; const contractStorage : int)`** -
|
||||
parameters passed to the function: the first is called `parameter`
|
||||
because it denotes the parameter of a specific invocation of the
|
||||
contract, the second is the storage
|
||||
- **`(list (operation) * int)`** - return type of our function, in our
|
||||
case a tuple with a list of operations, and an `int` (new value for
|
||||
the storage after a succesful run of the contract)
|
||||
- **`((nil : list (operation)), contractStorage + parameter)`** -
|
||||
essentially a return statement
|
||||
- **`(nil : list (operation))`** - a `nil` value annotated as a list
|
||||
of operations, because that is required by our return type specified
|
||||
above
|
||||
- **`contractStorage + parameter`** - a new storage value for our
|
||||
contract, sum of previous storage and a transaction parameter
|
||||
|
||||
To test that we've installed LIGO correctly, and that `taco-shop.ligo` is a valid contract, we'll dry-run it.
|
||||
### Running LIGO for the First Time
|
||||
|
||||
> Dry-running is a simulated execution of the smart contract, based on a mock storage value and a parameter.
|
||||
To test that we have installed LIGO correctly, and that
|
||||
`taco-shop.ligo` is a valid contract, we will dry-run it.
|
||||
|
||||
Our contract has a storage of `int` and accepts a parameter that is also an `int`.
|
||||
> Dry-running is a simulated execution of the smart contract, based on
|
||||
> a mock storage value and a parameter.
|
||||
|
||||
Our contract has a storage of `int` and accepts a parameter that is
|
||||
also an `int`.
|
||||
|
||||
The `dry-run` command requires a few parameters:
|
||||
- **contract** *(file path)*
|
||||
- **entrypoint** *(name of the entrypoint function in the contract)*
|
||||
- **entrypoint** *(name of the main function in the contract)*
|
||||
- **parameter** *(parameter to execute our contract with)*
|
||||
- **storage** *(starting storage before our contract's code is executed)*
|
||||
|
||||
|
||||
And outputs what's returned from our entrypoint - in our case a touple containing an empty list (of operations to apply) and the new storage value - which in our case is the sum of the previous storage and the parameter we've used.
|
||||
It outputs what is returned from our main function: in our case a
|
||||
tuple containing an empty list (of operations to apply) and the new
|
||||
storage value, which, in our case, is the sum of the previous storage
|
||||
and the parameter we have used for the invocation.
|
||||
|
||||
```zsh
|
||||
# Contract: taco-shop.ligo
|
||||
# Entry point: main
|
||||
# Main function: main
|
||||
# Parameter: 4
|
||||
# Storage: 3
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo main 4 3
|
||||
@ -124,66 +158,80 @@ ligo dry-run taco-shop.ligo --syntax pascaligo main 4 3
|
||||
|
||||
---
|
||||
|
||||
## Designing Taco shop's contract storage
|
||||
## Designing the Taco Shop's Contract Storage
|
||||
|
||||
We know that Pedro's Taco Shop serves two kinds of tacos, so we'll need to manage stock individually, per kind. Let's define a type, that will keep the `stock` & `max_price` per kind - in a record with two fields. Additionally, we'll want to combine our `taco_supply` type into a map, consisting of the entire offer of Pedro's shop.
|
||||
We know that Pedro's Taco Shop serves two kinds of tacos, so we will
|
||||
need to manage stock individually, per kind. Let us define a type,
|
||||
that will keep the `stock` & `max_price` per kind in a record with two
|
||||
fields. Additionally, we will want to combine our `taco_supply` type
|
||||
into a map, consisting of the entire offer of Pedro's shop.
|
||||
|
||||
**Taco shop's storage**
|
||||
```pascaligo group=b
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
```
|
||||
|
||||
Next step is to update the `main` entry point to include `taco_shop_storage` in its storage - while doing that let's set the `parameter` to `unit` as well to clear things up.
|
||||
Next step is to update the `main` function to include
|
||||
`taco_shop_storage` in its storage. In the meanwhile, let us set the
|
||||
`parameter` to `unit` as well to clear things up.
|
||||
|
||||
**`taco-shop.ligo`**
|
||||
```pascaligo group=b+
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
function main (const parameter: unit ; const taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
block {skip} with ((nil : list(operation)), taco_shop_storage)
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function main (const parameter : unit; const taco_shop_storage : taco_shop_storage) : return is
|
||||
((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
### Populating our storage in a dry-run
|
||||
### Populating our Storage in a dry-run
|
||||
|
||||
When dry-running a contract, it is crucial to provide a correct initial storage value - in our case the storage is type-checked as `taco_shop_storage`. Reflecting [Pedro's daily offer](tutorials/get-started/tezos-taco-shop-smart-contract.md#daily-offer), our storage's value will be defined as following:
|
||||
When dry-running a contract, it is crucial to provide a correct
|
||||
initial storage value. In our case the storage is type-checked as
|
||||
`taco_shop_storage`. Reflecting
|
||||
[Pedro's daily offer](tutorials/get-started/tezos-taco-shop-smart-contract.md#daily-offer),
|
||||
our storage's value will be defined as follows:
|
||||
|
||||
**Storage value**
|
||||
```zsh
|
||||
map
|
||||
1n -> record
|
||||
current_stock = 50n;
|
||||
max_price = 50000000mutez;
|
||||
end;
|
||||
2n -> record
|
||||
current_stock = 20n;
|
||||
max_price = 75000000mutez;
|
||||
end;
|
||||
end
|
||||
map [
|
||||
1n -> record [
|
||||
current_stock = 50n;
|
||||
max_price = 50tez
|
||||
];
|
||||
2n -> record [
|
||||
current_stock = 20n;
|
||||
max_price = 75tez
|
||||
]
|
||||
]
|
||||
```
|
||||
|
||||
> Storage value is a map, with two items in it, both items are records identified by natural numbers `1n` & `2n`.
|
||||
> The storage value is a map with two bindings (entries) distinguished
|
||||
> by their keys `1n` and `2n`.
|
||||
|
||||
**Dry run command with a multi-line storage value**
|
||||
```zsh
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo main unit "map
|
||||
1n -> record
|
||||
current_stock = 50n;
|
||||
max_price = 50000000mutez;
|
||||
end;
|
||||
2n -> record
|
||||
current_stock = 20n;
|
||||
max_price = 75000000mutez;
|
||||
end;
|
||||
end"
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo main unit "map [
|
||||
1n -> record [
|
||||
current_stock = 50n;
|
||||
max_price = 50tez
|
||||
];
|
||||
2n -> record [
|
||||
current_stock = 20n;
|
||||
max_price = 75tez
|
||||
]
|
||||
]"
|
||||
```
|
||||
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/dry-run-2.png" />
|
||||
@ -191,62 +239,84 @@ end"
|
||||
|
||||
<br/>
|
||||
|
||||
*If everything went as expected, the `dry-run` command will return an empty list of operations and the contract's current storage, which is the map of products we've defined based on the daily offer of Pedro's taco shop.*
|
||||
*If everything went as expected, the `dry-run` command will return an
|
||||
empty list of operations and the contract's current storage, which is
|
||||
the map of the products we have defined based on the daily offer of
|
||||
Pedro's taco shop.*
|
||||
|
||||
---
|
||||
|
||||
## Providing an entrypoint for buying tacos
|
||||
## Providing another Access Function for Buying Tacos
|
||||
|
||||
Now that we have our stock well defined in form of storage, we can move on to the actual sales. We'll replace the `main` entrypoint with `buy_taco`, that takes an `id` - effectively a key from our `taco_shop_storage` map. This will allow us to calculate pricing, and if the sale is successful - then we can reduce our stock - because we have sold a taco!
|
||||
Now that we have our stock well defined in form of storage, we can
|
||||
move on to the actual sales. The `main` function will take a key `id`
|
||||
from our `taco_shop_storage` map and will be renamed `buy_taco` for
|
||||
more readability. This will allow us to calculate pricing, and if the
|
||||
sale is successful, we will be able to reduce our stock because we
|
||||
have sold a taco!
|
||||
|
||||
### Selling the tacos for free
|
||||
### Selling the Tacos for Free
|
||||
|
||||
Let's start by customizing our contract a bit, we will:
|
||||
Let is start by customizing our contract a bit, we will:
|
||||
|
||||
- rename the entrypoint from `main` to `buy_taco`
|
||||
- rename `parameter` to `taco_kind_index`
|
||||
- change `taco_shop_storage` to a `var` instead of a `const`, because we'll want to modify it
|
||||
- change `taco_shop_storage` to a `var` instead of a `const`, because
|
||||
we will want to modify it
|
||||
|
||||
**`taco-shop.ligo`**
|
||||
```pascaligo group=c
|
||||
type taco_supply is record
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
block { skip } with ((nil : list(operation)), taco_shop_storage)
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function buy_taco (const taco_kind_index : nat; var taco_shop_storage : taco_shop_storage) : return is
|
||||
((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
#### Decreasing `current_stock` when a taco is sold
|
||||
#### Decreasing `current_stock` when a Taco is Sold
|
||||
|
||||
In order to decrease the stock in our contract's storage for a specific taco kind, a few things needs to happen:
|
||||
In order to decrease the stock in our contract's storage for a
|
||||
specific taco kind, a few things needs to happen:
|
||||
|
||||
- retrieve the `taco_kind` from our storage, based on the `taco_kind_index` provided
|
||||
- subtract the `taco_kind.current_stock` by `1n`
|
||||
- we can find the absolute (`nat`) value of the subtraction above by using `abs`, otherwise we'd be left with an `int`
|
||||
- update the storage, and return it
|
||||
- retrieve the `taco_kind` from our storage, based on the
|
||||
`taco_kind_index` provided;
|
||||
- subtract the `taco_kind.current_stock` by `1n`;
|
||||
- we can find the absolute value of the subtraction above by
|
||||
calling `abs` (otherwise we would be left with an `int`);
|
||||
- update the storage, and return it.
