Crypto: fixes for secp256k1

This commit is contained in:
Vincent Bernardoff 2018-04-19 17:10:45 +02:00 committed by Grégoire Henry
parent 3a0cdfd90a
commit 47f9c2460b
8 changed files with 512 additions and 487 deletions

View File

@ -19,7 +19,11 @@ let () =
open Libsecp256k1.External
let context = Context.(create [Verify; Sign])
let context =
let ctx = Context.create () in
match Context.randomize ctx (Rand.generate 32) with
| false -> failwith "Secp256k1 context randomization failed. Aborting."
| true -> ctx
module Public_key = struct
@ -36,7 +40,7 @@ module Public_key = struct
let to_string s = MBytes.to_string (to_bytes s)
let of_string_opt s = of_bytes_opt (MBytes.of_string s)
let size = 33 (* TODO not hardcoded ?? *)
let size = Key.compressed_pk_bytes
type Base58.data +=
| Data of t
@ -58,7 +62,7 @@ module Public_key = struct
include Compare.Make(struct
type nonrec t = t
let compare a b =
MBytes.compare (Key.to_buffer a) (Key.to_buffer b)
MBytes.compare (Key.buffer a) (Key.buffer b)
end)
include Helpers.MakeRaw(struct
@ -101,7 +105,7 @@ module Secret_key = struct
let name = "Secp256k1.Secret_key"
let title = "A Secp256k1 secret key"
let size = 32 (* TODO don't hardcode *)
let size = Key.secret_bytes
let of_bytes_opt s =
match Key.read_sk context s with
@ -131,7 +135,7 @@ module Secret_key = struct
include Compare.Make(struct
type nonrec t = t
let compare a b =
MBytes.compare (Key.to_buffer a) (Key.to_buffer b)
MBytes.compare (Key.buffer a) (Key.buffer b)
end)
include Helpers.MakeRaw(struct
@ -167,16 +171,17 @@ module Secret_key = struct
end
type t = MBytes.t
type t = Sign.plain Sign.t
let name = "Secp256k1"
let title = "A Secp256k1 signature"
let size = 64 (* TODO don't hardcode? *)
let size = Sign.plain_bytes
let of_bytes_opt s =
if MBytes.length s = size then Some s else None
let to_bytes x = x
match Sign.read context s with Ok s -> Some s | Error _ -> None
let to_bytes = Sign.to_bytes ~der:false context
let to_string s = MBytes.to_string (to_bytes s)
let of_string_opt s = of_bytes_opt (MBytes.of_string s)
@ -197,7 +202,8 @@ let () =
include Compare.Make(struct
type nonrec t = t
let compare = MBytes.compare
let compare a b =
MBytes.compare (Sign.buffer a) (Sign.buffer b)
end)
include Helpers.MakeRaw(struct
@ -233,38 +239,20 @@ let pp ppf t = Format.fprintf ppf "%s" (to_b58check t)
let zero = of_bytes_exn (MBytes.init size '\000')
let sign secret_key message =
match Sign.msg_of_bytes message with
| None ->
Pervasives.invalid_arg
"Secp256k1.sign: argument message couldn't be converted"
| Some msg -> begin
match Sign.sign context ~sk:secret_key ~msg with
| Ok signature ->
Sign.to_bytes ~der:false context signature
| _ ->
Pervasives.invalid_arg "Secp256k1.sign: couldn't sign"
end
let sign sk msg =
Sign.sign_exn context ~sk msg
let check public_key signature msg =
match Sign.msg_of_bytes msg, Sign.read context signature with
| Some msg, Ok signature -> begin
match Sign.verify context ~pk:public_key ~msg ~signature with
| Ok b -> b
| _ -> false
end
| _, _ -> false
Sign.verify_exn context ~pk:public_key ~msg ~signature
let concat msg signature =
MBytes.concat msg signature
let concat msg t =
MBytes.concat msg (Sign.to_bytes ~der:false context t)
let append key msg =
let signature = sign key msg in
concat msg signature
let append sk msg =
concat msg (Sign.sign_exn context ~sk msg)
let generate_key () =
let sk = Key.read_sk_exn context (Tweetnacl.Rand.gen 32) in
let sk = Key.read_sk_exn context (Rand.generate 32) in
let pk = Key.neuterize_exn context sk in
let pkh = Public_key.hash pk in
(pkh, pk, sk)

