parse sample file

This commit is contained in:
Galfour 2019-04-11 23:16:14 +00:00
parent c0b5ad05cf
commit 372c488dd7
14 changed files with 523 additions and 72 deletions

View File

@ -1,5 +1,80 @@
const foo =
let toto = at * bo in list [ toto ; tata ; titi ] ;
(* Smart contract for voting. Winners of vote split the contract
balance at the end of the voting period. *)
const bar =
cat + maow ;
(** Type of storage for this contract *)
type storage = {
voters : (address, unit) big_map; (** Used to register voters *)
votes : (string, nat) map; (** Keep track of vote counts *)
addresses : (string, key_hash) map; (** Addresses for payout *)
deadline : timestamp; (** Deadline after which vote closes *)
}
(** Initial storage *)
let%init storage addresses = {
(* Initialize vote counts to zero *)
votes = Map.fold (fun ((name, _kh), votes) ->
Map.add name 0p votes
) addresses Map;
addresses;
voters = BigMap ; (* No voters *)
deadline = Current.time () + 3600 * 24 (* 1 day from now *)
}
(** Entry point for voting.
@param choice A string corresponding to the candidate *)
let%entry vote choice storage =
(* Only allowed while voting period is ongoing *)
if Current.time () > storage.deadline then failwith "Voting closed";
(* Voter must send at least 5tz to vote *)
if Current.amount () < 5.00tz then
failwith "Not enough money, at least 5tz to vote";
(* Voter cannot vote twice *)
if Map.mem (Current.sender ()) storage.voters then
failwith ("Has already voted", Current.sender ());
let votes = storage.votes in
match Map.find choice votes with
| None ->
(* Vote must be for an existing candidate *)
failwith ("Bad vote", choice)
| Some x ->
(* Increase vote count for candidate *)
let storage = storage.votes <- Map.add choice (x + 1p) votes in
(* Register voter *)
let storage =
storage.voters <- Map.add (Current.sender ()) () storage.voters in
(* Return updated storage *)
([], storage)
(* Auxiliary function : returns the list of candidates with the
maximum number of votes (there can be more than one in case of
draw). *)
let find_winners votes =
let winners, _max =
Map.fold (fun ((name, nb), (winners, max)) ->
if nb = max then
name :: winners, max
else if nb > max then
[name], nb
else winners, max
) votes ([], 0p) in
winners
(** Entry point for paying winning candidates. *)
let%entry payout () storage =
(* Only allowed once voting period is over *)
if Current.time () <= storage.deadline then failwith "Voting ongoing";
(* Indentify winners of vote *)
let winners = find_winners storage.votes in
(* Balance of contract is split equally between winners *)
let amount = match Current.balance () / List.length winners with
| None -> failwith "No winners"
| Some (v, _rem) -> v in
(* Generate transfer operations *)
let operations = List.map (fun name ->
let dest = match Map.find name storage.addresses with
| None -> failwith () (* This cannot happen *)
| Some d -> d in
Account.transfer ~amount ~dest
) winners in
(* Return list of operations. Storage is unchanged *)
operations, storage

View File

@ -24,12 +24,12 @@
)
(alias
(name ligo-test)
( name ligo-test)
(action (run test/test.exe))
(deps (glob_files contracts/*))
)
(alias
(name runtest)
(deps ligo-test)
(deps (alias ligo-test))
)

View File

@ -1,4 +1,12 @@
module Wrap = Michelson_wrap
module Contract = Contract
module Run = struct
open Contract
let run_lwt_full = run_lwt_full
let run_lwt = run_lwt
let run_str = run_str
let run_node = run_node
let run = run
end
module Stack = Michelson_wrap.Stack
module Values = Contract.Values
module Types = Contract.Types
let init_environment = Misc.init_environment

View File

@ -495,7 +495,7 @@ module Misc = struct
open Stack_ops
open Stack_shortcuts
open Comparison_ops
let min_nat : (nat * (nat * 'r), nat * 'r) code = fun s ->
let min_nat : (nat * (nat * 'r), nat * 'r) code = fun s ->
s <.
keep_2 cmp_ge_nat <: bubble_2 <:
Boolean.cond drop (dip drop)