|
||||
|
||||
**`taco-shop.ligo`**
|
||||
|
||||
```pascaligo group=d
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function buy_taco (const taco_kind_index : nat; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
end with ((nil : list(operation)), taco_shop_storage)
|
||||
taco_shop_storage[taco_kind_index] := taco_kind
|
||||
} with ((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/dry-run-3.png" />
|
||||
@ -254,67 +324,85 @@ function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_sho
|
||||
|
||||
<br/>
|
||||
|
||||
### Making sure we get paid for our tacos
|
||||
### Making Sure We Get Paid for Our Tacos
|
||||
|
||||
In order to make Pedro's taco shop profitable, he needs to stop giving away tacos for free. When a contract is invoked via a transaction, an amount of tezzies to be sent can be specified as well. This amount is accessible within LIGO as `amount`.
|
||||
In order to make Pedro's taco shop profitable, he needs to stop giving
|
||||
away tacos for free. When a contract is invoked via a transaction, an
|
||||
amount of tezzies to be sent can be specified as well. This amount is
|
||||
accessible within LIGO as `amount`.
|
||||
|
||||
To make sure we get paid, we will:
|
||||
|
||||
- calculate a `current_purchase_price` based on the [equation specified earlier](tutorials/get-started/tezos-taco-shop-smart-contract.md#calculating-the-current-purchase-price)
|
||||
- check if the sent `amount` matches the `current_purchase_price`
|
||||
- if not, then our contract will `fail` and stop executing
|
||||
- if yes, stock for the given `taco_kind` will be decreased and the payment accepted
|
||||
- calculate a `current_purchase_price` based on the
|
||||
[equation specified earlier](tutorials/get-started/tezos-taco-shop-smart-contract.md#calculating-the-current-purchase-price)
|
||||
- check if the sent `amount` matches the `current_purchase_price`:
|
||||
- if not, then our contract will fail (`failwith`)
|
||||
- otherwise, stock for the given `taco_kind` will be decreased and
|
||||
the payment accepted
|
||||
|
||||
**`taco-shop.ligo`**
|
||||
```pascaligo group=e
|
||||
type taco_supply is record
|
||||
current_stock : nat;
|
||||
max_price : tez;
|
||||
end
|
||||
type taco_shop_storage is map(nat, taco_supply);
|
||||
type taco_supply is record [
|
||||
current_stock : nat;
|
||||
max_price : tez
|
||||
]
|
||||
|
||||
function buy_taco (const taco_kind_index: nat ; var taco_shop_storage : taco_shop_storage) : (list(operation) * taco_shop_storage) is
|
||||
begin
|
||||
// Retrieve the taco_kind from the contract's storage
|
||||
const taco_kind : taco_supply = get_force(taco_kind_index, taco_shop_storage);
|
||||
|
||||
const current_purchase_price : tez = taco_kind.max_price / taco_kind.current_stock;
|
||||
type taco_shop_storage is map (nat, taco_supply)
|
||||
|
||||
type return is list (operation) * taco_shop_storage
|
||||
|
||||
function buy_taco (const taco_kind_index : nat ; var taco_shop_storage : taco_shop_storage) : return is
|
||||
block {
|
||||
// Retrieve the taco_kind from the contract's storage or fail
|
||||
const taco_kind : taco_supply =
|
||||
case taco_shop_storage[taco_kind_index] of
|
||||
Some (kind) -> kind
|
||||
| None -> (failwith ("Unknown kind of taco.") : taco_supply)
|
||||
end;
|
||||
|
||||
const current_purchase_price : tez =
|
||||
taco_kind.max_price / taco_kind.current_stock;
|
||||
|
||||
if amount =/= current_purchase_price then
|
||||
// we won't sell tacos if the amount isn't correct
|
||||
failwith("Sorry, the taco you're trying to purchase has a different price");
|
||||
else
|
||||
// Decrease the stock by 1n, because we've just sold one
|
||||
taco_kind.current_stock := abs(taco_kind.current_stock - 1n);
|
||||
// We won't sell tacos if the amount is not correct
|
||||
failwith ("Sorry, the taco you are trying to purchase has a different price");
|
||||
else skip;
|
||||
|
||||
// Decrease the stock by 1n, because we have just sold one
|
||||
taco_kind.current_stock := abs (taco_kind.current_stock - 1n);
|
||||
|
||||
// Update the storage with the refreshed taco_kind
|
||||
taco_shop_storage[taco_kind_index] := taco_kind;
|
||||
end with ((nil : list(operation)), taco_shop_storage)
|
||||
taco_shop_storage[taco_kind_index] := taco_kind
|
||||
} with ((nil : list (operation)), taco_shop_storage)
|
||||
```
|
||||
|
||||
In order to test the `amount` sent, we'll use the `--amount` option of `dry-run`:
|
||||
In order to test the `amount` sent, we will use the `--amount` option
|
||||
of `dry-run`:
|
||||
|
||||
```zsh
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo --amount 1 buy_taco 1n "map
|
||||
1n -> record
|
||||
current_stock = 50n;
|
||||
max_price = 50000000mutez;
|
||||
end;
|
||||
2n -> record
|
||||
current_stock = 20n;
|
||||
max_price = 75000000mutez;
|
||||
end;
|
||||
end"
|
||||
ligo dry-run taco-shop.ligo --syntax pascaligo --amount 1 buy_taco 1n "map [
|
||||
1n -> record [
|
||||
current_stock = 50n;
|
||||
max_price = 50tez
|
||||
];
|
||||
2n -> record [
|
||||
current_stock = 20n;
|
||||
max_price = 75tez
|
||||
]
|
||||
]"
|
||||
```
|
||||
**Purchasing a taco with 1.0tz**
|
||||
|
||||
** Purchasing a Taco with 1tez **
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/dry-run-4.png" />
|
||||
<div style="opacity: 0.7; text-align: center; font-size: 12px; margin-top:-24px;">Stock decreases after selling a taco, if the right amount of tezzies is provided</div>
|
||||
|
||||
<br/>
|
||||
|
||||
**Attempting to purchase a taco with 0.7tz**
|
||||
**Attempting to Purchase a Taco with 0.7tez**
|
||||
<img src="/img/tutorials/get-started/tezos-taco-shop-smart-contract/dry-run-5.png" />
|
||||
<div style="opacity: 0.7; text-align: center; font-size: 12px; margin-top:-24px;">Stock does not decrease after a purchase attempt with a lower than required amount.</div>
|
||||
<div style="opacity: 0.7; text-align: center; font-size: 12px;
|
||||
margin-top:-24px;">Stock does not decrease after a purchase attempt
|
||||
with an insufficient payment.</div>
|
||||
|
||||
<br/>
|
||||
|
||||
@ -322,9 +410,10 @@ end"
|
||||
|
||||
---
|
||||
|
||||
## 💰 Bonus: *Accepting tips above the taco purchase price*
|
||||
## 💰 Bonus: *Accepting Tips above the Taco Purchase Price*
|
||||
|
||||
If you'd like to accept tips in your contract as well, simply change the following line, depending on your preference.
|
||||
If you would like to accept tips in your contract, simply change the
|
||||
following line, depending on your preference.