View File

@ -1,5 +0,0 @@
all:
jbuilder build @install @runtest
clean:
rm -rf _build

View File

@ -1,59 +1,19 @@
open StdLabels
module BA = struct
include Bigarray.Array1
let length = size_in_bytes
let rec compare_rec a b i len_a len_b =
if i=len_a && i=len_b then 0
else if i=len_a then -1
else if i=len_b then 1
else
match Char.compare (get a i) (get b i) with
| 0 -> compare_rec a b (i+1) len_a len_b
| n -> n
let compare a b =
compare_rec a b 0 (length a) (length b)
let equal a b = compare a b = 0
let create len =
Bigarray.(create char c_layout len)
end
type buffer = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
module Context = struct
type flag =
| Verify
| Sign
type t
external flags : buffer -> int = "context_flags"
external create : int -> t = "context_create"
external clone : t -> t = "context_clone"
external randomize : t -> buffer -> bool = "context_randomize" [@@noalloc]
external get_16 : buffer -> int -> int = "%caml_bigstring_get16" [@@noalloc]
external create : int -> t = "caml_secp256k1_context_create"
external clone : t -> t = "caml_secp256k1_context_clone"
external randomize : t -> Bigstring.t -> bool = "caml_secp256k1_context_randomize" [@@noalloc]
let flags =
let buf = BA.create (3 * 2) in
let _ = flags buf in
buf
let int_of_flag = function
| Verify -> get_16 flags 2
| Sign -> get_16 flags 4
let create a =
List.fold_left a ~init:(get_16 flags 0) ~f:(fun a f -> a lor (int_of_flag f)) |>
create
let create ?(sign=true) ?(verify=true) () =
let flags = 1 lor
(if sign then 0x100 else 0) lor
(if verify then 0x200 else 0) in
create flags
let randomize ctx buf =
if BA.length buf <> 32 then
invalid_arg "Context.randomize: input must be 32 bytes long" ;
if Bigstring.length buf < 32 then
invalid_arg "Context.randomize: input must be at least 32 bytes long" ;
randomize ctx buf
end
@ -61,49 +21,51 @@ module Key = struct
type secret
type public
type _ t =
| Sk : buffer -> secret t
| Pk : buffer -> public t
| Sk : Bigstring.t -> secret t
| Pk : Bigstring.t -> public t
let to_buffer : type a. a t -> buffer = function
| Sk k -> k
| Pk k -> k
let buffer : type a. a t -> Bigstring.t = function
| Sk sk -> sk
| Pk pk -> pk
let secret_bytes = 32
let public_bytes = 64
let compressed_pk_bytes = 33
let uncompressed_pk_bytes = 65
let length : type a. a t -> int = function
| Sk _ -> 32
| Pk _ -> 64
let bytes : type a. a t -> int = function
| Sk _ -> secret_bytes
| Pk _ -> public_bytes
let serialized_bytes :
type a. ?compressed:bool -> a t -> int =
fun ?(compressed=true) -> function
| Sk _ -> secret_bytes
| Pk _ -> if compressed then public_bytes + 1 else secret_bytes + 1
let equal : type a. a t -> a t -> bool = fun a b ->
match a, b with
| Sk a, Sk b -> BA.equal a b
| Pk a, Pk b -> BA.equal a b
| Sk a, Sk b -> Bigstring.equal a b
| Pk a, Pk b -> Bigstring.equal a b
let copy : type a. a t -> a t = function
| Sk k ->
let k' = BA.create secret_bytes in
BA.blit k k' ;
Sk k'
| Pk k ->
let k' = BA.create public_bytes in
BA.blit k k' ;
Pk k'
| Sk sk -> Sk (Bigstring.copy sk)
| Pk pk -> Pk (Bigstring.copy pk)
external sk_negate_inplace : Context.t -> buffer -> unit =
"ec_privkey_negate" [@@noalloc]
external sk_add_tweak_inplace : Context.t -> buffer -> buffer -> bool =
"ec_privkey_tweak_add" [@@noalloc]
external sk_mul_tweak_inplace : Context.t -> buffer -> buffer -> bool =
"ec_privkey_tweak_mul" [@@noalloc]
external pk_negate_inplace : Context.t -> buffer -> unit =
"ec_pubkey_negate" [@@noalloc]
external pk_add_tweak_inplace : Context.t -> buffer -> buffer -> bool =
"ec_pubkey_tweak_add" [@@noalloc]
external pk_mul_tweak_inplace : Context.t -> buffer -> buffer -> bool =
"ec_pubkey_tweak_mul" [@@noalloc]
external pk_combine : Context.t -> buffer -> buffer list -> bool =
"ec_pubkey_combine" [@@noalloc]
external sk_negate_inplace : Context.t -> Bigstring.t -> unit =
"caml_secp256k1_ec_privkey_negate" [@@noalloc]
external sk_add_tweak_inplace : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_privkey_tweak_add" [@@noalloc]
external sk_mul_tweak_inplace : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_privkey_tweak_mul" [@@noalloc]
external pk_negate_inplace : Context.t -> Bigstring.t -> unit =
"caml_secp256k1_ec_pubkey_negate" [@@noalloc]
external pk_add_tweak_inplace : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_pubkey_tweak_add" [@@noalloc]
external pk_mul_tweak_inplace : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_pubkey_tweak_mul" [@@noalloc]
external pk_combine : Context.t -> Bigstring.t -> Bigstring.t list -> bool =
"caml_secp256k1_ec_pubkey_combine" [@@noalloc]
let negate_inplace :
type a. Context.t -> a t -> unit = fun ctx -> function
@ -116,44 +78,43 @@ module Key = struct
k'
let op_tweak :
type a. string -> (Context.t -> buffer -> buffer -> bool) ->
Context.t -> a t -> ?pos:int -> buffer -> buffer =
fun name f ctx k ?(pos=0) buf ->
let buflen = BA.length buf in
if pos < 0 || pos > buflen - 32 then
invalid_arg (Printf.sprintf "Key.%s: pos < 0 or pos > buflen - 32" name) ;
let buf = BA.sub buf pos 32 in
let k' = copy k |> to_buffer in
type a. string -> (Context.t -> Bigstring.t -> Bigstring.t -> bool) ->
Context.t -> a t -> Bigstring.t -> Bigstring.t =
fun name f ctx k buf ->
let buflen = Bigstring.length buf in
if buflen < 32 then
invalid_arg (Printf.sprintf "Key.%s: " name) ;
let k' = buffer (copy k) in
if not (f ctx k' buf) then
failwith (Printf.sprintf "Key.%s: operation failed" name) ;
k'
let add_tweak :
type a. Context.t -> a t -> ?pos:int -> buffer -> a t =
fun ctx k ?pos buf ->
type a. Context.t -> a t -> Bigstring.t -> a t =
fun ctx k buf ->
match k with
| Sk _ -> Sk (op_tweak "add_tweak" sk_add_tweak_inplace ctx k ?pos buf)
| Pk _ -> Pk (op_tweak "add_tweak" pk_add_tweak_inplace ctx k ?pos buf)
| Sk _ -> Sk (op_tweak "add_tweak" sk_add_tweak_inplace ctx k buf)
| Pk _ -> Pk (op_tweak "add_tweak" pk_add_tweak_inplace ctx k buf)
let mul_tweak :
type a. Context.t -> a t -> ?pos:int -> buffer -> a t =
fun ctx k ?pos buf ->
type a. Context.t -> a t -> Bigstring.t -> a t =
fun ctx k buf ->
match k with
| Sk _ -> Sk (op_tweak "mul_tweak" sk_mul_tweak_inplace ctx k ?pos buf)
| Pk _ -> Pk (op_tweak "mul_tweak" pk_mul_tweak_inplace ctx k ?pos buf)
| Sk _ -> Sk (op_tweak "mul_tweak" sk_mul_tweak_inplace ctx k buf)
| Pk _ -> Pk (op_tweak "mul_tweak" pk_mul_tweak_inplace ctx k buf)