View File

@ -4,8 +4,8 @@ open Types
module Michelson = Micheline.Michelson
open Michelson
module Environment = Compiler_environment
module Stack = Meta_michelson.Wrap.Stack
module Contract_types = Meta_michelson.Contract.Types
module Stack = Meta_michelson.Stack
module Contract_types = Meta_michelson.Types
open Memory_proto_alpha.Script_ir_translator

View File

@ -3,7 +3,7 @@ open Types
open Micheline
open Memory_proto_alpha.Script_ir_translator
module Stack = Meta_michelson.Wrap.Stack
module Stack = Meta_michelson.Stack
type element = environment_element

View File

@ -5,7 +5,7 @@ open Tezos_utils.Memory_proto_alpha
open Script_ir_translator
module O = Tezos_utils.Micheline.Michelson
module Contract_types = Meta_michelson.Contract.Types
module Contract_types = Meta_michelson.Types
module Ty = struct

View File

@ -4,7 +4,6 @@ open Compiler
open Memory_proto_alpha.Script_ir_translator
let run_aux (program:compiled_program) (input_michelson:Michelson.t) : ex_typed_value result =
let open Meta_michelson.Wrap in
let Compiler.{input;output;body} : compiled_program = program in
let (Ex_ty input_ty) = input in
let (Ex_ty output_ty) = output in

View File

@ -17,7 +17,7 @@
(rule
(targets parser.ml parser.mli)
(deps parser.mly ast.ml)
(action (system "menhir --external-tokens Lex.Token lex/token.mly parser.mly --base parser"))
(action (system "menhir --explain --external-tokens Lex.Token lex/token.mly parser.mly --base parser"))
)
(rule