|
||||
|
||||
**Without tips**
|
||||
```pascaligo skip
|
||||
|
@ -1,10 +0,0 @@
|
||||
type action is
|
||||
| Increment of int
|
||||
| Decrement of int
|
||||
|
||||
function main (const p : action ; const s : int) : (list(operation) * int) is
|
||||
block {skip} with ((nil : list(operation)),
|
||||
case p of
|
||||
| Increment n -> s + n
|
||||
| Decrement n -> s - n
|
||||
end)
|
@ -1,10 +0,0 @@
|
||||
function multiply (const a : int ; const b : int) : int is
|
||||
begin
|
||||
const result : int = a * b ;
|
||||
end with result
|
||||
|
||||
function add (const a : int ; const b : int) : int is
|
||||
block { skip } with a + b
|
||||
|
||||
function main (const p : unit ; const s : unit) : (list(operation) * unit) is
|
||||
block {skip} with ((nil : list(operation)), s)
|
@ -1,16 +0,0 @@
|
||||
type action is
|
||||
| Increment of int
|
||||
| Decrement of int
|
||||
|
||||
function add (const a : int ; const b : int) : int is
|
||||
block { skip } with a + b
|
||||
|
||||
function subtract (const a : int ; const b : int) : int is
|
||||
block { skip } with a - b
|
||||
|
||||
function main (const p : action ; const s : int) : (list(operation) * int) is
|
||||
block {skip} with ((nil : list(operation)),
|
||||
case p of
|
||||
| Increment n -> add(s, n)
|
||||
| Decrement n -> subtract(s, n)
|
||||
end)
|
@ -1,5 +0,0 @@
|
||||
const four : int = 4;
|
||||
const name : string = "John Doe";
|
||||
|
||||
function main (const p : unit ; const s : unit) : (list(operation) * unit) is
|
||||
block {skip} with ((nil : list(operation)), s)
|
@ -24,9 +24,17 @@
|
||||
"version-next-advanced/include",
|
||||
"version-next-advanced/first-contract"
|
||||
],
|
||||
"API": [
|
||||
"API & Reference": [
|
||||
"version-next-api/cli-commands",
|
||||
"version-next-api/cheat-sheet"
|
||||
"version-next-api/cheat-sheet",
|
||||
"version-next-reference/big-map-reference",
|
||||
"version-next-reference/bytes-reference",
|
||||
"version-next-reference/crypto-reference",
|
||||
"version-next-reference/current-reference",
|
||||
"version-next-reference/list-reference",
|
||||
"version-next-reference/map-reference",
|
||||
"version-next-reference/set-reference",
|
||||
"version-next-reference/string-reference"
|
||||
]
|
||||
},
|
||||
"version-next-contributors-docs": {
|
||||
|
@ -20,3 +20,4 @@ $HOME/git/ligo/vendors/ligo-utils/simple-utils/region.ml
|
||||
../shared/LexerUnit.ml
|
||||
../shared/ParserUnit.ml
|
||||
Stubs/Simple_utils.ml
|
||||
$HOME/git/ligo/_build/default/src/passes/1-parser/cameligo/ParErr.ml
|
@ -266,7 +266,6 @@ let keywords = [
|
||||
let reserved =
|
||||
let open SSet in
|
||||
empty
|
||||
|> add "and"
|
||||
|> add "as"
|
||||
|> add "asr"
|
||||
|> add "class"
|
||||
|
@ -1,5 +1,7 @@
|
||||
(* Driver for the CameLIGO lexer *)
|
||||
|
||||
module Region = Simple_utils.Region
|
||||
|
||||
module IO =
|
||||
struct
|
||||
let ext = ".mligo"
|
||||
|
@ -593,10 +593,14 @@ core_expr:
|
||||
| par(expr ":" type_expr {$1,$2,$3}) { EAnnot $1 }
|
||||
|
||||
module_field:
|
||||
module_name "." field_name {
|
||||
module_name "." module_fun {
|
||||
let region = cover $1.region $3.region in
|
||||
{region; value = $1.value ^ "." ^ $3.value} }
|
||||
|
||||
module_fun:
|
||||
field_name { $1 }
|
||||
| "or" { {value="or"; region=$1} }
|
||||
|
||||
projection:
|
||||
struct_name "." nsepseq(selection,".") {
|
||||
let start = $1.region in
|
||||
|
@ -24,3 +24,4 @@ $HOME/git/ligo/vendors/ligo-utils/simple-utils/region.ml
|
||||
../shared/Memo.mli
|
||||
../shared/Memo.ml
|
||||
Stubs/Simple_utils.ml
|
||||
$HOME/git/ligo/_build/default/src/passes/1-parser/pascaligo/ParErr.ml
|
@ -98,11 +98,12 @@ sepseq(X,Sep):
|
||||
|
||||
(* Inlines *)
|
||||
|
||||
%inline var : "<ident>" { $1 }
|
||||
%inline type_name : "<ident>" { $1 }
|
||||
%inline fun_name : "<ident>" { $1 }
|
||||
%inline field_name : "<ident>" { $1 }
|
||||
%inline struct_name : "<ident>" { $1 }
|
||||
%inline var : "<ident>" { $1 }
|
||||
%inline type_name : "<ident>" { $1 }
|
||||
%inline fun_name : "<ident>" { $1 }
|
||||
%inline field_name : "<ident>" { $1 }
|
||||
%inline struct_name : "<ident>" { $1 }
|
||||
%inline module_name : "<constr>" { $1 }
|
||||
|
||||
(* Main *)
|
||||
|
||||
@ -829,7 +830,7 @@ core_expr:
|
||||
"<int>" { EArith (Int $1) }
|
||||
| "<nat>" { EArith (Nat $1) }
|
||||
| "<mutez>" { EArith (Mutez $1) }
|
||||
| var { EVar $1 }
|
||||
| "<ident>" | module_field { EVar $1 }
|
||||
| "<string>" { EString (String $1) }
|
||||
| "<bytes>" { EBytes $1 }
|
||||
| "False" { ELogic (BoolExpr (False $1)) }
|
||||
@ -902,13 +903,32 @@ path:
|
||||
var { Name $1 }
|
||||
| projection { Path $1 }
|
||||
|
||||
module_field:
|
||||
module_name "." module_fun {
|
||||
let region = cover $1.region $3.region in
|
||||
{region; value = $1.value ^ "." ^ $3.value} }
|
||||
|
||||
module_fun:
|
||||
field_name { $1 }
|
||||
| "map" { {value="map"; region=$1} }
|
||||
| "or" { {value="or"; region=$1} }
|
||||
| "and" { {value="and"; region=$1} }
|
||||
| "remove" { {value="remove"; region=$1} }
|
||||
|
||||
projection:
|
||||
struct_name "." nsepseq(selection,".") {
|
||||
let stop = nsepseq_to_region selection_to_region $3 in
|
||||
let region = cover $1.region stop
|
||||
and value = {struct_name = $1;
|
||||
selector = $2;
|
||||
field_path = $3}
|
||||
and value = {struct_name=$1; selector=$2; field_path=$3}
|
||||
in {region; value}
|
||||
}
|
||||
| module_name "." field_name "." nsepseq(selection,".") {
|
||||
let value = $1.value ^ "." ^ $3.value in
|
||||
let struct_name = {$1 with value} in
|
||||
let start = $1.region in
|
||||
let stop = nsepseq_to_region selection_to_region $5 in
|
||||
let region = cover start stop in
|
||||
let value = {struct_name; selector=$4; field_path=$5}
|
||||
in {region; value} }
|
||||
|
||||
selection:
|
||||
@ -939,31 +959,26 @@ record_expr:
|
||||
update_record:
|
||||
path "with" ne_injection("record",field_path_assignment){
|
||||
let region = cover (path_to_region $1) $3.region in
|
||||
let value = {
|
||||
record = $1;
|
||||
kwd_with = $2;
|
||||
updates = $3}
|
||||
let value = {record=$1; kwd_with=$2; updates=$3}
|
||||
in {region; value} }
|
||||
|
||||
|
||||
field_assignment:
|
||||
field_name "=" expr {
|
||||
let region = cover $1.region (expr_to_region $3)
|
||||
and value = {field_name = $1;
|
||||
equal = $2;
|
||||
field_expr = $3}
|
||||
and value = {field_name=$1; equal=$2; field_expr=$3}
|
||||
in {region; value} }
|
||||
|
||||
field_path_assignment:
|
||||
nsepseq(field_name,".") "=" expr {
|
||||
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3)
|
||||
and value = {field_path = $1;
|
||||
equal = $2;
|
||||
field_expr = $3}
|
||||
let start = nsepseq_to_region (fun x -> x.region) $1
|
||||
and stop = expr_to_region $3 in
|
||||
let region = cover start stop
|
||||
and value = {field_path=$1; equal=$2; field_expr=$3}
|
||||
in {region; value} }
|
||||
|
||||
fun_call:
|
||||
fun_name arguments {
|
||||
fun_name arguments
|
||||
| module_field arguments {
|
||||
let region = cover $1.region $2.region
|
||||
in {region; value = (EVar $1),$2} }
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -25,4 +25,5 @@ Stubs/Parser_cameligo.ml
|
||||
../cameligo/ParserLog.mli
|
||||
../cameligo/ParserLog.ml
|
||||
../cameligo/Scoping.mli
|
||||
../cameligo/Scoping.ml
|
||||
../cameligo/Scoping.ml
|
||||
$HOME/git/ligo/_build/default/src/passes/1-parser/reasonligo/ParErr.ml
|
@ -238,12 +238,9 @@ let keywords = [
|
||||
(fun reg -> True reg);
|
||||
(fun reg -> Type reg)]
|
||||
|
||||
(* See: http://caml.inria.fr/pub/docs/manual-ocaml/lex.html#sec86 and
|
||||
https://github.com/facebook/reason/blob/master/src/reason-parser/reason_parser.mly *)
|
||||
let reserved =
|
||||
let open SSet in
|
||||
empty
|
||||
|> add "and"
|
||||
|> add "as"
|
||||
|> add "asr"
|
||||
|> add "begin"
|
||||
|
@ -1,5 +1,7 @@
|
||||
(* Driver for the ReasonLIGO lexer *)
|
||||
|
||||
module Region = Simple_utils.Region
|
||||
|
||||
module IO =
|
||||
struct
|
||||
let ext = ".religo"
|
||||
|
@ -24,22 +24,22 @@ type 'a sequence_or_record =
|
||||
|
||||
let (<@) f g x = f (g x)
|
||||
|
||||
(**
|
||||
Covert nsepseq to a chain of TFun's.