external pk_parse : Context.t -> buffer -> buffer -> bool =
"ec_pubkey_parse" [@@noalloc]
external pk_serialize : Context.t -> buffer -> buffer -> int =
"ec_pubkey_serialize" [@@noalloc]
external pk_create : Context.t -> buffer -> buffer -> bool =
"ec_pubkey_create" [@@noalloc]
external pk_parse : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_pubkey_parse" [@@noalloc]
external pk_serialize : Context.t -> Bigstring.t -> Bigstring.t -> int =
"caml_secp256k1_ec_pubkey_serialize" [@@noalloc]
external pk_create : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_pubkey_create" [@@noalloc]
let neuterize :
type a. Context.t -> a t -> public t option = fun ctx -> function
| Pk pk -> Some (Pk pk)
| Sk sk ->
let pk = BA.create public_bytes in
let pk = Bigstring.create public_bytes in
if pk_create ctx pk sk then Some (Pk pk) else None
let neuterize_exn ctx k =
@ -162,7 +123,7 @@ module Key = struct
| Some pk -> pk
let list_map_filter_opt ~f l =
List.fold_left ~init:[] ~f:begin fun a e ->
ListLabels.fold_left ~init:[] ~f:begin fun a e ->
match f e with
| None -> a
| Some r -> r :: a
@ -172,7 +133,7 @@ module Key = struct
let nb_pks = List.length pks in
if nb_pks = 0 || nb_pks > 1024 then None
else
let pk = BA.create public_bytes in
let pk = Bigstring.create public_bytes in
let pks = list_map_filter_opt ~f:begin fun k ->
match neuterize ctx k with
| None -> None
@ -186,70 +147,64 @@ module Key = struct
| None -> invalid_arg "Key.combine_exn: sum of pks is invalid"
| Some pk -> pk
external verify_sk : Context.t -> buffer -> bool =
"ec_seckey_verify" [@@noalloc]
external verify_sk : Context.t -> Bigstring.t -> bool =
"caml_secp256k1_ec_seckey_verify" [@@noalloc]
let read_sk_exn ctx ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - secret_bytes then
invalid_arg "Key.read_sk: pos < 0 or pos + 32 > buflen" ;
let buf = BA.sub buf pos secret_bytes in
let read_sk_exn ctx buf =
let buflen = Bigstring.length buf in
if buflen < secret_bytes then
invalid_arg (Printf.sprintf "Key.read_sk: invalid buffer size %d" buflen) ;
match verify_sk ctx buf with
| true ->
let t = BA.create secret_bytes in
BA.blit buf t ;
Sk buf
| false -> invalid_arg "Key.read_sk_exn: secret key is invalid"
| true -> Sk Bigstring.(copy (sub buf 0 secret_bytes))
| false -> invalid_arg "Key.read_sk: secret key is invalid"
let read_sk ctx ?pos buf =
try Ok (read_sk_exn ctx ?pos buf) with
let read_sk ctx buf =
try Ok (read_sk_exn ctx buf) with
| Invalid_argument msg -> Error msg
let read_pk_exn ctx ?(pos=0) inbuf =
let pklen = BA.length inbuf in
if pos < 0 || pos > pklen - 33 then
invalid_arg "Key.read_pk: pos < 0 or pos > buflen - 33" ;
let inbuf = BA.(sub inbuf pos (length inbuf)) in
if BA.(length inbuf < 33) then
invalid_arg "Key.read_pk: input must be at least 33 bytes long" ;
let outbuf = BA.create public_bytes in
if (pk_parse ctx outbuf inbuf) then Pk outbuf
else invalid_arg "Key.read_pk_exn: public key is invalid"
let read_pk_exn ctx buf =
let buflen = Bigstring.length buf in
if buflen < compressed_pk_bytes then
invalid_arg (Printf.sprintf "Key.read_pk: invalid buffer size %d" buflen) ;
let outbuf = Bigstring.create public_bytes in
if pk_parse ctx outbuf buf then
Pk outbuf
else
invalid_arg "Key.read_pk_exn: public key is invalid"
let read_pk ctx ?pos buf =
try Ok (read_pk_exn ctx ?pos buf) with
let read_pk ctx buf =
try Ok (read_pk_exn ctx buf) with
| Invalid_argument msg -> Error msg
let write :
type a. ?compress:bool -> Context.t -> ?pos:int -> buffer -> a t -> int =
type a. ?compress:bool -> Context.t -> ?pos:int -> Bigstring.t -> a t -> int =
fun ?(compress=true) ctx ?(pos=0) buf -> function
| Sk sk ->
let buflen = BA.length buf in
let buflen = Bigstring.length buf in
if pos < 0 || pos > buflen - secret_bytes then
invalid_arg "Key.write (secret): pos < 0 or pos + 32 > buflen" ;
let buf = BA.sub buf pos secret_bytes in
BA.blit sk buf ;
Bigstring.blit sk 0 buf pos secret_bytes ;
secret_bytes
| Pk pk ->
let buflen = BA.length buf in
let buflen = Bigstring.length buf in
if pos < 0
|| (compress && pos > buflen - 33)
|| (not compress && pos > buflen - 65) then
|| (compress && pos > buflen - compressed_pk_bytes)
|| (not compress && pos > buflen - uncompressed_pk_bytes) then
invalid_arg (Printf.sprintf "Key.write (public): pos=%d, buflen=%d" pos buflen) ;
let len = if compress then 33 else 65 in
let buf = BA.sub buf pos len in
let buf = Bigstring.sub buf pos len in
pk_serialize ctx buf pk
let to_bytes :
type a. ?compress:bool -> Context.t -> a t -> buffer =
type a. ?compress:bool -> Context.t -> a t -> Bigstring.t =
fun ?(compress=true) ctx -> function
| Sk _ as sk ->
let buf = BA.create secret_bytes in
let buf = Bigstring.create secret_bytes in
let _ = write ~compress ctx buf sk in
buf
| Pk _ as pk ->
let buf =
BA.create (1 + (if compress then secret_bytes else public_bytes)) in
Bigstring.create (1 + (if compress then secret_bytes else public_bytes)) in
let _ = write ~compress ctx buf pk in
buf
end
@ -258,167 +213,199 @@ module Sign = struct
type plain
type recoverable
type _ t =
| P : buffer -> plain t
| R : buffer -> recoverable t
| P : Bigstring.t -> plain t
| R : Bigstring.t -> recoverable t
let buffer : type a. a t -> Bigstring.t = function
| P plain -> plain
| R recoverable -> recoverable
let plain_bytes = 64
let recoverable_bytes = 65
let msg_bytes = 32
type msg = buffer
let msg_of_bytes ?(pos=0) buf =
try Some (BA.sub buf pos msg_bytes) with _ -> None
let msg_of_bytes_exn ?pos buf =
match msg_of_bytes ?pos buf with
| None -> invalid_arg "msg_of_bytes_exn"
| Some msg -> msg
let write_msg_exn ?(pos=0) buf msg =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - msg_bytes then
invalid_arg "Sign.read_exn: pos < 0 or pos > buflen - 64" ;
BA.blit (BA.sub msg 0 msg_bytes) (BA.sub buf pos msg_bytes) ;
msg_bytes
let write_msg ?pos buf msg =
try Ok (write_msg_exn ?pos buf msg) with
| Invalid_argument msg -> Error msg
let msg_to_bytes msg = msg
let equal : type a. a t -> a t -> bool = fun a b ->
match a, b with
| P a, P b -> BA.equal a b
| R a, R b -> BA.equal a b
| P a, P b -> Bigstring.equal a b
| R a, R b -> Bigstring.equal a b
external parse_compact : Context.t -> buffer -> buffer -> bool =
"ecdsa_signature_parse_compact" [@@noalloc]
external parse_der : Context.t -> buffer -> buffer -> bool =
"ecdsa_signature_parse_der" [@@noalloc]
external serialize_compact : Context.t -> buffer -> buffer -> unit =