View File

@ -13,19 +13,27 @@ type token = Token.token
module O = struct
type 'a list_element = [`Trail | `Lead | `Separator] * token * 'a
type basic_rhs_element = [
| `Named of string
| `Token of token
]
type list_mode =
| Trail of token
| Trail_option of token
| Trail_force of token
| Trail_force_ne of token
| Lead of token
| Lead_ne of token
| Separator of token
| Naked
| Naked_ne
type 'a list_element = list_mode * 'a
type rhs_element = [
| basic_rhs_element
| `Named of string
| `Token of token
| `List of string list_element
]
type rhs = rhs_element list
type rhs = rhs_element list name
type rule = rhs list name
type manual_rule_content = {
@ -144,16 +152,16 @@ module Print_AST = struct
let aux : O.rhs_element -> string option = fun e ->
match e with
| `Named s -> Some (s ^ " Location.wrap")
| `List (_, _, s) -> Some ("(" ^ s ^ " Location.wrap list)")
| `List ( _, s) -> Some ("(" ^ s ^ " Location.wrap list)")
| `Token _ -> None
in
List.filter_map aux rhs in
List.filter_map aux rhs.content in
let type_element = fun ppf te -> fprintf ppf "%s" te in
fprintf ppf "| %s of (%a)"
(String.capitalize_ascii gr.name)
fprintf ppf "| `%s_%s of (%a)"
(String.capitalize_ascii gr.name) rhs.name
(list_sep type_element (const " * ")) type_elements
in
fprintf ppf "%s = @. @[<v>%a@]" gr.name
fprintf ppf "%s = [@. @[<v>%a@]]" gr.name
(list_sep aux new_line) gr.content
let singleton : _ -> O.singleton -> _ = fun ppf s ->
@ -173,12 +181,14 @@ module Print_AST = struct
let aux : O.element -> string option = fun e ->
match e with
| `Named s -> Some (s ^ " Location.wrap")
| `List _ -> Some ("(" ^ level_name ^ " Location.wrap list)")
| `List ( _, s) -> Some ("(" ^ (match s with
| `Lower | `Current -> level_name |`Named s -> s
) ^ " Location.wrap list)")
| `Token _ -> None
| `Current | `Lower -> Some (level_name ^ " Location.wrap") in
List.filter_map aux (get_content nop) in
let type_element = fun ppf te -> fprintf ppf "%s" te in
fprintf ppf "| %s of (%a)"
fprintf ppf "| `%s of (%a)"
(get_name nop)
(list_sep type_element (const " * ")) type_elements
@ -186,7 +196,7 @@ module Print_AST = struct
let levels = List.Ne.map get_content ((get_content nh).levels) in
let nops = List.Ne.concat levels in
let name = get_name nh in
fprintf ppf "%s %s =@.@[%a@]" t
fprintf ppf "%s %s = [@.@[%a@]]" t
name
(list_sep (n_operator name) new_line) nops
@ -195,7 +205,7 @@ module Print_AST = struct
| [] -> ()
| hd :: tl ->
fprintf ppf "%a\n" (n_hierarchy (if first then "type" else "and")) hd ;
fprintf ppf "%a" (list_sep (prepend "and " (n_hierarchy "and")) (const "\n")) tl
fprintf ppf "%a" (list_sep (n_hierarchy "and") (const "\n")) tl
let language : _ -> O.language -> _ = fun ppf l ->
fprintf ppf "%a@.@." comment "Language" ;
@ -223,16 +233,24 @@ module Print_Grammar = struct
let aux : _ -> O.rhs_element -> _ = fun ppf e ->
(match e with
| `Named s -> fprintf ppf "%s = wrap(%s)" letters.(!i) s
| `List (mode, sep, s) ->
fprintf ppf "%s = %s(%s, wrap(%s))"
| `List (mode, s) ->
fprintf ppf "%s = %swrap(%s))"
letters.(!i)
(match mode with | `Lead -> "lead_list" | `Trail -> "trail_list" | `Separator -> "separated_list")
(Token.to_string sep)
(match mode with
| Naked -> "naked_list("
| Naked_ne -> "naked_list_ne("
| Lead s -> "lead_list(" ^ (Token.to_string s) ^ ","
| Lead_ne s -> "lead_list_ne(" ^ (Token.to_string s) ^ ","
| Trail s -> "trail_list(" ^ (Token.to_string s) ^ ","
| Trail_option s -> "trail_option_list(" ^ (Token.to_string s) ^ ","
| Trail_force s -> "trail_force_list(" ^ (Token.to_string s) ^ ","
| Trail_force_ne s -> "trail_force_list_ne(" ^ (Token.to_string s) ^ ","
| Separator s -> "separated_list(" ^ (Token.to_string s) ^ ",")
s
| `Token t -> i := !i - 1 ; string ppf @@ Token.to_string t) ;
i := !i + 1
in
fprintf ppf "%a" (list_sep aux (const " ")) rhs in
fprintf ppf "%a" (list_sep aux (const " ")) rhs.content in
let aux_code : _ -> O.rhs -> _ = fun ppf rhs ->
let i = ref 0 in
let aux : O.rhs_element -> _ = fun e ->
@ -241,8 +259,8 @@ module Print_Grammar = struct