|
||||
|
||||
(**
|
||||
Covert nsepseq to a chain of TFun's.
|
||||
|
||||
Necessary to handle cases like:
|
||||
`type foo = (int, int) => int;`
|
||||
*)
|
||||
let rec nsepseq_to_curry hd rest =
|
||||
match hd, rest with
|
||||
| hd, (sep, item) :: rest ->
|
||||
let rec nsepseq_to_curry hd rest =
|
||||
match hd, rest with
|
||||
| hd, (sep, item) :: rest ->
|
||||
let start = type_expr_to_region hd in
|
||||
let stop = nsepseq_to_region type_expr_to_region (hd, rest) in
|
||||
let region = cover start stop in
|
||||
let region = cover start stop in
|
||||
TFun {
|
||||
value = hd, sep, (nsepseq_to_curry item rest);
|
||||
value = hd, sep, (nsepseq_to_curry item rest);
|
||||
region
|
||||
}
|
||||
}
|
||||
| hd, [] -> hd
|
||||
|
||||
(* END HEADER *)
|
||||
@ -178,34 +178,34 @@ type_expr:
|
||||
cartesian | sum_type | record_type { $1 }
|
||||
|
||||
type_expr_func:
|
||||
"=>" cartesian {
|
||||
"=>" cartesian {
|
||||
$1, $2
|
||||
}
|
||||
|
||||
cartesian:
|
||||
core_type { $1 }
|
||||
| type_name type_expr_func {
|
||||
| type_name type_expr_func {
|
||||
let (arrow, c) = $2 in
|
||||
let value = TVar $1, arrow, c in
|
||||
let region = cover $1.region (type_expr_to_region c) in
|
||||
TFun { region; value }
|
||||
}
|
||||
| "(" cartesian ")" type_expr_func {
|
||||
| "(" cartesian ")" type_expr_func {
|
||||
let (arrow, c) = $4 in
|
||||
let value = $2, arrow, c in
|
||||
let region = cover $1 (type_expr_to_region c) in
|
||||
TFun { region; value }
|
||||
}
|
||||
| "(" cartesian "," nsepseq(cartesian,",") ")" type_expr_func? {
|
||||
match $6 with
|
||||
| Some (arrow, c) ->
|
||||
match $6 with
|
||||
| Some (arrow, c) ->
|
||||
let (hd, rest) = Utils.nsepseq_cons $2 $3 $4 in
|
||||
let rest = rest @ [(arrow, c)] in
|
||||
let rest = rest @ [(arrow, c)] in
|
||||
nsepseq_to_curry hd rest
|
||||
| None ->
|
||||
let value = Utils.nsepseq_cons $2 $3 $4 in
|
||||
let region = cover $1 $5 in
|
||||
TProd {region; value}
|
||||
TProd {region; value}
|
||||
}
|
||||
|
||||
core_type:
|
||||
@ -515,30 +515,30 @@ fun_expr:
|
||||
_
|
||||
}; _ }; region} ->
|
||||
|
||||
let expr_to_type = function
|
||||
let expr_to_type = function
|
||||
| EVar v -> TVar v
|
||||
| e -> let open! SyntaxError
|
||||
in raise (Error (WrongFunctionArguments e))
|
||||
in
|
||||
let type_expr = (
|
||||
match type_expr with
|
||||
| TProd {value; _} ->
|
||||
| TProd {value; _} ->
|
||||
let (hd, rest) = value in
|
||||
let rest = rest @ [(arrow, expr_to_type body)] in
|
||||
nsepseq_to_curry hd rest
|
||||
| e ->
|
||||
let rest = rest @ [(arrow, expr_to_type body)] in
|
||||
nsepseq_to_curry hd rest
|
||||
| e ->
|
||||
TFun {
|
||||
value = e, arrow, expr_to_type body;
|
||||
region = fun_region
|
||||
}
|
||||
}
|
||||
)
|
||||
in
|
||||
in
|
||||
PTyped {
|
||||
value = {
|
||||
pattern;
|
||||
colon;
|
||||
type_expr
|
||||
};
|
||||
};
|
||||
region;
|
||||
}, []
|
||||
| EPar {value = {inside = fun_arg; _ }; _} ->
|
||||
@ -552,7 +552,7 @@ fun_expr:
|
||||
arg_to_pattern (fst fun_args), bindings
|
||||
| EUnit _ as e ->
|
||||
arg_to_pattern e, []
|
||||
| EVar _ as e ->
|
||||
| EVar _ as e ->
|
||||
arg_to_pattern e, []
|
||||
| e -> let open! SyntaxError
|
||||
in raise (Error (WrongFunctionArguments e))
|
||||
@ -834,10 +834,13 @@ core_expr:
|
||||
| par(expr) { EPar $1 }
|
||||
|
||||
module_field:
|
||||
module_name "." field_name {
|
||||
let region = cover $1.region $3.region
|
||||
and value = $1.value ^ "." ^ $3.value
|
||||
in {region; value} }
|
||||
module_name "." module_fun {
|
||||
let region = cover $1.region $3.region in
|
||||
{region; value = $1.value ^ "." ^ $3.value} }
|
||||
|
||||
module_fun:
|
||||
field_name { $1 }
|
||||
| "or" { {value="or"; region=$1} }
|
||||
|
||||
selection:
|
||||
"[" "<int>" "]" selection {
|
||||
|
@ -499,7 +499,7 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
|
||||
| Error Token.Non_canonical_zero ->
|
||||
fail region Non_canonical_zero
|
||||
|
||||
let mk_tz state buffer =
|
||||
let mk_tez state buffer =
|
||||
let region, lexeme, state = sync state buffer in
|
||||
let lexeme = Str.string_before lexeme (String.index lexeme 't') in
|
||||
let lexeme = Z.mul (Z.of_int 1_000_000) (Z.of_string lexeme) in
|
||||
@ -508,7 +508,7 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
|
||||
| Error Token.Non_canonical_zero ->
|
||||
fail region Non_canonical_zero
|
||||
|
||||
let format_tz s =
|
||||
let format_tez s =
|
||||
match String.index s '.' with
|
||||
index ->
|
||||
let len = String.length s in
|
||||
@ -522,10 +522,11 @@ module Make (Token: TOKEN) : (S with module Token = Token) =
|
||||
if Z.equal Z.one should_be_1 then Some (Q.num mutez) else None
|
||||
| exception Not_found -> assert false
|
||||
|
||||
let mk_tz_decimal state buffer =
|
||||
let mk_tez_decimal state buffer =
|
||||
let region, lexeme, state = sync state buffer in
|
||||
let lexeme = Str.(global_replace (regexp "_") "" lexeme) in
|
||||
let lexeme = Str.string_before lexeme (String.index lexeme 't') in
|
||||
match format_tz lexeme with
|
||||
match format_tez lexeme with
|
||||
None -> assert false
|
||||
| Some tz ->
|
||||
match Token.mk_mutez (Z.to_string tz ^ "mutez") region with
|
||||
@ -573,7 +574,7 @@ let nl = ['\n' '\r'] | "\r\n"
|
||||
let blank = ' ' | '\t'
|
||||
let digit = ['0'-'9']
|
||||
let natural = digit | digit (digit | '_')* digit
|
||||
let decimal = digit+ '.' digit+
|
||||
let decimal = natural '.' natural
|
||||
let small = ['a'-'z']
|
||||
let capital = ['A'-'Z']
|
||||
let letter = small | capital
|
||||
@ -624,9 +625,9 @@ and scan state = parse
|
||||
| natural 'n' { mk_nat state lexbuf |> enqueue }
|
||||
| natural "mutez" { mk_mutez state lexbuf |> enqueue }
|
||||
| natural "tz"
|
||||
| natural "tez" { mk_tz state lexbuf |> enqueue }
|
||||
| natural "tez" { mk_tez state lexbuf |> enqueue }
|
||||
| decimal "tz"
|
||||
| decimal "tez" { mk_tz_decimal state lexbuf |> enqueue }
|
||||
| decimal "tez" { mk_tez_decimal state lexbuf |> enqueue }
|
||||
| natural { mk_int state lexbuf |> enqueue }
|
||||
| symbol { mk_sym state lexbuf |> enqueue }
|
||||
| eof { mk_eof state lexbuf |> enqueue }
|
||||
|
@ -35,8 +35,8 @@ module Simplify = struct
|
||||
let unit_expr = make_t @@ T_constant TC_unit
|
||||
|
||||
let type_constants s =
|
||||
match s with
|
||||
| "chain_id" -> ok TC_chain_id
|
||||
match s with
|
||||
"chain_id" -> ok TC_chain_id
|
||||
| "unit" -> ok TC_unit
|
||||
| "string" -> ok TC_string
|
||||
| "bytes" -> ok TC_bytes
|
||||
@ -50,95 +50,196 @@ module Simplify = struct
|
||||
| "key_hash" -> ok TC_key_hash
|
||||
| "signature" -> ok TC_signature
|
||||
| "timestamp" -> ok TC_timestamp
|
||||
| _ -> simple_fail @@ "Not a type_constant " ^ s
|
||||
| _ -> simple_fail @@ "Not a built-in type (" ^ s ^ ")."