"ecdsa_signature_serialize_compact" [@@noalloc]
external serialize_der : Context.t -> buffer -> buffer -> int =
"ecdsa_signature_serialize_der" [@@noalloc]
external parse_recoverable : Context.t -> buffer -> buffer -> int -> bool =
"ecdsa_recoverable_signature_parse_compact" [@@noalloc]
external serialize_recoverable : Context.t -> buffer -> buffer -> int =
"ecdsa_recoverable_signature_serialize_compact" [@@noalloc]
external parse_compact : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_signature_parse_compact" [@@noalloc]
external parse_der : Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_signature_parse_der" [@@noalloc]
external serialize_compact : Context.t -> Bigstring.t -> Bigstring.t -> unit =
"caml_secp256k1_ecdsa_signature_serialize_compact" [@@noalloc]
external serialize_der : Context.t -> Bigstring.t -> Bigstring.t -> int =
"caml_secp256k1_ecdsa_signature_serialize_der" [@@noalloc]
external parse_recoverable : Context.t -> Bigstring.t -> Bigstring.t -> int -> bool =
"caml_secp256k1_ecdsa_recoverable_signature_parse_compact" [@@noalloc]
external serialize_recoverable : Context.t -> Bigstring.t -> Bigstring.t -> int =
"caml_secp256k1_ecdsa_recoverable_signature_serialize_compact" [@@noalloc]
let read_exn ctx ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - plain_bytes then
invalid_arg "Sign.read_exn: pos < 0 or pos > buflen - 64" ;
let signature = BA.create plain_bytes in
if parse_compact ctx signature (BA.sub buf pos plain_bytes) then
let read_exn ctx buf =
let buflen = Bigstring.length buf in
if buflen < plain_bytes then
invalid_arg (Printf.sprintf "Sign.read: invalid buffer size %d" buflen) ;
let signature = Bigstring.create plain_bytes in
if parse_compact ctx signature buf then
P signature
else invalid_arg "Sign.read_exn: signature could not be parsed"
else
invalid_arg "Sign.read: signature could not be parsed"
let read ctx ?pos buf =
try Ok (read_exn ctx ?pos buf) with
| Invalid_argument msg -> Error msg
let read ctx buf =
try Ok (read_exn ctx buf) with
Invalid_argument msg -> Error msg
let read_der_exn ctx ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - plain_bytes then
invalid_arg "Sign.read_der: pos < 0 or pos > buflen - 72" ;
let signature = BA.create plain_bytes in
if parse_der ctx signature BA.(sub buf pos (length buf)) then
let read_der_exn ctx buf =
let signature = Bigstring.create plain_bytes in
if parse_der ctx signature buf then
P signature
else invalid_arg "Sign.read_der_exn: signature could not be parsed"
else
invalid_arg "Sign.read_der: signature could not be parsed"
let read_der ctx ?pos buf =
try Ok (read_der_exn ctx ?pos buf) with
| Invalid_argument msg -> Error msg
let read_der ctx buf =
try Ok (read_der_exn ctx buf) with
Invalid_argument msg -> Error msg
let read_recoverable_exn ctx ~recid ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - plain_bytes then
invalid_arg "Sign.read_recoverable_exn: pos < 0 or pos > buflen - 64" ;
let signature = BA.create recoverable_bytes in
if parse_recoverable ctx signature (BA.sub buf pos plain_bytes) recid then (R signature)
else invalid_arg "Sign.read_recoverable_exn: signature could not be parsed"
let read_recoverable_exn ctx buf =
let buflen = Bigstring.length buf in
if buflen < recoverable_bytes then
invalid_arg (Printf.sprintf "Sign.read_recoverable: invalid buffer size %d" buflen) ;
let signature = Bigstring.create recoverable_bytes in
let recid = int_of_char (Bigstring.get buf 64) in
if parse_recoverable ctx signature buf recid then
R signature
else
invalid_arg "Sign.read_recoverable: signature could not be parsed"
let read_recoverable ctx ~recid ?pos buf =
try Ok (read_recoverable_exn ctx ~recid ?pos buf) with
let read_recoverable ctx buf =
try Ok (read_recoverable_exn ctx buf) with
| Invalid_argument msg -> Error msg
let write_exn :
type a. ?der:bool -> Context.t -> ?pos:int -> buffer -> a t -> int =
fun ?(der=false) ctx ?(pos=0) buf -> function
type a. ?der:bool -> Context.t -> Bigstring.t -> a t -> int =
fun ?(der=false) ctx buf -> function
| P signature ->
let buf = BA.(sub buf pos (length buf)) in
if der then serialize_der ctx buf signature
else (serialize_compact ctx buf signature ; plain_bytes)
| R signature ->
let buflen = BA.length buf in
if pos < 0 || pos > buflen - plain_bytes then
invalid_arg "write: pos < 0 or pos > buflen - 64" ;
ignore (serialize_recoverable ctx (BA.sub buf pos plain_bytes) signature) ;
let buflen = Bigstring.length buf in
if not der then begin
if buflen < plain_bytes then
invalid_arg (Printf.sprintf "Sign.write: buffer length too small (%d)" buflen) ;
serialize_compact ctx buf signature ;
plain_bytes
let write ?der ctx ?pos buf signature =
try Ok (write_exn ?der ctx ?pos buf signature) with
| Invalid_argument msg -> Error msg
let to_bytes ?der ctx signature =
let buf = BA.create 72 in
let nb_written = write_exn ?der ctx buf signature in
BA.sub buf 0 nb_written
let to_bytes_recid ctx (R signature) =
let buf = BA.create plain_bytes in
end
else begin
match serialize_der ctx buf signature with
| 0 -> invalid_arg "Sign.write_exn: buffer too small to \
contain a DER signature"
| len -> len
end
| R signature ->
let buflen = Bigstring.length buf in
if buflen < recoverable_bytes then
invalid_arg (Printf.sprintf "Sign.write: buffer length too small (%d)" buflen) ;
let recid = serialize_recoverable ctx buf signature in
buf, recid
Bigstring.set buf 64 (char_of_int recid) ;
recoverable_bytes
external sign : Context.t -> buffer -> buffer -> buffer -> bool =
"ecdsa_sign" [@@noalloc]
external verify : Context.t -> buffer -> buffer -> buffer -> bool =
"ecdsa_verify" [@@noalloc]
let write ?der ctx buf signature =
try Ok (write_exn ?der ctx buf signature) with
Invalid_argument msg -> Error msg
let write_sign_exn ctx ~sk ~msg ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - plain_bytes then
invalid_arg "Sign.write_sign: outpos < 0 or outpos > outbuf - 64" ;
if sign ctx (BA.sub buf pos plain_bytes) (Key.to_buffer sk) msg then plain_bytes
else invalid_arg
"Sign.write_sign: the nonce generation function failed, or the private key was invalid"
let to_bytes :
type a. ?der:bool -> Context.t -> a t -> Bigstring.t =
fun ?(der=false) ctx -> function
| P _ as signature ->
if der then begin
let buf = Bigstring.create 72 in
let nb_written = write_exn ~der ctx buf signature in
Bigstring.sub buf 0 nb_written