| `Token _ -> i := !i - 1 ; None) in
i := !i + 1 ; s
in
let content = List.filter_map aux rhs in
fprintf ppf "%s (%a)" (String.capitalize_ascii gr.name) (list_sep string (const " , ")) content
let content = List.filter_map aux rhs.content in
fprintf ppf "`%s_%s (%a)" (String.capitalize_ascii gr.name) rhs.name (list_sep string (const " , ")) content
in
let aux : _ -> O.rhs -> _ = fun ppf rhs ->
fprintf ppf "| %a { %a }"
@ -261,11 +279,19 @@ module Print_Grammar = struct
let element : _ -> O.element -> _ = fun ppf element ->
(match element with
| `Token t -> i := !i - 1 ; string ppf @@ Token.to_string t
| `List (mode, sep, content) ->
fprintf ppf "%s = %s(%s, wrap(%s))"
| `List (mode, content) ->
fprintf ppf "%s = %swrap(%s))"
letters.(!i)
(match mode with | `Lead -> "lead_list" | `Trail -> "trail_list" | `Separator -> "separated_list")
(Token.to_string sep)
(match mode with
| Naked -> "naked_list("
| Naked_ne -> "naked_list_ne("
| Lead s -> "lead_list(" ^ (Token.to_string s) ^ ","
| Lead_ne s -> "lead_list_ne(" ^ (Token.to_string s) ^ ","
| Trail s -> "trail_list(" ^ (Token.to_string s) ^ ","
| Trail_option s -> "trail_option_list(" ^ (Token.to_string s) ^ ","
| Trail_force s -> "trail_force_list(" ^ (Token.to_string s) ^ ","
| Trail_force_ne s -> "trail_force_list_ne(" ^ (Token.to_string s) ^ ","
| Separator s -> "separated_list(" ^ (Token.to_string s) ^ ",")
(match content with | `Lower -> prev_lvl_name | `Named s -> s | `Current -> cur_lvl_name)
| `Named n ->
fprintf ppf "%s = wrap(%s)" letters.(!i) n
@ -290,7 +316,7 @@ module Print_Grammar = struct
in i := !i + 1 ; r
in
List.filter_map aux elements in
fprintf ppf "%s (%a)" name (list_sep string (const " , ")) elements'
fprintf ppf "`%s (%a)" name (list_sep string (const " , ")) elements'
let n_operator prev_lvl_name cur_lvl_name : _ -> O.n_operator -> _ = fun ppf nop ->
let name = get_name nop in
@ -340,65 +366,316 @@ let infix : string -> [`Left | `Right] -> token -> O.n_operator = fun name assoc
| `Left -> make_name name [`Current ; `Token t ; `Lower]
| `Right -> make_name name [`Current ; `Token t ; `Lower]
(* Ocaml is bad *)
let empty_infix : string -> [`Left | `Right] -> O.n_operator = fun name assoc ->
match assoc with
| `Left -> make_name name [`Current ; `Lower]
| `Right -> make_name name [`Current ; `Lower]
let paren : string -> string -> O.n_operator = fun constructor_name name ->
make_name constructor_name [`Token Token.LPAREN ; `Named name ; `Token Token.RPAREN]
let expression_name = "expression"
let type_expression_name = "type_expression"
let program_name = "program"
let variable_name = "variable"
let pattern_name = "pattern"
let constructor_name = "constructor"
let int_name = "int_"
let tz_name = "tz_"
let unit_name = "unit_"
let string_name = "string_"
let variable = O.manual_singleton variable_name ["| NAME { $1 }"] "string"
let int = O.manual_singleton int_name ["| INT { $1 }"] "int"
let tz = O.manual_singleton tz_name ["| TZ { $1 }"] "int"
let unit = O.manual_singleton unit_name ["| UNIT { () }"] "unit"
let string = O.manual_singleton string_name ["| STRING { $1 }"] "string"
let constructor = O.manual_singleton constructor_name ["| CONSTRUCTOR_NAME { $1 }"] "string"
module Pattern = struct
open Token
open O
let application = empty_infix "P_application" `Left
let list : O.n_operator = make_name "P_list" [
`Token LIST ; `Token LSQUARE ; `List (Lead SEMICOLON, `Current) ; `Token RSQUARE ;
]
let record_element : O.rule = make_name "p_record_element" [
make_name "" [`Named variable_name ; `Token EQUAL ; `Named pattern_name]
]
let record : O.n_operator = make_name "P_record" [
`Token LBRACKET ;
`List (Trail SEMICOLON, `Named record_element.name) ;
`Token RBRACKET ;
]
let pair = infix "P_pair" `Left COMMA
let variable : O.n_operator = make_name "P_variable" [ `Named variable_name ]
let constructor : O.n_operator = make_name "P_constructor" [ `Named constructor_name ]
let module_ident : O.n_operator = make_name "P_module_ident" [