|
||||
|
||||
let type_operators s =
|
||||
match s with
|
||||
| "list" -> ok @@ TC_list unit_expr
|
||||
match s with
|
||||
"list" -> ok @@ TC_list unit_expr
|
||||
| "option" -> ok @@ TC_option unit_expr
|
||||
| "set" -> ok @@ TC_set unit_expr
|
||||
| "map" -> ok @@ TC_map (unit_expr,unit_expr)
|
||||
| "big_map" -> ok @@ TC_big_map (unit_expr,unit_expr)
|
||||
| "contract" -> ok @@ TC_contract unit_expr
|
||||
| _ -> simple_fail @@ "Not a typ_operator " ^ s
|
||||
| _ -> simple_fail @@ "Not a built-in type (" ^ s ^ ")."
|
||||
|
||||
|
||||
module Pascaligo = struct
|
||||
|
||||
let constants = function
|
||||
| "assert" -> ok C_ASSERTION
|
||||
| "get_chain_id" -> ok C_CHAIN_ID
|
||||
| "transaction" -> ok C_CALL
|
||||
| "get_contract" -> ok C_CONTRACT
|
||||
| "get_contract_opt"-> ok C_CONTRACT_OPT
|
||||
| "get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT
|
||||
| "get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
|
||||
| "size" -> ok C_SIZE
|
||||
| "int" -> ok C_INT
|
||||
| "abs" -> ok C_ABS
|
||||
| "is_nat" -> ok C_IS_NAT
|
||||
| "amount" -> ok C_AMOUNT
|
||||
| "balance" -> ok C_BALANCE
|
||||
| "now" -> ok C_NOW
|
||||
| "unit" -> ok C_UNIT
|
||||
| "source" -> ok C_SOURCE
|
||||
| "sender" -> ok C_SENDER
|
||||
| "failwith" -> ok C_FAILWITH
|
||||
| "bitwise_or" -> ok C_OR
|
||||
| "bitwise_and" -> ok C_AND
|
||||
| "bitwise_xor" -> ok C_XOR
|
||||
| "bitwise_lsl" -> ok C_LSL
|
||||
| "bitwise_lsr" -> ok C_LSR
|
||||
| "string_concat" -> ok C_CONCAT
|
||||
| "string_slice" -> ok C_SLICE
|
||||
| "crypto_check" -> ok C_CHECK_SIGNATURE
|
||||
| "crypto_hash_key" -> ok C_HASH_KEY
|
||||
| "bytes_concat" -> ok C_CONCAT
|
||||
| "bytes_slice" -> ok C_SLICE
|
||||
| "bytes_pack" -> ok C_BYTES_PACK
|
||||
| "bytes_unpack" -> ok C_BYTES_UNPACK
|
||||
| "set_empty" -> ok C_SET_EMPTY
|
||||
| "set_mem" -> ok C_SET_MEM
|
||||
| "set_add" -> ok C_SET_ADD
|
||||
| "set_remove" -> ok C_SET_REMOVE
|
||||
| "set_iter" -> ok C_SET_ITER
|
||||
| "set_fold" -> ok C_SET_FOLD
|
||||
| "list_iter" -> ok C_LIST_ITER
|
||||
| "list_fold" -> ok C_LIST_FOLD
|
||||
| "list_map" -> ok C_LIST_MAP
|
||||
| "get_force" -> ok C_MAP_FIND
|
||||
| "map_iter" -> ok C_MAP_ITER
|
||||
| "map_map" -> ok C_MAP_MAP
|
||||
| "map_fold" -> ok C_MAP_FOLD
|
||||
| "map_remove" -> ok C_MAP_REMOVE
|
||||
| "map_update" -> ok C_MAP_UPDATE
|
||||
| "map_get" -> ok C_MAP_FIND_OPT
|
||||
| "map_mem" -> ok C_MAP_MEM
|
||||
| "sha_256" -> ok C_SHA256
|
||||
| "sha_512" -> ok C_SHA512
|
||||
| "blake2b" -> ok C_BLAKE2b
|
||||
| "cons" -> ok C_CONS
|
||||
| "EQ" -> ok C_EQ
|
||||
| "NEQ" -> ok C_NEQ
|
||||
| "NEG" -> ok C_NEG
|
||||
| "ADD" -> ok C_ADD
|
||||
| "SUB" -> ok C_SUB
|
||||
| "TIMES" -> ok C_MUL
|
||||
| "DIV" -> ok C_DIV
|
||||
| "MOD" -> ok C_MOD
|
||||
| "NOT" -> ok C_NOT
|
||||
| "AND" -> ok C_AND
|
||||
| "OR" -> ok C_OR
|
||||
| "GT" -> ok C_GT
|
||||
| "GE" -> ok C_GE
|
||||
| "LT" -> ok C_LT
|
||||
| "LE" -> ok C_LE
|
||||
| "CONS" -> ok C_CONS
|
||||
| "address" -> ok C_ADDRESS
|
||||
| "self_address" -> ok C_SELF_ADDRESS
|
||||
| "implicit_account"-> ok C_IMPLICIT_ACCOUNT
|
||||
| "set_delegate" -> ok C_SET_DELEGATE
|
||||
| _ -> simple_fail "Not a PascaLIGO constant"
|
||||
(* Tezos module (ex-Michelson) *)
|
||||
|
||||
| "Tezos.chain_id" -> ok C_CHAIN_ID
|
||||
| "chain_id" -> ok C_CHAIN_ID (* Deprecated *)
|
||||
| "get_chain_id" -> ok C_CHAIN_ID (* Deprecated *)
|
||||
| "Tezos.balance" -> ok C_BALANCE
|
||||
| "balance" -> ok C_BALANCE (* Deprecated *)
|
||||
| "Tezos.now" -> ok C_NOW
|
||||
| "now" -> ok C_NOW (* Deprecated *)
|
||||
| "Tezos.amount" -> ok C_AMOUNT
|
||||
| "amount" -> ok C_AMOUNT (* Deprecated *)
|
||||
| "Tezos.sender" -> ok C_SENDER
|
||||
| "sender" -> ok C_SENDER (* Deprecated *)
|
||||
| "Tezos.address" -> ok C_ADDRESS
|
||||
| "address" -> ok C_ADDRESS (* Deprecated *)
|
||||
| "Tezos.self_address" -> ok C_SELF_ADDRESS
|
||||
| "self_address" -> ok C_SELF_ADDRESS (* Deprecated *)
|
||||
| "Tezos.implicit_account" -> ok C_IMPLICIT_ACCOUNT
|
||||
| "implicit_account" -> ok C_IMPLICIT_ACCOUNT (* Deprecated *)
|
||||
| "Tezos.source" -> ok C_SOURCE
|
||||
| "source" -> ok C_SOURCE (* Deprecated *)
|
||||
| "Tezos.failwith" -> ok C_FAILWITH
|
||||
| "failwith" -> ok C_FAILWITH
|
||||
|
||||
| "Tezos.transaction" -> ok C_CALL
|
||||
| "transaction" -> ok C_CALL (* Deprecated *)
|
||||
| "Tezos.set_delegate" -> ok C_SET_DELEGATE
|
||||
| "set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
|
||||
| "get_contract" -> ok C_CONTRACT (* Deprecated *)
|
||||
| "Tezos.get_contract_opt" -> ok C_CONTRACT_OPT
|
||||
| "get_contract_opt" -> ok C_CONTRACT_OPT (* Deprecated *)
|
||||
| "get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT (* Deprecated *)
|
||||
| "Tezos.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
|
||||
| "get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT (* Deprecated *)
|
||||
|
||||
| "Michelson.is_nat" -> ok C_IS_NAT (* Deprecated *)
|
||||
| "is_nat" -> ok C_IS_NAT