end
else
let buf = Bigstring.create plain_bytes in
let _nb_written = write_exn ~der ctx buf signature in
buf
| R _ as signature ->
let buf = Bigstring.create recoverable_bytes in
let _nb_written = write_exn ctx buf signature in
buf
let write_sign ctx ~sk ~msg ?pos buf =
try Ok (write_sign_exn ctx ~sk ~msg ?pos buf) with
| Invalid_argument msg -> Error msg
external normalize :
Context.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_signature_normalize" [@@noalloc]
let sign ctx ~sk ~msg =
let signature = BA.create plain_bytes in
match write_sign ctx ~sk ~msg signature with
| Error msg -> Error msg
| Ok _nb_written -> Ok (P signature)
let normalize ctx (P signature) =
let normalized_sig = Bigstring.create plain_bytes in
if normalize ctx normalized_sig signature then
Some (P normalized_sig) else None
let sign_exn ctx ~sk ~msg =
match sign ctx ~sk ~msg with
| Error msg -> invalid_arg msg
| Ok signature -> signature
(* [sign ctx signature msg sk] *)
external sign :
Context.t -> Bigstring.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_sign" [@@noalloc]
external sign_recoverable : Context.t -> buffer -> buffer -> buffer -> bool =
"ecdsa_sign_recoverable" [@@noalloc]
(* [verify ctx pk msg signature] *)
external verify :
Context.t -> Bigstring.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_verify" [@@noalloc]
let write_sign_recoverable_exn ctx ~sk ~msg ?(pos=0) buf =
let buflen = BA.length buf in
if pos < 0 || pos > buflen - recoverable_bytes then
invalid_arg "Sign.write_sign_recoverable_exn: \
outpos < 0 or outpos > outbuflen - 65" ;
if sign_recoverable ctx
(BA.sub buf pos recoverable_bytes)
(Key.to_buffer sk) msg then recoverable_bytes
else invalid_arg
"Sign.write_sign_recoverable_exn: \
the nonce generation function failed, or the private key was invalid"
let check_msglen msg =
let msglen = Bigstring.length msg in
if msglen < msg_bytes
then invalid_arg
(Printf.sprintf "message is too small (%d < %d)" msglen msg_bytes)
let write_sign_recoverable ctx ~sk ~msg ?pos buf =
try Ok (write_sign_recoverable_exn ctx ~sk ~msg ?pos buf) with
| Invalid_argument msg -> Error msg
let sign_exn ctx buf ~sk ~msg =
check_msglen msg ;
let buflen = Bigstring.length buf in
if buflen < plain_bytes then
invalid_arg (Printf.sprintf "Sign.write_sign: buffer length too \
small (%d)" buflen) ;
match sign ctx buf (Key.buffer sk) msg with
| true -> ()
| false -> invalid_arg "Sign.write_sign: the nonce generation \
function failed, or the private key was \
invalid"
let write_sign_exn ctx buf ~sk ~msg =
let signature = Bigstring.create plain_bytes in
sign_exn ctx signature ~sk ~msg ;
write_exn ctx buf (P signature)
let write_sign ctx buf ~sk ~msg =
try Ok (write_sign_exn ctx ~sk ~msg buf)
with Invalid_argument msg -> Error msg
let sign_exn ctx ~sk msg =
let signature = Bigstring.create plain_bytes in
sign_exn ctx signature ~sk ~msg ;
P signature
let sign ctx ~sk msg =
try Ok (sign_exn ctx ~sk msg)
with Invalid_argument msg -> Error msg
external sign_recoverable :
Context.t -> Bigstring.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_sign_recoverable" [@@noalloc]
let write_sign_recoverable_exn ctx ~sk ~msg buf =
check_msglen msg ;
let buflen = Bigstring.length buf in
if buflen < recoverable_bytes then
invalid_arg (Printf.sprintf "Sign.write_sign_recoverable: buffer \
length too small (%d)" buflen) ;
if sign_recoverable ctx buf (Key.buffer sk) msg then
recoverable_bytes
else invalid_arg "Sign.write_sign_recoverable_exn: the nonce \
generation function failed, or the private key \
was invalid"
let write_sign_recoverable ctx ~sk ~msg buf =
try Ok (write_sign_recoverable_exn ctx ~sk ~msg buf)
with Invalid_argument msg -> Error msg
let sign_recoverable ctx ~sk msg =
let signature = BA.create recoverable_bytes in
let signature = Bigstring.create recoverable_bytes in
match write_sign_recoverable ctx ~sk ~msg signature with
| Error error -> Error error
| Ok _nb_written -> Ok (R signature)
@ -428,42 +415,44 @@ module Sign = struct
| Error msg -> invalid_arg msg
| Ok signature -> signature
external to_plain : Context.t -> buffer -> buffer -> unit =
"ecdsa_recoverable_signature_convert" [@@noalloc]
external to_plain : Context.t -> Bigstring.t -> Bigstring.t -> unit =
"caml_secp256k1_ecdsa_recoverable_signature_convert" [@@noalloc]
let to_plain ctx (R recoverable) =
let plain = BA.create plain_bytes in
let to_plain : type a. Context.t -> a t -> plain t = fun ctx -> function
| P _ as signature -> signature
| R recoverable ->
let plain = Bigstring.create plain_bytes in
to_plain ctx plain recoverable ;
P plain
let verify_plain_exn ctx ~pk ?(pos=0) msg signature =
let msglen = BA.length msg in
if pos < 0 || pos > msglen - 32 then
invalid_arg "Sign.verify: msg must be at least 32 bytes long" ;
verify ctx (Key.to_buffer pk) (BA.sub msg pos 32) signature
let verify_plain_exn ctx ~pk msg signature =
check_msglen msg ;
let siglen = Bigstring.length signature in
if siglen < plain_bytes then
invalid_arg (Printf.sprintf "verify: signature too short (%d < %d)"
siglen plain_bytes) ;
verify ctx (Key.buffer pk) msg signature
let verify_exn :
type a. Context.t -> pk:Key.public Key.t -> msg:msg -> signature:a t -> bool =
fun ctx ~pk ~msg ~signature -> match signature with
| P signature -> verify_plain_exn ctx ~pk msg signature
| R _ as r ->
let P signature = to_plain ctx r in
let verify_exn ctx ~pk ~msg ~signature =
let P signature = to_plain ctx signature in
verify_plain_exn ctx ~pk msg signature
let verify ctx ~pk ~msg ~signature =
try Ok (verify_exn ctx ~pk ~msg ~signature) with
| Invalid_argument msg -> Error msg
external recover : Context.t -> buffer -> buffer -> buffer -> bool =
"ecdsa_recover" [@@noalloc]
external recover :
Context.t -> Bigstring.t -> Bigstring.t -> Bigstring.t -> bool =
"caml_secp256k1_ecdsa_recover" [@@noalloc]
let recover_exn ctx ~signature:(R signature) ~msg =
let pk = BA.create Key.public_bytes in
let recover_exn ctx ~signature:(R signature) msg =
check_msglen msg ;
let pk = Bigstring.create Key.public_bytes in
if recover ctx pk signature msg then Key.Pk pk
else
invalid_arg "Sign.recover: pk could not be recovered"
let recover ctx ~signature ~msg =
try Ok (recover_exn ctx ~signature ~msg) with
| Invalid_argument msg -> Error msg
let recover ctx ~signature msg =
try Ok (recover_exn ctx ~signature msg) with
Invalid_argument msg -> Error msg
end