`List (Trail_force_ne DOT, `Named constructor_name) ; `Named variable_name ;
]
let unit : O.n_operator = make_name "P_unit" [ `Named unit_name ]
let restricted_pattern_name = "resitrcted_pattern"
let restricted_pattern = O.name_hierarchy restricted_pattern_name [
[variable ; unit] ;
[paren "P_restrict" pattern_name]
] []
let main = O.name_hierarchy pattern_name [
[record] ;
[application] ;
[pair] ;
[list] ;
[variable ; constructor ; module_ident ; unit] ;
[paren "P_paren" pattern_name]
] []
let singletons = [O.rule_singleton record_element]
end
module Expression = struct
open Token
open O
let list : O.n_operator = make_name "List" [
`Token LIST ; `Token LSQUARE ; `List (`Lead, SEMICOLON, `Current) ; `Token RSQUARE ;
let application = empty_infix "E_application" `Right
let list : O.n_operator = make_name "E_list" [
`Token LSQUARE ; `List (Trail SEMICOLON, `Current) ; `Token RSQUARE ;
]
let let_in : O.n_operator = make_name "Let_in" [
`Token Token.LET ; `Named "variable" ;
`Token Token.EQUAL ; `Current ;
`Token Token.IN ; `Current ;
let fun_ : O.n_operator = make_name "E_fun" [
`Token FUN ; `Named pattern_name ;
`Token ARROW ; `Current ;
]
let addition = infix "Addition" `Left Token.PLUS
let substraction = infix "Substraction" `Left Token.MINUS
let let_in : O.n_operator = make_name "E_let_in" [
`Token LET ; `Named pattern_name ;
`Token EQUAL ; `Current ;
`Token IN ; `Current ;
]
let multiplication = infix "Multiplication" `Left Token.TIMES
let division = infix "Division" `Left Token.DIV
let no_seq_name = "expression_no_seq"
let no_match_name = "expression_no_match"
let arith_variable : O.n_operator = make_name "Arith_variable" [ `Named "variable" ]
let record_element : O.rule = make_name "e_record_element" [
make_name "record_explicit" [`Named variable_name ; `Token EQUAL ; `Named no_seq_name] ;
make_name "record_implicit" [`Named variable_name ] ;
]
let arith = O.name_hierarchy "expression" [
[let_in] ;
let record : O.n_operator = make_name "E_record" [
`Token LBRACKET ;
`List (Trail SEMICOLON, `Named record_element.name) ;
`Token RBRACKET ;
]
let ite : O.n_operator = make_name "E_ifthenelse" [
`Token IF ;
`Current ;
`Token THEN ;
`Lower ;
`Token ELSE ;
`Current ;
]
let it : O.n_operator = make_name "E_ifthen" [
`Token IF ;
`Current ;
`Token THEN ;
`Lower ;
]
let sequence = infix "E_sequence" `Left SEMICOLON
let match_clause = make_name "e_match_clause" [
make_name "" [`Named pattern_name ; `Token ARROW ; `Named no_match_name]
]
let match_with = make_name "E_match" [
`Token MATCH ; `Current ; `Token WITH ;
`List (Lead_ne VBAR, `Named match_clause.name) ;
]
let lt = infix "E_lt" `Left LT
let le = infix "E_le" `Left LE
let gt = infix "E_gt" `Left GT
let eq = infix "E_eq" `Left EQUAL
let cons = infix "E_cons" `Left DOUBLE_COLON
let addition = infix "E_addition" `Left PLUS
let substraction = infix "E_substraction" `Left MINUS
let multiplication = infix "E_multiplication" `Left TIMES
let division = infix "E_division" `Left DIV
let arith_variable : O.n_operator = make_name "E_variable" [ `Named variable_name ]
let int : O.n_operator = make_name "E_int" [ `Named int_name ]
let tz : O.n_operator = make_name "E_tz" [ `Named tz_name ]
let unit : O.n_operator = make_name "E_unit" [ `Named unit_name ]
let string : O.n_operator = make_name "E_string" [ `Named string_name ]
let constructor : O.n_operator = make_name "E_constructor" [ `Named constructor_name ]
let module_ident : O.n_operator = make_name "E_module_ident" [
`List (Trail_force_ne DOT, `Named constructor_name) ; `Named variable_name ;
]
let access : O.n_operator = infix "E_access" `Right DOT
let accessor : O.n_operator = make_name "E_accessor" [
`Named variable_name ; `List (Lead_ne DOT, `Named variable_name) ;
]
let assignment : O.n_operator = infix "E_assign" `Left LEFT_ARROW
let pair = infix "E_pair" `Left COMMA
let name = make_name "E_name" [`Token TILDE ; `Current]
let no_sequence_expression = O.name_hierarchy no_seq_name [
[let_in ; fun_ ; record ; ite ; it ; match_with] ;
[pair] ;
[application] ;