|
||||
| "int" -> ok C_INT
|
||||
| "abs" -> ok C_ABS
|
||||
| "unit" -> ok C_UNIT
|
||||
|
||||
| "NEG" -> ok C_NEG
|
||||
| "ADD" -> ok C_ADD
|
||||
| "SUB" -> ok C_SUB
|
||||
| "TIMES" -> ok C_MUL
|
||||
| "DIV" -> ok C_DIV
|
||||
| "MOD" -> ok C_MOD
|
||||
| "EQ" -> ok C_EQ
|
||||
| "NOT" -> ok C_NOT
|
||||
| "AND" -> ok C_AND
|
||||
| "OR" -> ok C_OR
|
||||
| "GT" -> ok C_GT
|
||||
| "GE" -> ok C_GE
|
||||
| "LT" -> ok C_LT
|
||||
| "LE" -> ok C_LE
|
||||
| "CONS" -> ok C_CONS
|
||||
| "cons" -> ok C_CONS (* Deprecated *)
|
||||
| "NEQ" -> ok C_NEQ
|
||||
|
||||
(* Crypto module *)
|
||||
|
||||
| "Crypto.check" -> ok C_CHECK_SIGNATURE
|
||||
| "crypto_check" -> ok C_CHECK_SIGNATURE (* Deprecated *)
|
||||
| "Crypto.hash_key" -> ok C_HASH_KEY
|
||||
| "crypto_hash_key" -> ok C_HASH_KEY (* Deprecated *)
|
||||
| "Crypto.blake2b" -> ok C_BLAKE2b
|
||||
| "blake2b" -> ok C_BLAKE2b (* Deprecated *)
|
||||
| "Crypto.sha256" -> ok C_SHA256
|
||||
| "sha_256" -> ok C_SHA256 (* Deprecated *)
|
||||
| "Crypto.sha512" -> ok C_SHA512
|
||||
| "sha_512" -> ok C_SHA512 (* Deprecated *)
|
||||
|
||||
(* Bytes module *)
|
||||
|
||||
| "Bytes.pack" -> ok C_BYTES_PACK
|
||||
| "bytes_pack" -> ok C_BYTES_PACK (* Deprecated *)
|
||||
| "Bytes.unpack" -> ok C_BYTES_UNPACK
|
||||
| "bytes_unpack" -> ok C_BYTES_UNPACK (* Deprecated *)
|
||||
| "Bytes.length" -> ok C_SIZE
|
||||
| "Bytes.size" -> ok C_SIZE
|
||||
| "bytes_concat" -> ok C_CONCAT (* Deprecated *)
|
||||
| "Bytes.concat" -> ok C_CONCAT
|
||||
| "Bytes.slice" -> ok C_SLICE
|
||||
| "bytes_slice" -> ok C_SLICE (* Deprecated *)
|
||||
| "Bytes.sub" -> ok C_SLICE
|
||||
|
||||
(* List module *)
|
||||
|
||||
| "List.length" -> ok C_SIZE
|
||||
| "List.size" -> ok C_SIZE
|
||||
| "list_size" -> ok C_SIZE (* Deprecated *)
|
||||
| "List.iter" -> ok C_LIST_ITER
|
||||
| "list_iter" -> ok C_LIST_ITER (* Deprecated *)
|
||||
| "List.map" -> ok C_LIST_MAP
|
||||
| "list_map" -> ok C_LIST_MAP (* Deprecated *)
|
||||
| "List.fold" -> ok C_LIST_FOLD
|
||||
| "list_fold" -> ok C_LIST_FOLD (* Deprecated *)
|
||||
|
||||
(* Set module *)
|
||||
|
||||
| "Set.size" -> ok C_SIZE
|
||||
| "set_size" -> ok C_SIZE (* Deprecated *)
|
||||
| "set_empty" -> ok C_SET_EMPTY (* Deprecated *)
|
||||
| "Set.mem" -> ok C_SET_MEM
|
||||
| "set_mem" -> ok C_SET_MEM (* Deprecated *)
|
||||
| "Set.add" -> ok C_SET_ADD
|
||||
| "set_add" -> ok C_SET_ADD (* Deprecated *)
|
||||
| "Set.remove" -> ok C_SET_REMOVE
|
||||
| "set_remove" -> ok C_SET_REMOVE (* Deprecated *)
|
||||
| "Set.iter" -> ok C_SET_ITER
|
||||
| "set_iter" -> ok C_SET_ITER (* Deprecated *)
|
||||
| "Set.fold" -> ok C_SET_FOLD
|
||||
| "set_fold" -> ok C_SET_FOLD (* Deprecated *)
|
||||
|
||||
(* Map module *)
|
||||
|
||||
| "get_force" -> ok C_MAP_FIND (* Deprecated *)
|
||||
| "map_get" -> ok C_MAP_FIND_OPT (* Deprecated *)
|
||||
| "Map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Map.update" -> ok C_MAP_UPDATE
|
||||
| "map_update" -> ok C_MAP_UPDATE (* Deprecated *)
|
||||
| "map_remove" -> ok C_MAP_REMOVE (* Deprecated *)
|
||||
| "Map.iter" -> ok C_MAP_ITER
|
||||
| "map_iter" -> ok C_MAP_ITER (* Deprecated *)
|
||||
| "Map.map" -> ok C_MAP_MAP
|
||||
| "map_map" -> ok C_MAP_MAP (* Deprecated *)
|
||||
| "Map.fold" -> ok C_MAP_FOLD
|
||||
| "map_fold" -> ok C_MAP_FOLD (* Deprecated *)
|
||||
| "Map.mem" -> ok C_MAP_MEM
|
||||
| "map_mem" -> ok C_MAP_MEM (* Deprecated *)
|
||||
| "Map.size" -> ok C_SIZE
|
||||
| "map_size" -> ok C_SIZE (* Deprecated *)
|
||||
|
||||
(* Big_map module *)
|
||||
|
||||
| "Big_map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Big_map.update" -> ok C_MAP_UPDATE
|
||||
| "Big_map.literal" -> ok C_BIG_MAP_LITERAL
|
||||
| "Big_map.empty" -> ok C_BIG_MAP_EMPTY
|
||||
| "Big_map.size" -> ok C_SIZE
|
||||
| "Big_map.mem" -> ok C_MAP_MEM
|
||||
| "Big_map.iter" -> ok C_MAP_ITER
|
||||
| "Big_map.map" -> ok C_MAP_MAP
|
||||
| "Big_map.fold" -> ok C_MAP_FOLD
|
||||
| "Big_map.remove" -> ok C_MAP_REMOVE
|
||||
|
||||
(* Bitwise module *)
|
||||
|
||||
| "Bitwise.or" -> ok C_OR
|
||||
| "bitwise_or" -> ok C_OR (* Deprecated *)
|
||||
| "Bitwise.and" -> ok C_AND
|
||||
| "bitwise_and" -> ok C_AND (* Deprecated *)
|
||||
| "Bitwise.xor" -> ok C_XOR
|
||||
| "bitwise_xor" -> ok C_XOR (* Deprecated *)
|
||||
| "Bitwise.shift_left" -> ok C_LSL
|
||||
| "bitwise_lsl" -> ok C_LSL (* Deprecated *)
|
||||
| "Bitwise.shift_right" -> ok C_LSR
|
||||
| "bitwise_lsr" -> ok C_LSR (* Deprecated *)
|
||||
|
||||
(* String module *)
|
||||
|
||||
| "String.length" -> ok C_SIZE
|
||||
| "String.size" -> ok C_SIZE
|
||||
| "String.slice" -> ok C_SLICE
|
||||
| "string_slice" -> ok C_SLICE (* Deprecated *)
|
||||
| "String.sub" -> ok C_SLICE
|
||||
| "String.concat" -> ok C_CONCAT
|
||||
| "string_concat" -> ok C_CONCAT (* Deprecated *)
|
||||
|
||||
(* Others *)
|
||||
|
||||
| "assert" -> ok C_ASSERTION
|
||||
| "size" -> ok C_SIZE (* Deprecated *)
|
||||
|
||||
| _ -> simple_fail "Not a PascaLIGO built-in."