View File

@ -1,11 +1,4 @@
type buffer = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
module Context : sig
type flag =
| Verify
| Sign
(** which parts of the context to initialize. *)
type t
(** Opaque data structure that holds context information
(precomputed tables etc.).
@ -24,13 +17,13 @@ module Context : sig
which case you do not need any locking for the other calls), or
use a read-write lock. *)
val create : flag list -> t
(** Create a secp256k1 context object. *)
val create : ?sign:bool -> ?verify:bool -> unit -> t
(** [create ?sign ?bool ()] is a freshly allocated [t]. *)
val clone : t -> t
(** Copies a secp256k1 context object. *)
(** [clone t] is a copy of [t]. *)
val randomize : t -> buffer -> bool
val randomize : t -> Bigstring.t -> bool
(** While secp256k1 code is written to be constant-time no matter
what secret values are, it's possible that a future compiler may
output code which isn't, and also that the CPU may not emit the
@ -52,20 +45,39 @@ end
module Key : sig
type secret
type public
type _ t = private
| Sk : buffer -> secret t
| Pk : buffer -> public t
type _ t
val buffer : _ t -> Bigstring.t
(** [buffer k] is the underlying buffer of [k]. DO NOT MODIFY. *)
val secret_bytes : int
(** Length of a secret key in memory: 32 bytes *)
val public_bytes : int
(** Length of a public key in memory: 64 bytes *)
val compressed_pk_bytes : int
(** Length of the compressed serialization of a public key: 33 bytes *)
val uncompressed_pk_bytes : int
(** Length of the uncompressed serialization of a public key: 65 bytes *)
val bytes : _ t -> int
(** [bytes k] is the length of [k] in memory (the length of the
underlying [Bigstring.t]). *)
val serialized_bytes : ?compressed:bool -> _ t -> int
(** [serialized_bytes ?compressed k] is the length of the
serialization (compressed) of [k].*)
val to_buffer : _ t -> buffer
val length : _ t -> int
val equal : 'a t -> 'a t -> bool
val copy : 'a t -> 'a t
(** {2 Aritmetic operations } *)
val negate : Context.t -> 'a t -> 'a t
val add_tweak : Context.t -> 'a t -> ?pos:int -> buffer -> 'a t
val mul_tweak : Context.t -> 'a t -> ?pos:int -> buffer -> 'a t
val add_tweak : Context.t -> 'a t -> Bigstring.t -> 'a t
val mul_tweak : Context.t -> 'a t -> Bigstring.t -> 'a t
val neuterize : Context.t -> _ t -> public t option
val neuterize_exn : Context.t -> _ t -> public t
val combine : Context.t -> _ t list -> public t option
@ -73,74 +85,122 @@ module Key : sig
(** {2 Input/Output} *)
val read_sk : Context.t -> ?pos:int -> buffer -> (secret t, string) result
val read_sk_exn : Context.t -> ?pos:int -> buffer -> secret t
val read_pk : Context.t -> ?pos:int -> buffer -> (public t, string) result
val read_pk_exn : Context.t -> ?pos:int -> buffer -> public t
val write : ?compress:bool -> Context.t -> ?pos:int -> buffer -> _ t -> int
val to_bytes : ?compress:bool -> Context.t -> _ t -> buffer
val read_sk : Context.t -> Bigstring.t -> (secret t, string) result
val read_sk_exn : Context.t -> Bigstring.t -> secret t
val read_pk : Context.t -> Bigstring.t -> (public t, string) result
val read_pk_exn : Context.t -> Bigstring.t -> public t
val write : ?compress:bool -> Context.t -> ?pos:int -> Bigstring.t -> _ t -> int
val to_bytes : ?compress:bool -> Context.t -> _ t -> Bigstring.t
end
module Sign : sig
(** {2 Message} *)
type msg
val msg_of_bytes : ?pos:int -> buffer -> msg option
val msg_of_bytes_exn : ?pos:int -> buffer -> msg
val write_msg_exn : ?pos:int -> buffer -> msg -> int
val write_msg : ?pos:int -> buffer -> msg -> (int, string) result
val msg_to_bytes : msg -> buffer
(** {2 Signature} *)
type plain
type recoverable
type _ t = private
| P : buffer -> plain t
| R : buffer -> recoverable t
type _ t
val buffer : _ t -> Bigstring.t
(** [buffer signature] is the underlying buffer of [signature]. DO
NOT MODIFY. *)
val plain_bytes : int
(** 64 bytes *)
val recoverable_bytes : int
(** 65 bytes *)
val msg_bytes : int
(** 32 bytes *)
val equal : 'a t -> 'a t -> bool
val to_plain : Context.t -> recoverable t -> plain t
val to_plain : Context.t -> _ t -> plain t
(** {3 Input/Output} *)
val read : Context.t -> ?pos:int -> buffer -> (plain t, string) result
val read_exn : Context.t -> ?pos:int -> buffer -> plain t
val read_der : Context.t -> ?pos:int -> buffer -> (plain t, string) result
val read_der_exn : Context.t -> ?pos:int -> buffer -> plain t
val read_recoverable : Context.t -> recid:int -> ?pos:int -> buffer -> (recoverable t, string) result
val read_recoverable_exn : Context.t -> recid:int -> ?pos:int -> buffer -> recoverable t
val read : Context.t -> Bigstring.t -> (plain t, string) result
val read_exn : Context.t -> Bigstring.t -> plain t
val read_der : Context.t -> Bigstring.t -> (plain t, string) result
val read_der_exn : Context.t -> Bigstring.t -> plain t
val write_exn : ?der:bool -> Context.t -> ?pos:int -> buffer -> _ t -> int
val write : ?der:bool -> Context.t -> ?pos:int -> buffer -> _ t -> (int, string) result
val to_bytes : ?der:bool -> Context.t -> _ t -> buffer
val to_bytes_recid : Context.t -> recoverable t -> buffer * int
val read_recoverable :
Context.t -> Bigstring.t -> (recoverable t, string) result
(** [read_recoverable_exn ctx buf] reads a recoverable signature in
[buf] if everything goes well or return an error otherwise. *)
val read_recoverable_exn : Context.t -> Bigstring.t -> recoverable t
(** [read_recoverable_exn ctx buf] reads a recoverable signature in
[buf].
@raises [Invalid_argument] if [buf] is less than 65 bytes long
or [buf] does not contain a valid recoverable signature. *)
val write_exn : ?der:bool -> Context.t -> Bigstring.t -> _ t -> int
val write : ?der:bool -> Context.t -> Bigstring.t -> _ t -> (int, string) result
val to_bytes : ?der:bool -> Context.t -> _ t -> Bigstring.t
(** [to_bytes ?der ctx signature] writes the serialization of
[signature] in a freshly allocated [Bigstring.t], which is then
returned. *)
(** {3 Sign} *)
val normalize :
Context.t -> plain t -> plain t option
(** [normalize ctx sig] is the normalized lower-S form of [Some
normalized_sig] if [sig] was not already in this form, or [None]
otherwise. *)
(** {4 Creation} *)
val sign : Context.t -> sk:Key.secret Key.t -> msg:msg -> (plain t, string) result
val sign_exn : Context.t -> sk:Key.secret Key.t -> msg:msg -> plain t
val sign_recoverable : Context.t -> sk:Key.secret Key.t -> msg -> (recoverable t, string) result
val sign_recoverable_exn : Context.t -> sk:Key.secret Key.t -> msg -> recoverable t
val sign : Context.t -> sk:Key.secret Key.t -> Bigstring.t -> (plain
t, string) result
(** {4 Direct write in buffers} *)
val sign_exn : Context.t -> sk:Key.secret Key.t -> Bigstring.t ->
plain t
val write_sign : Context.t -> sk:Key.secret Key.t -> msg:msg -> ?pos:int -> buffer -> (int, string) result
val write_sign_exn : Context.t -> sk:Key.secret Key.t -> msg:msg -> ?pos:int -> buffer -> int
val write_sign_recoverable : Context.t -> sk:Key.secret Key.t -> msg:msg -> ?pos:int -> buffer -> (int, string) result
val write_sign_recoverable_exn : Context.t -> sk:Key.secret Key.t -> msg:msg -> ?pos:int -> buffer -> int
val sign_recoverable : Context.t -> sk:Key.secret Key.t ->
Bigstring.t -> (recoverable t, string) result
val sign_recoverable_exn : Context.t -> sk:Key.secret Key.t ->
Bigstring.t -> recoverable t
(** {4 Direct write} *)
val write_sign : Context.t -> Bigstring.t -> sk:Key.secret Key.t ->
msg:Bigstring.t -> (int, string) result (** [write_sign ctx buf ~sk
~msg] writes signs [msg] with [sk] and writes the signature to
[buf] at [?pos]. It returns the number of bytes written (64) on
success, or ar error message otherwise. *)
val write_sign_exn : Context.t -> Bigstring.t -> sk:Key.secret Key.t
-> msg:Bigstring.t -> int (** [write_sign_exn ctx buf ~sk ~msg]
writes signs [msg] with [sk] and writes the signature to [buf] at
[?pos]. It returns the number of bytes written (64).
@raise [Invalid_argument] if [buf] is not long enough to contain
a signature or signing has failed. *)
val write_sign_recoverable : Context.t -> sk:Key.secret Key.t ->
msg:Bigstring.t -> Bigstring.t -> (int, string) result
val write_sign_recoverable_exn : Context.t -> sk:Key.secret Key.t ->
msg:Bigstring.t -> Bigstring.t -> int
(** {4 Verification} *)
val verify_exn : Context.t -> pk:Key.public Key.t -> msg:msg -> signature:_ t -> bool
val verify : Context.t -> pk:Key.public Key.t -> msg:msg -> signature:_ t -> (bool, string) result
val verify_exn : Context.t -> pk:Key.public Key.t -> msg:Bigstring.t
-> signature:_ t -> bool
val verify : Context.t -> pk:Key.public Key.t -> msg:Bigstring.t ->
signature:_ t -> (bool, string) result
(** {4 Recovery} *)
val recover_exn : Context.t -> signature:recoverable t -> msg:msg -> Key.public Key.t
val recover : Context.t -> signature:recoverable t -> msg:msg -> (Key.public Key.t, string) result
end
val recover_exn : Context.t -> signature:recoverable t ->
Bigstring.t -> Key.public Key.t
val recover : Context.t -> signature:recoverable t -> Bigstring.t ->
(Key.public Key.t, string) result end

View File

@ -4,7 +4,7 @@
((name libsecp256k1)
(public_name secp256k1)
(modules (internal external))
(libraries (cstruct))
(libraries (bigstring cstruct))
(c_names (secp256k1
secp256k1_wrap))
(c_flags (:include c_flags.sexp))