[lt ; le ; gt ; eq] ;
[assignment] ;
[cons] ;
[addition ; substraction] ;
[multiplication ; division] ;
[list] ;
[arith_variable] ;
[name] ;
[arith_variable ; constructor ; module_ident ; accessor ; int ; unit ; string ; tz] ;
[paren "E_no_seq_bottom" expression_name]
] []
let no_match_expression = O.name_hierarchy no_match_name [
[let_in ; fun_ ; record ; ite ; it ] ;
[pair] ;
[application] ;
[lt ; le ; gt ; eq] ;
[assignment] ;
[cons] ;
[addition ; substraction] ;
[multiplication ; division] ;
[list] ;
[name] ;
[arith_variable ; constructor ; module_ident ; accessor ; int ; unit ; string ; tz] ;
[paren "E_no_match_bottom" expression_name]
] []
let expression = O.name_hierarchy expression_name [
[sequence] ;
[let_in ; fun_ ; record ; ite ; it ; match_with] ;
[pair] ;
[application] ;
[lt ; le ; gt ; eq] ;
[assignment] ;
[cons] ;
[addition ; substraction] ;
[multiplication ; division] ;
[list] ;
[name] ;
[arith_variable ; constructor ; module_ident ; accessor ; int ; unit ; string ; tz] ;
[paren "E_paren" expression_name]
] []
let singletons = List.map O.rule_singleton [record_element ; match_clause]
end
module Type_expression = struct
open Token
open O
let list : O.n_operator = make_name "T_list" [
`Token LIST ; `Token LSQUARE ; `List (Lead SEMICOLON, `Current) ; `Token RSQUARE ;
]
let let_in : O.n_operator = make_name "T_let_in" [
`Token LET ; `Named variable_name ;
`Token EQUAL ; `Current ;
`Token IN ; `Current ;
]
let record_element : O.rule = make_name "t_record_element" [
make_name "" [`Named variable_name ; `Token COLON ; `Named type_expression_name]
]
let record : O.n_operator = make_name "T_record" [
`Token LBRACKET ;
`List (Trail SEMICOLON, `Named record_element.name) ;
`Token RBRACKET ;
]
let application = empty_infix "T_application" `Left
let pair = infix "T_pair" `Left COMMA
let arith_variable : O.n_operator = make_name "T_variable" [ `Named variable_name ]
let arith = O.name_hierarchy type_expression_name [
[let_in ; record ] ;
[pair] ;
[application] ;
[list] ;
[arith_variable] ;
[paren "T_paren" type_expression_name]
] []
let singletons = [O.rule_singleton record_element]
end
module Program = struct
open Token
open O
let statement_name = "statement"
let program : O.rule = make_name program_name [[
`List (`Trail, SEMICOLON, statement_name)
let program : O.rule = make_name program_name [make_name "" [
`List (Trail_option DOUBLE_SEMICOLON, statement_name)
]]
let statement : O.rule = make_name statement_name [
[`Token CONST ; `Named variable_name ; `Token EQUAL ; `Named expression_name]
let param_name = "param"
let param : O.rule = make_name param_name [
make_name "restricted_pattern" [ `Named Pattern.restricted_pattern_name ] ;
make_name "implicit_named_param" [ `Token TILDE ; `Named variable_name ] ;
]
let singletons = List.map O.rule_singleton [program ; statement]
let statement : O.rule = make_name statement_name [
make_name "variable_declaration" [`Token LET ; `Named variable_name ; `List (Naked, variable_name) ; `Token EQUAL ; `Named expression_name] ;
make_name "init_declaration" [`Token LET_INIT ; `Named variable_name ; `List (Naked, variable_name) ; `Token EQUAL ; `Named expression_name] ;
make_name "entry_declaration" [`Token LET_ENTRY ; `Named variable_name ; `List (Naked, param_name) ; `Token EQUAL ; `Named expression_name] ;
make_name "type_declaration" [`Token TYPE ; `Named variable_name ; `Token EQUAL ; `Named type_expression_name] ;
]
let singletons = List.map O.rule_singleton [program ; statement ; param]
end
let language = O.language program_name (variable :: Program.singletons) [Expression.arith]
let language = O.language program_name (
variable :: constructor :: int :: unit :: string :: tz ::
Program.singletons @
Pattern.singletons @
Expression.singletons @
Type_expression.singletons
) [
Pattern.main ;
Pattern.restricted_pattern ;
Expression.no_sequence_expression ;
Expression.no_match_expression ;
Expression.expression ;
Type_expression.arith ;
]
let () =
let argn = Array.length Sys.argv in