|
||||
|
||||
let type_constants = type_constants
|
||||
let type_operators = type_operators
|
||||
@ -147,119 +248,163 @@ module Simplify = struct
|
||||
|
||||
module Cameligo = struct
|
||||
let constants = function
|
||||
| "assert" -> ok C_ASSERTION
|
||||
| "chain_id" -> ok C_CHAIN_ID
|
||||
| "Current.balance" -> ok C_BALANCE
|
||||
| "balance" -> ok C_BALANCE
|
||||
| "Current.time" -> ok C_NOW
|
||||
| "time" -> ok C_NOW
|
||||
| "Current.amount" -> ok C_AMOUNT
|
||||
| "amount" -> ok C_AMOUNT
|
||||
| "Current.sender" -> ok C_SENDER
|
||||
| "Current.address" -> ok C_ADDRESS
|
||||
| "Current.self_address" -> ok C_SELF_ADDRESS
|
||||
| "Current.implicit_account" -> ok C_IMPLICIT_ACCOUNT
|
||||
| "sender" -> ok C_SENDER
|
||||
| "Current.source" -> ok C_SOURCE
|
||||
| "source" -> ok C_SOURCE
|
||||
| "Current.failwith" -> ok C_FAILWITH
|
||||
| "failwith" -> ok C_FAILWITH
|
||||
(* Tezos (ex-Michelson, ex-Current, ex-Operation) *)
|
||||
|
||||
| "Crypto.blake2b" -> ok C_BLAKE2b
|
||||
| "Crypto.sha256" -> ok C_SHA256
|
||||
| "Crypto.sha512" -> ok C_SHA512
|
||||
| "Crypto.hash_key" -> ok C_HASH_KEY
|
||||
| "Crypto.check" -> ok C_CHECK_SIGNATURE
|
||||
| "Tezos.chain_id" -> ok C_CHAIN_ID
|
||||
| "chain_id" -> ok C_CHAIN_ID (* Deprecated *)
|
||||
| "Tezos.balance" -> ok C_BALANCE
|
||||
| "Current.balance" -> ok C_BALANCE (* Deprecated *)
|
||||
| "balance" -> ok C_BALANCE (* Deprecated *)
|
||||
| "Tezos.now" -> ok C_NOW
|
||||
| "Current.time" -> ok C_NOW (* Deprecated *)
|
||||
| "time" -> ok C_NOW (* Deprecated *)
|
||||
| "Tezos.amount" -> ok C_AMOUNT
|
||||
| "Current.amount" -> ok C_AMOUNT (* Deprecated *)
|
||||
| "amount" -> ok C_AMOUNT (* Deprecated *)
|
||||
| "Tezos.sender" -> ok C_SENDER
|
||||
| "Current.sender" -> ok C_SENDER (* Deprecated *)
|
||||
| "sender" -> ok C_SENDER (* Deprecated *)
|
||||
| "Tezos.address" -> ok C_ADDRESS
|
||||
| "Current.address" -> ok C_ADDRESS (* Deprecated *)
|
||||
| "Tezos.self_address" -> ok C_SELF_ADDRESS
|
||||
| "Current.self_address" -> ok C_SELF_ADDRESS (* Deprecated *)
|
||||
| "Tezos.implicit_account" -> ok C_IMPLICIT_ACCOUNT
|
||||
| "Current.implicit_account" -> ok C_IMPLICIT_ACCOUNT (* Deprecated *)
|
||||
| "Tezos.source" -> ok C_SOURCE
|
||||
| "Current.source" -> ok C_SOURCE (* Deprecated *)
|
||||
| "source" -> ok C_SOURCE (* Deprecated *)
|
||||
| "Tezos.failwith" -> ok C_FAILWITH
|
||||
| "Current.failwith" -> ok C_FAILWITH (* Deprecated *)
|
||||
| "failwith" -> ok C_FAILWITH
|
||||
|
||||
| "Bytes.pack" -> ok C_BYTES_PACK
|
||||
| "Bytes.unpack" -> ok C_BYTES_UNPACK
|
||||
| "Bytes.length" -> ok C_SIZE
|
||||
| "Bytes.size" -> ok C_SIZE
|
||||
| "Bytes.concat" -> ok C_CONCAT
|
||||
| "Bytes.slice" -> ok C_SLICE
|
||||
| "Bytes.sub" -> ok C_SLICE
|
||||
| "Tezos.transaction" -> ok C_CALL
|
||||
| "Operation.transaction" -> ok C_CALL (* Deprecated *)
|
||||
| "Tezos.set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
|
||||
| "Operation.set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
|
||||
| "Operation.get_contract" -> ok C_CONTRACT (* Deprecated *)
|
||||
| "Tezos.get_contract_opt" -> ok C_CONTRACT_OPT
|
||||
| "Operation.get_contract_opt" -> ok C_CONTRACT_OPT (* Deprecated *)
|
||||
| "Operation.get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT (* Deprecated *)
|
||||
| "Tezos.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
|
||||
| "Operation.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT (* Deprecated *)
|
||||
|
||||
| "Set.mem" -> ok C_SET_MEM
|
||||
| "Set.iter" -> ok C_SET_ITER
|
||||
| "Set.empty" -> ok C_SET_EMPTY
|
||||
| "Set.literal" -> ok C_SET_LITERAL
|
||||
| "Set.add" -> ok C_SET_ADD
|
||||
| "Set.remove" -> ok C_SET_REMOVE
|
||||
| "Set.fold" -> ok C_SET_FOLD
|
||||
| "Set.size" -> ok C_SIZE
|
||||
| "Michelson.is_nat" -> ok C_IS_NAT (* Deprecated *)
|
||||
| "is_nat" -> ok C_IS_NAT
|
||||
| "int" -> ok C_INT
|
||||
| "abs" -> ok C_ABS
|
||||
| "unit" -> ok C_UNIT
|
||||
|
||||
| "Map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Map.find" -> ok C_MAP_FIND
|
||||
| "Map.update" -> ok C_MAP_UPDATE
|
||||
| "Map.add" -> ok C_MAP_ADD
|
||||
| "Map.remove" -> ok C_MAP_REMOVE
|
||||
| "Map.iter" -> ok C_MAP_ITER
|
||||
| "Map.map" -> ok C_MAP_MAP
|
||||
| "Map.fold" -> ok C_MAP_FOLD
|
||||
| "Map.mem" -> ok C_MAP_MEM
|
||||
| "Map.empty" -> ok C_MAP_EMPTY
|
||||
| "Map.literal" -> ok C_MAP_LITERAL
|
||||
| "Map.size" -> ok C_SIZE
|
||||
| "NEG" -> ok C_NEG
|
||||
| "ADD" -> ok C_ADD
|
||||
| "SUB" -> ok C_SUB
|
||||
| "TIMES" -> ok C_MUL
|
||||
| "DIV" -> ok C_DIV
|
||||
| "MOD" -> ok C_MOD
|
||||
| "EQ" -> ok C_EQ
|
||||
| "NOT" -> ok C_NOT
|
||||
| "AND" -> ok C_AND
|
||||
| "OR" -> ok C_OR
|
||||
| "GT" -> ok C_GT
|
||||
| "GE" -> ok C_GE
|
||||
| "LT" -> ok C_LT
|
||||
| "LE" -> ok C_LE
|
||||
| "CONS" -> ok C_CONS
|
||||
| "NEQ" -> ok C_NEQ
|
||||
|
||||
| "Big_map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Big_map.find" -> ok C_MAP_FIND
|
||||
| "Big_map.update" -> ok C_MAP_UPDATE
|
||||
| "Big_map.add" -> ok C_MAP_ADD
|
||||
| "Big_map.remove" -> ok C_MAP_REMOVE
|
||||
| "Big_map.literal" -> ok C_BIG_MAP_LITERAL
|
||||
| "Big_map.empty" -> ok C_BIG_MAP_EMPTY
|
||||
(* Crypto module *)
|
||||
|
||||
| "Bitwise.lor" -> ok C_OR
|
||||
| "Bitwise.land" -> ok C_AND
|
||||
| "Bitwise.lxor" -> ok C_XOR
|
||||
| "Bitwise.shift_left" -> ok C_LSL
|
||||
| "Bitwise.shift_right" -> ok C_LSR
|
||||
| "Crypto.check" -> ok C_CHECK_SIGNATURE
|
||||
| "Crypto.hash_key" -> ok C_HASH_KEY
|
||||
| "Crypto.blake2b" -> ok C_BLAKE2b
|
||||
| "Crypto.sha256" -> ok C_SHA256
|
||||
| "Crypto.sha512" -> ok C_SHA512
|
||||
|
||||
| "String.length" -> ok C_SIZE
|
||||
| "String.size" -> ok C_SIZE
|
||||
| "String.slice" -> ok C_SLICE
|
||||
| "String.sub" -> ok C_SLICE
|
||||
| "String.concat" -> ok C_CONCAT
|
||||
(* Bytes module *)
|
||||
|
||||
| "List.length" -> ok C_SIZE
|
||||
| "List.size" -> ok C_SIZE
|
||||
| "List.iter" -> ok C_LIST_ITER
|
||||
| "List.map" -> ok C_LIST_MAP
|
||||
| "List.fold" -> ok C_LIST_FOLD
|
||||
| "Bytes.pack" -> ok C_BYTES_PACK
|
||||
| "Bytes.unpack" -> ok C_BYTES_UNPACK
|
||||
| "Bytes.length" -> ok C_SIZE
|
||||
| "Bytes.size" -> ok C_SIZE
|
||||
| "Bytes.concat" -> ok C_CONCAT
|
||||
| "Bytes.slice" -> ok C_SLICE
|
||||
| "Bytes.sub" -> ok C_SLICE
|
||||
|
||||
| "Loop.fold_while" -> ok C_FOLD_WHILE
|
||||
| "continue" -> ok C_CONTINUE
|
||||
| "stop" -> ok C_STOP
|
||||
(* List module *)
|
||||
|
||||
| "Operation.transaction" -> ok C_CALL
|
||||