View File

@ -1,18 +1,16 @@
#include <string.h>
#include "secp256k1.h"
#include "secp256k1_recovery.h"
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/bigarray.h>
#include <caml/custom.h>
#include <caml/fail.h>
#include "secp256k1.h"
#include "secp256k1_recovery.h"
/* Accessing the secp256k1_context * part of an OCaml custom block */
#define Context_val(v) (*((secp256k1_context **) Data_custom_val(v)))
void context_destroy(value ctx) {
static void context_destroy(value ctx) {
secp256k1_context_destroy (Context_val(ctx));
}
@ -32,68 +30,60 @@ static value alloc_context (secp256k1_context *ctx) {
return ml_ctx;
}
CAMLprim value context_flags (value buf) {
uint16_t *a = Caml_ba_data_val(buf);
a[0] = SECP256K1_CONTEXT_NONE;
a[1] = SECP256K1_CONTEXT_VERIFY;
a[2] = SECP256K1_CONTEXT_SIGN;
return Val_int(3 * sizeof(uint16_t));
}
CAMLprim value context_create (value flags) {
CAMLprim value caml_secp256k1_context_create (value flags) {
CAMLparam1(flags);
secp256k1_context *ctx = secp256k1_context_create (Int_val(flags));
if (!ctx) caml_failwith("context_create");
CAMLreturn(alloc_context(ctx));
}
CAMLprim value context_randomize (value ctx, value seed) {
CAMLprim value caml_secp256k1_context_randomize (value ctx, value seed) {
return Val_bool(secp256k1_context_randomize(Context_val(ctx),
String_val(seed)));
Caml_ba_data_val(seed)));
}
CAMLprim value context_clone (value ctx) {
CAMLprim value caml_secp256k1_context_clone (value ctx) {
CAMLparam1(ctx);
secp256k1_context *new = secp256k1_context_clone (Context_val(ctx));
if (!new) caml_failwith("context_clone");
CAMLreturn(alloc_context(new));
}
CAMLprim value ec_seckey_verify (value ctx, value sk) {
return Val_bool(secp256k1_ec_seckey_verify(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_seckey_verify (value ctx, value sk) {
return Val_bool(secp256k1_ec_seckey_verify(Context_val(ctx),
Caml_ba_data_val(sk)));
}
CAMLprim value ec_privkey_negate(value ctx, value sk) {
int ret = secp256k1_ec_privkey_negate(Context_val (ctx),
CAMLprim value caml_secp256k1_ec_privkey_negate(value ctx, value sk) {
int ret = secp256k1_ec_privkey_negate(Context_val(ctx),
Caml_ba_data_val(sk));
return Val_unit;
}
CAMLprim value ec_privkey_tweak_add(value ctx, value sk, value tweak) {
return Val_bool(secp256k1_ec_privkey_tweak_add(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_privkey_tweak_add(value ctx, value sk, value tweak) {
return Val_bool(secp256k1_ec_privkey_tweak_add(Context_val(ctx),
Caml_ba_data_val(sk),
Caml_ba_data_val(tweak)));
}
CAMLprim value ec_privkey_tweak_mul(value ctx, value sk, value tweak) {
return Val_bool(secp256k1_ec_privkey_tweak_mul(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_privkey_tweak_mul(value ctx, value sk, value tweak) {
return Val_bool(secp256k1_ec_privkey_tweak_mul(Context_val(ctx),
Caml_ba_data_val(sk),
Caml_ba_data_val(tweak)));
}
CAMLprim value ec_pubkey_create (value ctx, value buf, value sk) {
return Val_bool(secp256k1_ec_pubkey_create (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_pubkey_create (value ctx, value buf, value sk) {
return Val_bool(secp256k1_ec_pubkey_create (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(sk)));
}
CAMLprim value ec_pubkey_serialize (value ctx, value buf, value pk) {
CAMLprim value caml_secp256k1_ec_pubkey_serialize (value ctx, value buf, value pk) {
size_t size = Caml_ba_array_val(buf)->dim[0];
unsigned int flags =
size == 33 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED;
secp256k1_ec_pubkey_serialize(Caml_ba_data_val(ctx),
secp256k1_ec_pubkey_serialize(Context_val(ctx),
Caml_ba_data_val(buf),
&size,
Caml_ba_data_val(pk),
@ -102,32 +92,32 @@ CAMLprim value ec_pubkey_serialize (value ctx, value buf, value pk) {
return Val_int(size);
}
CAMLprim value ec_pubkey_parse(value ctx, value buf, value pk) {
return Val_bool(secp256k1_ec_pubkey_parse(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_pubkey_parse(value ctx, value buf, value pk) {
return Val_bool(secp256k1_ec_pubkey_parse(Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(pk),
Caml_ba_array_val(pk)->dim[0]));
}
CAMLprim value ec_pubkey_negate(value ctx, value pk) {
int ret = secp256k1_ec_pubkey_negate(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_pubkey_negate(value ctx, value pk) {
int ret = secp256k1_ec_pubkey_negate(Context_val(ctx),
Caml_ba_data_val(pk));
return Val_unit;
}
CAMLprim value ec_pubkey_tweak_add(value ctx, value pk, value tweak) {
return Val_bool(secp256k1_ec_pubkey_tweak_add(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_pubkey_tweak_add(value ctx, value pk, value tweak) {
return Val_bool(secp256k1_ec_pubkey_tweak_add(Context_val(ctx),
Caml_ba_data_val(pk),
Caml_ba_data_val(tweak)));
}
CAMLprim value ec_pubkey_tweak_mul(value ctx, value pk, value tweak) {
return Val_bool(secp256k1_ec_pubkey_tweak_mul(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ec_pubkey_tweak_mul(value ctx, value pk, value tweak) {
return Val_bool(secp256k1_ec_pubkey_tweak_mul(Context_val(ctx),
Caml_ba_data_val(pk),
Caml_ba_data_val(tweak)));
}
CAMLprim value ec_pubkey_combine(value ctx, value out, value pks) {
CAMLprim value caml_secp256k1_ec_pubkey_combine(value ctx, value out, value pks) {
int size = 0;
const secp256k1_pubkey* cpks[1024] = {0};
@ -137,44 +127,50 @@ CAMLprim value ec_pubkey_combine(value ctx, value out, value pks) {
pks = Field(pks, 1);
}
return Val_int(secp256k1_ec_pubkey_combine(Caml_ba_data_val(ctx),
return Val_int(secp256k1_ec_pubkey_combine(Context_val(ctx),
Caml_ba_data_val(out),
cpks,
size));
}
CAMLprim value ecdsa_signature_parse_compact (value ctx, value buf, value sig) {
return Val_bool(secp256k1_ecdsa_signature_parse_compact (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_signature_parse_compact (value ctx, value buf, value sig) {
return Val_bool(secp256k1_ecdsa_signature_parse_compact (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(sig)));
}
CAMLprim value ecdsa_signature_parse_der (value ctx, value buf, value sig) {
return Val_bool(secp256k1_ecdsa_signature_parse_der (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_signature_parse_der (value ctx, value buf, value sig) {
return Val_bool(secp256k1_ecdsa_signature_parse_der (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(sig),
Caml_ba_array_val(sig)->dim[0]));
}
CAMLprim value ecdsa_verify (value ctx, value pubkey, value msg, value signature) {
return Val_bool(secp256k1_ecdsa_verify (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_signature_normalize(value ctx, value buf, value sig) {
return Val_bool(secp256k1_ecdsa_signature_normalize (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(sig)));
}
CAMLprim value caml_secp256k1_ecdsa_verify (value ctx, value pubkey, value msg, value signature) {
return Val_bool(secp256k1_ecdsa_verify (Context_val(ctx),
Caml_ba_data_val(signature),
Caml_ba_data_val(msg),
Caml_ba_data_val(pubkey)));
}
CAMLprim value ecdsa_sign (value ctx, value buf, value seckey, value msg) {
return Val_bool(secp256k1_ecdsa_sign (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_sign (value ctx, value buf, value seckey, value msg) {
return Val_bool(secp256k1_ecdsa_sign (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(msg),
Caml_ba_data_val(seckey),
NULL, NULL));
}
CAMLprim value ecdsa_signature_serialize_der(value ctx, value buf, value signature) {
CAMLprim value caml_secp256k1_ecdsa_signature_serialize_der(value ctx, value buf, value signature) {
size_t size = Caml_ba_array_val(buf)->dim[0];
int ret = secp256k1_ecdsa_signature_serialize_der(Caml_ba_data_val(ctx),
int ret = secp256k1_ecdsa_signature_serialize_der(Context_val(ctx),
Caml_ba_data_val(buf),
&size,
Caml_ba_data_val(signature));
@ -182,46 +178,46 @@ CAMLprim value ecdsa_signature_serialize_der(value ctx, value buf, value signatu
return (ret == 0 ? Val_int(ret) : Val_int(size));
}
CAMLprim value ecdsa_signature_serialize_compact(value ctx, value buf, value signature) {
secp256k1_ecdsa_signature_serialize_compact(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_signature_serialize_compact(value ctx, value buf, value signature) {
secp256k1_ecdsa_signature_serialize_compact(Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(signature));
return Val_unit;
}
CAMLprim value ecdsa_recoverable_signature_parse_compact (value ctx, value buf, value signature, value recid) {
return Val_bool(secp256k1_ecdsa_recoverable_signature_parse_compact (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_recoverable_signature_parse_compact (value ctx, value buf, value signature, value recid) {
return Val_bool(secp256k1_ecdsa_recoverable_signature_parse_compact (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(signature),
Int_val(recid)));
}
CAMLprim value ecdsa_sign_recoverable (value ctx, value buf, value seckey, value msg) {
return Val_bool(secp256k1_ecdsa_sign_recoverable (Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_sign_recoverable (value ctx, value buf, value seckey, value msg) {
return Val_bool(secp256k1_ecdsa_sign_recoverable (Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(msg),
Caml_ba_data_val(seckey),
NULL, NULL));
}
CAMLprim value ecdsa_recoverable_signature_serialize_compact(value ctx, value buf, value signature) {
CAMLprim value caml_secp256k1_ecdsa_recoverable_signature_serialize_compact(value ctx, value buf, value signature) {
int recid;
secp256k1_ecdsa_recoverable_signature_serialize_compact(Caml_ba_data_val(ctx),
secp256k1_ecdsa_recoverable_signature_serialize_compact(Context_val(ctx),
Caml_ba_data_val(buf),
&recid,
Caml_ba_data_val(signature));
return Val_int(recid);
}
CAMLprim value ecdsa_recoverable_signature_convert(value ctx, value buf, value signature) {
secp256k1_ecdsa_recoverable_signature_convert(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_recoverable_signature_convert(value ctx, value buf, value signature) {
secp256k1_ecdsa_recoverable_signature_convert(Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(signature));
return Val_unit;
}
CAMLprim value ecdsa_recover(value ctx, value buf, value signature, value msg) {
return Val_bool(secp256k1_ecdsa_recover(Caml_ba_data_val(ctx),
CAMLprim value caml_secp256k1_ecdsa_recover(value ctx, value buf, value signature, value msg) {
return Val_bool(secp256k1_ecdsa_recover(Context_val(ctx),
Caml_ba_data_val(buf),
Caml_ba_data_val(signature),
Caml_ba_data_val(msg)));