View File

@ -5,7 +5,13 @@ type pre_token = {
let make name pattern = { name ; pattern }
let keyword = fun k -> make (String.uppercase_ascii k) k
let keyword = fun k ->
let regexp = Str.regexp "[^0-9a-zA-Z]" in
let constructor_name =
Str.global_replace regexp "_"
@@ String.uppercase_ascii k
in
make constructor_name k
let symbol = fun sym name -> make name sym
module Print_mly = struct
@ -17,8 +23,10 @@ module Print_mly = struct
let tokens = fun ppf tokens ->
fprintf ppf "%%token EOF\n" ;
fprintf ppf "%%token <int> INT\n" ;
fprintf ppf "%%token <int> TZ\n" ;
fprintf ppf "%%token <string> STRING\n" ;
fprintf ppf "%%token <string> NAME\n" ;
fprintf ppf "%%token <string> CONSTRUCTOR_NAME\n" ;
fprintf ppf "\n%a\n\n" (PP_helpers.list_sep token (PP_helpers.const "\n")) tokens ;
fprintf ppf "%%%%\n"
end
@ -47,19 +55,40 @@ rule token = parse
*)
| ('\r'? '\n' '\r'?)
{ Lexing.new_line lexbuf; token lexbuf }
| '"' { string "" lexbuf }
| [' ' '\t']
{ token lexbuf }
| ['0'-'9']+ as i
| (['0'-'9']+ as n) '.' (['0'-'9']['0'-'9'] as d) "tz" { TZ ((int_of_string n) * 100 + (int_of_string d)) }
| (['0'-'9']+ as i) 'p'?
{ INT (int_of_string i) }
| '"' ( [^ '"' '\\'] | ( '\\' [^ '"'] ) ) as s '"'
{ STRING s }
|pre}
let post =
{post|| (['a'-'z']['a'-'z''A'-'Z''0'-'9''_']+) as v
{post|
| (['a'-'z''_']['a'-'z''A'-'Z''0'-'9''_']*) as v
{ NAME v }
| (['A'-'Z']['a'-'z''A'-'Z''0'-'9''_']*) as v
{ CONSTRUCTOR_NAME v }
| eof { EOF }
| "(*" { comment 1 lexbuf }
| _
{ raise (Unexpected_character (Printf.sprintf "At offset %d: unexpected character.\n" (Lexing.lexeme_start lexbuf))) }
and string s = parse
| "\\\"" { string (s ^ "\"") lexbuf }
| "\\\\" { string (s ^ "\\") lexbuf }
| '"' { STRING s }
| eof { raise (Unexpected_character "missing string terminator") }
| _ as c { string (s ^ (String.make 1 c)) lexbuf }
and comment n = parse
| "*)" { if n = 1 then token lexbuf else comment (n - 1) lexbuf }
| "(*" { comment (n + 1) lexbuf }
| '"' ( [^ '"' '\\'] | ( '\\' [^ '"'] ) ) '"' { comment n lexbuf }
| eof { raise (Unexpected_character "missing comment terminator") }
| ('\r'? '\n' '\r'?) { Lexing.new_line lexbuf; comment n lexbuf }
| _ { comment n lexbuf }
|post}
let tokens = fun ppf tokens ->
fprintf ppf "%s%a\n%s" pre (PP_helpers.list_sep token (PP_helpers.const "\n")) tokens post
@ -77,7 +106,9 @@ module Print_ml = struct
let to_string : token -> string = function
| STRING _ -> "STRING"
| NAME _ -> "NAME s"
| CONSTRUCTOR_NAME _ -> "CONSTRUCTOR_NAME s"
| INT _ -> "INT n"
| TZ _ -> "TZ n"
| EOF -> "EOF"
|pre}
@ -86,20 +117,46 @@ let to_string : token -> string = function
end
let tokens = [
keyword "let%init" ;
keyword "let%entry" ;
keyword "let" ;
keyword "type" ;
keyword "in" ;
keyword "if" ;
keyword "then" ;
keyword "else" ;
keyword "list" ;
keyword "block" ;
keyword "for" ;
keyword "const" ;
keyword "fun" ;
keyword "match" ;
keyword "with" ;
symbol "()" "UNIT" ;
symbol "+" "PLUS" ;
symbol "~" "TILDE" ;
symbol "->" "ARROW" ;
symbol "<-" "LEFT_ARROW" ;
symbol "<=" "LE" ;
symbol "<" "LT" ;
symbol ">" "GT" ;
symbol "-" "MINUS" ;
symbol "*" "TIMES" ;
symbol "/" "DIV" ;
symbol "=" "EQUAL" ;
symbol "|" "VBAR" ;
symbol "[" "LSQUARE" ;
symbol "]" "RSQUARE" ;
symbol "(" "LPAREN" ;
symbol ")" "RPAREN" ;
symbol "{" "LBRACKET" ;
symbol "}" "RBRACKET" ;
symbol ";;" "DOUBLE_SEMICOLON" ;
symbol ";" "SEMICOLON" ;
symbol "::" "DOUBLE_COLON" ;
symbol ":" "COLON" ;
symbol "," "COMMA" ;
symbol "." "DOT" ;
]
let () =