| "Operation.set_delegate" -> ok C_SET_DELEGATE
|
||||
| "Operation.get_contract" -> ok C_CONTRACT
|
||||
| "Operation.get_contract_opt" -> ok C_CONTRACT_OPT
|
||||
| "Operation.get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT
|
||||
| "Operation.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
|
||||
| "int" -> ok C_INT
|
||||
| "abs" -> ok C_ABS
|
||||
| "unit" -> ok C_UNIT
|
||||
| "List.length" -> ok C_SIZE
|
||||
| "List.size" -> ok C_SIZE
|
||||
| "List.iter" -> ok C_LIST_ITER
|
||||
| "List.map" -> ok C_LIST_MAP
|
||||
| "List.fold" -> ok C_LIST_FOLD
|
||||
|
||||
| "NEG" -> ok C_NEG
|
||||
| "ADD" -> ok C_ADD
|
||||
| "SUB" -> ok C_SUB
|
||||
| "TIMES" -> ok C_MUL
|
||||
| "DIV" -> ok C_DIV
|
||||
| "MOD" -> ok C_MOD
|
||||
| "EQ" -> ok C_EQ
|
||||
| "NOT" -> ok C_NOT
|
||||
| "AND" -> ok C_AND
|
||||
| "OR" -> ok C_OR
|
||||
| "GT" -> ok C_GT
|
||||
| "GE" -> ok C_GE
|
||||
| "LT" -> ok C_LT
|
||||
| "LE" -> ok C_LE
|
||||
| "CONS" -> ok C_CONS
|
||||
| "NEQ" -> ok C_NEQ
|
||||
(* Set module *)
|
||||
|
||||
| "Michelson.is_nat" -> ok C_IS_NAT
|
||||
| _ -> simple_fail "Not a constant"
|
||||
| "Set.mem" -> ok C_SET_MEM
|
||||
| "Set.iter" -> ok C_SET_ITER
|
||||
| "Set.empty" -> ok C_SET_EMPTY
|
||||
| "Set.literal" -> ok C_SET_LITERAL
|
||||
| "Set.add" -> ok C_SET_ADD
|
||||
| "Set.remove" -> ok C_SET_REMOVE
|
||||
| "Set.fold" -> ok C_SET_FOLD
|
||||
| "Set.size" -> ok C_SIZE
|
||||
|
||||
(* Map module *)
|
||||
|
||||
| "Map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Map.find" -> ok C_MAP_FIND (* Deprecated *)
|
||||
| "Map.update" -> ok C_MAP_UPDATE
|
||||
| "Map.add" -> ok C_MAP_ADD
|
||||
| "Map.remove" -> ok C_MAP_REMOVE
|
||||
| "Map.iter" -> ok C_MAP_ITER
|
||||
| "Map.map" -> ok C_MAP_MAP
|
||||
| "Map.fold" -> ok C_MAP_FOLD
|
||||
| "Map.mem" -> ok C_MAP_MEM
|
||||
| "Map.empty" -> ok C_MAP_EMPTY
|
||||
| "Map.literal" -> ok C_MAP_LITERAL
|
||||
| "Map.size" -> ok C_SIZE
|
||||
|
||||
(* Big_map module *)
|
||||
|
||||
| "Big_map.find_opt" -> ok C_MAP_FIND_OPT
|
||||
| "Big_map.find" -> ok C_MAP_FIND
|
||||
| "Big_map.update" -> ok C_MAP_UPDATE
|
||||
| "Big_map.add" -> ok C_MAP_ADD
|
||||
| "Big_map.remove" -> ok C_MAP_REMOVE
|
||||
| "Big_map.literal" -> ok C_BIG_MAP_LITERAL
|
||||
| "Big_map.empty" -> ok C_BIG_MAP_EMPTY
|
||||
|
||||
(* Bitwise module *)
|
||||
|
||||
| "Bitwise.or" -> ok C_OR
|
||||
| "Bitwise.lor" -> ok C_OR (* Deprecated *)
|
||||
| "Bitwise.and" -> ok C_AND
|
||||
| "Bitwise.land" -> ok C_AND (* Deprecated *)
|
||||
| "Bitwise.xor" -> ok C_XOR
|
||||
| "Bitwise.lxor" -> ok C_XOR (* Deprecated *)
|
||||
| "Bitwise.shift_left" -> ok C_LSL
|
||||
| "Bitwise.shift_right" -> ok C_LSR
|
||||
|
||||
(* String module *)
|
||||
|
||||
| "String.length" -> ok C_SIZE
|
||||
| "String.size" -> ok C_SIZE
|
||||
| "String.slice" -> ok C_SLICE
|
||||
| "String.sub" -> ok C_SLICE
|
||||
| "String.concat" -> ok C_CONCAT
|
||||
|
||||
(* Loop module *)
|
||||
|
||||
| "Loop.fold_while" -> ok C_FOLD_WHILE
|
||||
| "Loop.resume" -> ok C_CONTINUE
|
||||
| "continue" -> ok C_CONTINUE (* Deprecated *)
|
||||
| "Loop.stop" -> ok C_STOP
|
||||
| "stop" -> ok C_STOP (* Deprecated *)
|
||||
|
||||
(* Others *)
|
||||
|
||||
| "assert" -> ok C_ASSERTION
|
||||
|
||||
| _ -> simple_fail "Not a CameLIGO built-in."
|
||||
|
||||
let type_constants = type_constants
|
||||
let type_operators = type_operators
|
||||
@ -821,19 +966,19 @@ module Typer = struct
|
||||
let%bind key = get_t_set set in
|
||||
if eq_1 elt key
|
||||
then ok @@ t_bool ()
|
||||
else fail @@ Operator_errors.type_error "Set_mem: elt and set don't match" elt key ()
|
||||
else fail @@ Operator_errors.type_error "Set.mem: elt and set don't match" elt key ()
|
||||
|
||||
let set_add = typer_2 "SET_ADD" @@ fun elt set ->
|
||||
let%bind key = get_t_set set in
|
||||
if eq_1 elt key
|
||||
then ok set
|
||||
else fail @@ Operator_errors.type_error "Set_add: elt and set don't match" elt key ()
|
||||
else fail @@ Operator_errors.type_error "Set.add: elt and set don't match" elt key ()
|
||||
|
||||
let set_remove = typer_2 "SET_REMOVE" @@ fun elt set ->
|
||||
let%bind key = get_t_set set in
|
||||
if eq_1 elt key
|
||||
then ok set
|
||||
else fail @@ Operator_errors.type_error "Set_remove: elt and set don't match" key elt ()
|
||||
else fail @@ Operator_errors.type_error "Set.remove: elt and set don't match" key elt ()
|
||||
|
||||
let set_iter = typer_2 "SET_ITER" @@ fun body set ->
|
||||
let%bind (arg , res) = get_t_function body in
|
||||
|
@ -1,11 +1,7 @@
|
||||
// Test PascaLIGO bitwise operators
|
||||
|
||||
function or_op (const n : nat) : nat is bitwise_or (n, 4n)
|
||||
|
||||
function and_op (const n : nat) : nat is bitwise_and (n, 7n)
|
||||
|
||||
function xor_op (const n : nat) : nat is bitwise_xor (n, 7n)
|
||||
|
||||
function lsl_op (const n : nat) : nat is bitwise_lsl (n, 7n)
|
||||
|
||||
function lsr_op (const n : nat) : nat is bitwise_lsr (n, 7n)
|
||||
function or_op (const n : nat) : nat is Bitwise.or (n, 4n)
|
||||
function and_op (const n : nat) : nat is Bitwise.and (n, 7n)
|
||||
function xor_op (const n : nat) : nat is Bitwise.xor (n, 7n)
|
||||
function lsl_op (const n : nat) : nat is Bitwise.shift_left (n, 7n)
|
||||
function lsr_op (const n : nat) : nat is Bitwise.shift_right (n, 7n)
|
||||
|
@ -1,7 +1,7 @@
|
||||
(* Test CameLIGO bitwise operators *)
|
||||
|
||||
let or_op (n: nat) : nat = Bitwise.lor n 4n
|
||||
let and_op (n: nat) : nat = Bitwise.land n 7n
|
||||
let xor_op (n: nat) : nat = Bitwise.lxor n 7n
|
||||
let or_op (n: nat) : nat = Bitwise.or n 4n
|
||||
let and_op (n: nat) : nat = Bitwise.and n 7n
|
||||
let xor_op (n: nat) : nat = Bitwise.xor n 7n
|
||||
let lsl_op (n: nat) : nat = Bitwise.shift_left n 7n
|
||||
let lsr_op (n: nat) : nat = Bitwise.shift_right n 7n
|
||||
|
@ -1,7 +1,7 @@
|
||||
/* Test ReasonLigo bitwise operators */
|
||||
|
||||
let or_op = (n: nat): nat => Bitwise.lor(n, 4n);
|
||||
let and_op = (n: nat): nat => Bitwise.land(n, 7n);
|
||||
let xor_op = (n: nat): nat => Bitwise.lxor(n, 7n);
|
||||
let lsl_op = (n: nat) : nat => Bitwise.shift_left(n, 7n);
|
||||
let lsr_op = (n: nat) : nat => Bitwise.shift_right(n, 7n);
|
||||
let or_op = (n : nat) : nat => Bitwise.or (n, 4n);
|
||||
let and_op = (n : nat) : nat => Bitwise.and (n, 7n);
|
||||
let xor_op = (n : nat) : nat => Bitwise.xor (n, 7n);
|
||||
let lsl_op = (n : nat) : nat => Bitwise.shift_left (n, 7n);
|
||||
let lsr_op = (n : nat) : nat => Bitwise.shift_right (n, 7n);
|
Loading…
Reference in New Issue
Block a user