View File

@ -5,6 +5,10 @@
(libraries (hex libsecp256k1 alcotest))))
(alias
((name runtest)
((name runtest-secp256k1)
(deps (test.exe))
(action (run ${<}))))
(alias
((name runtest)
(deps ((alias runtest-secp256k1)))))

View File

@ -1,13 +1,11 @@
open Libsecp256k1
let assert_equal a b = assert (a = b)
module Num = struct
open Internal
open Num
let basic () =
let z = zero () in
assert_equal true (is_zero z)
Alcotest.(check bool "Num.is_zero" true (is_zero z))
let runtest =
[ "basic", `Quick, basic ;
@ -19,12 +17,12 @@ module Scalar = struct
open Scalar
let basic () =
let z = zero () in
assert_equal true (is_zero z) ;
Alcotest.(check bool "Scalar.is_zero" true (is_zero z)) ;
(* set_int z 1 ; *)
let z = const ~d0:1L () in
assert_equal false (is_zero z) ;
assert_equal false (is_even z) ;
assert_equal true (is_one z)
Alcotest.(check bool "Scalar.is_zero" false (is_zero z)) ;
Alcotest.(check bool "Scalar.is_even" false (is_even z)) ;
Alcotest.(check bool "Scalar.is_one" true (is_one z))
let runtest =
[ "basic", `Quick, basic ;
@ -34,10 +32,9 @@ end
module External = struct
open External
let buffer_of_hex s =
let { Cstruct.buffer; off = _ ; len = _ } = Hex.to_cstruct (`Hex s) in
buffer
Cstruct.to_bigarray (Hex.to_cstruct (`Hex s))
let ctx = Context.create [ Sign ; Verify ]
let ctx = Context.create ()
let cstruct_testable =
Alcotest.testable Cstruct.hexdump_pp Cstruct.equal
@ -55,8 +52,7 @@ module External = struct
assert_eq_cstruct sign_orig sign
let test_valid_signature _ =
let ctx = Context.create [Verify] in
let msg = Sign.msg_of_bytes_exn @@ buffer_of_hex
let msg = buffer_of_hex
"CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90" in
let signature = Sign.read_der_exn ctx
(buffer_of_hex "3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589") in
@ -65,8 +61,7 @@ module External = struct
assert (Sign.verify_exn ctx ~signature ~pk ~msg)
let test_invalid_signature _ =
let ctx = Context.create [Verify] in
let msg = Sign.msg_of_bytes_exn @@ buffer_of_hex
let msg = buffer_of_hex
"CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91" in
let signature = Sign.read_der_exn ctx
(buffer_of_hex "3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589") in
@ -98,27 +93,25 @@ module External = struct
assert_eq_cstruct pubtrue pubkey_serialized
let test_sign _ =
let ctx = Context.create [Sign] in
let msg = Sign.msg_of_bytes_exn @@ buffer_of_hex "CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90" in
let msg = buffer_of_hex "CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90" in
let sk = Key.read_sk_exn ctx (buffer_of_hex "67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530") in
let validsign = Sign.read_der_exn ctx (buffer_of_hex "30440220182a108e1448dc8f1fb467d06a0f3bb8ea0533584cb954ef8da112f1d60e39a202201c66f36da211c087f3af88b50edf4f9bdaa6cf5fd6817e74dca34db12390c6e9") in
let sign = Sign.sign_exn ctx ~sk ~msg in
let sign = Sign.sign_exn ctx ~sk msg in
assert (Sign.equal sign validsign)
let test_recover _ =
let ctx = Context.create [Sign; Verify] in
let msg = Sign.msg_of_bytes_exn @@ buffer_of_hex "CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90" in
let msg = buffer_of_hex "CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90" in
let seckey = Key.read_sk_exn ctx (buffer_of_hex "67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530") in
let pubkey = Key.neuterize_exn ctx seckey in
let recoverable_sign = Sign.sign_recoverable_exn ctx ~sk:seckey msg in
let usual_sign = Sign.to_plain ctx recoverable_sign in
assert (Sign.verify_exn ctx ~pk:pubkey ~signature:usual_sign ~msg);
let compact, recid = Sign.to_bytes_recid ctx recoverable_sign in
let usual_sign' = Sign.read_exn ctx compact in
let recoverable_bytes = Sign.to_bytes ctx recoverable_sign in
let usual_sign' = Sign.read_exn ctx recoverable_bytes in
assert (Sign.equal usual_sign' usual_sign) ;
let parsed = Sign.read_recoverable_exn ctx compact ~recid in
assert (Sign.equal parsed recoverable_sign);
match Sign.recover ctx ~signature:recoverable_sign ~msg with
let recoverable_sign' = Sign.read_recoverable_exn ctx recoverable_bytes in
assert (Sign.equal recoverable_sign' recoverable_sign);
match Sign.recover ctx ~signature:recoverable_sign msg with
| Error _ -> assert false
| Ok recovered -> assert (Key.equal recovered pubkey)