View File

@ -1,11 +1,19 @@
%{
open Ast
%}
%start <Ast.entry_point> entry_point
%%
naked_list(X):
| { [] }
| x = X xs = naked_list(X) { x :: xs }
naked_list_ne(X):
| x = X { [ x ] }
| x = X xs = naked_list_ne(X) { x :: xs }
trail_list(separator, X):
| { [] }
| trail_list_content(separator, X) { $1 }
@ -17,6 +25,29 @@ trail_list_content(separator, X):
trail_list_last(separator, X):
| x = X option(separator) { [ x ] }
trail_force_list(separator, X):
| { [] }
| x = X separator xs = trail_force_list(separator, X) { x :: xs }
trail_force_list_ne(separator, X):
| x = X separator { [ x ] }
| x = X separator xs = trail_force_list_ne(separator, X) { x :: xs }
trail_option_list(separator, X):
| { [] }
| trail_option_list_content(separator, X) { $1 }
trail_option_list_content(separator, X):
| x = trail_option_list_last(separator, X) { x }
| x = X option(separator) xs = trail_option_list_content(separator, X) { x :: xs }
trail_option_list_last(separator, X):
| x = X option(separator) { [ x ] }
lead_list_ne(separator, X):
| separator x = X { [x] }
| separator x = X xs = lead_list_ne(separator, X) { x :: xs }
lead_list(separator, X):
| { [] }
| lead_list_content(separator, X) { $1 }

View File

@ -31,8 +31,8 @@ let parse_file (source: string) : Ast.entry_point result =
match e with
| Parser.Error -> error "Parse"
| Lexer.Error s -> error ("Lexer " ^ s)
| Lexer.Unexpected_character _ -> error "Unexpected char"
| _ -> simple_error "unrecognized parse_ error"
| Lexer.Unexpected_character s -> error ("Unexpected char" ^ s)
| _ -> error "unrecognized parse_ error"
) @@ (fun () ->
let raw = Parser.entry_point Lexer.token lexbuf in
raw

4
src/ligo/operators/dune Normal file
View File

@ -0,0 +1,4 @@
(library
(name operators)
(public_name ligo.operators)
)