I upgraded the parsers to accept Map.map etc. I rewrote the doc except "reference" to promote and deprecate built-ins.

This commit is contained in:
Christian Rinderknecht 2020-02-25 18:07:53 +01:00
parent 656807b22e
commit 31a39bffbc
45 changed files with 1534 additions and 1229 deletions

View File

@ -194,8 +194,8 @@ how those built-ins can be utilized.
### Accepting or Declining Tokens in a Smart Contract
This example shows how `amount` and `failwith` can be used to decline
any transaction that sends more tez than `0mutez`, that is, no
This example shows how `Tezos.amount` and `failwith` can be used to
decline any transaction that sends more tez than `0tez`, that is, no
incoming tokens are accepted.
<!--DOCUSAURUS_CODE_TABS-->
@ -206,11 +206,13 @@ type storage is unit
type return is list (operation) * storage
function deny (const action : parameter; const store : storage) : return is
if amount > 0mutez then
if Tezos.amount > 0tez then
(failwith ("This contract does not accept tokens.") : return)
else ((nil : list (operation)), store)
```
> Note that `amount` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
type parameter = unit
@ -218,11 +220,13 @@ type storage = unit
type return = operation list * storage
let deny (action, store : parameter * storage) : return =
if amount > 0mutez then
(failwith "This contract does not accept tokens.": return)
if Tezos.amount > 0tez then
(failwith "This contract does not accept tokens." : return)
else (([] : operation list), store)
```
> Note that `amount` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=c
type parameter = unit;
@ -230,17 +234,20 @@ type storage = unit;
type return = (list (operation), storage);
let deny = ((action, store): (parameter, storage)) : return => {
if (amount > 0mutez) {
if (Tezos.amount > 0tez) {
(failwith("This contract does not accept tokens."): return); }
else { (([] : list (operation)), store); };
};
```
> Note that `amount` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
### Access Control
This example shows how `sender` or `source` can be used to deny access to an entrypoint.
This example shows how `Tezos.source` can be used to deny access to an
entrypoint.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
@ -248,28 +255,35 @@ This example shows how `sender` or `source` can be used to deny access to an ent
const owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address);
function main (const action : parameter; const store : storage) : return is
if source =/= owner then (failwith ("Access denied.") : return)
else ((nil : list(operation)), store)
if Tezos.source =/= owner then (failwith ("Access denied.") : return)
else ((nil : list (operation)), store)
```
> Note that `source` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
let owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address)
let main (action, store: parameter * storage) : return =
if source <> owner then (failwith "Access denied." : return)
if Tezos.source <> owner then (failwith "Access denied." : return)
else (([] : operation list), store)
```
> Note that `source` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=c
let owner : address = ("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address);
let main = ((action, store): (parameter, storage)) : storage => {
if (source != owner) { (failwith ("Access denied.") : return); }
let main = ((action, store) : (parameter, storage)) : storage => {
if (Tezos.source != owner) { (failwith ("Access denied.") : return); }
else { (([] : list (operation)), store); };
};
```
> Note that `source` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
### Inter-Contract Invocations
@ -327,11 +341,15 @@ const dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address)
function proxy (const action : parameter; const store : storage): return is
block {
const counter : contract (parameter) = get_contract (dest);
const counter : contract (parameter) =
case (Tezos.get_contract_opt (dest) : option (contract (parameter))) of
Some (contract) -> contract
| None -> (failwith ("Contract not found.") : contract (parameter))
end;
(* Reuse the parameter in the subsequent
transaction or use another one, `mock_param`. *)
const mock_param : parameter = Increment (5n);
const op : operation = transaction (action, 0mutez, counter);
const op : operation = Tezos.transaction (action, 0tez, counter);
const ops : list (operation) = list [op]
} with (ops, store)
```
@ -363,14 +381,20 @@ type return = operation list * storage
let dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address)
let proxy (action, store : parameter * storage) : return =
let counter : parameter contract = Operation.get_contract dest in
let counter : parameter contract =
match (Tezos.get_contract_opt (dest) : parameter contract option) with
Some contract -> contract
| None -> (failwith "Contract not found." : parameter contract) in
(* Reuse the parameter in the subsequent
transaction or use another one, `mock_param`. *)
let mock_param : parameter = Increment (5n) in
let op : operation = Operation.transaction action 0mutez counter
let op : operation = Tezos.transaction action 0tez counter
in [op], store
```
> Note that `Operation.get_contract` and `Operation.transaction` are
> *deprecated*.
<!--ReasonLIGO-->
```reasonligo skip
// counter.religo
@ -398,13 +422,20 @@ type return = (list (operation), storage);
let dest : address = ("KT19wgxcuXG9VH4Af5Tpm1vqEKdaMFpznXT3" : address);
let proxy = ((action, store): (parameter, storage)) : return => {
let counter : contract (parameter) = Operation.get_contract (dest);
let counter : contract (parameter) =
switch (Tezos.get_contract_opt (dest) : option (contract (parameter))) {
| Some (contract) => contract;
| None => (failwith ("Contract not found.") : contract (parameter));
};
(* Reuse the parameter in the subsequent
transaction or use another one, `mock_param`. *)
let mock_param : parameter = Increment (5n);
let op : operation = Operation.transaction (action, 0mutez, counter);
let op : operation = Tezos.transaction (action, 0tez, counter);
([op], store)
};
```
> Note that `Operation.get_contract` and `Operation.transaction` are
> *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -42,59 +42,78 @@ storage value being returned) which in our case is still `Unit`.
Our counter contract will store a single `int` as it's storage, and
will accept an `action` variant in order to re-route our single `main`
function to two entrypoints for `addition` and `subtraction`.
function to two entrypoints for `add` (addition) and `sub`
(subtraction).
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```
type action is
type parameter is
Increment of int
| Decrement of int
function main (const p : action ; const s : int) : (list(operation) * int) is
type storage is int
type return is list (operation) * storage
function add (const n : int; const store : storage) : storage is store + n
function sub (const n : int; const store : storage) : storage is store - n
function main (const action : parameter; const store : storage) : return is
((nil : list(operation)),
(case p of
| Increment (n) -> s + n
| Decrement (n) -> s - n
end))
case action of
Increment (n) -> add (n, store)
| Decrement (n) -> sub (n, store)
end)
```
<!--CameLIGO-->
```cameligo
type action =
| Increment of int
type parameter =
Increment of int
| Decrement of int
let main (p, s: action * int) : operation list * int =
let result =
match p with
| Increment n -> s + n
| Decrement n -> s - n
in
(([]: operation list), result)
type storage = int
type return = (operation) list * storage
let add (n, store : int * storage) : storage = store + n
let sub (n, store : int * storage) : storage = store - n
let main (action, store : parameter * storage) : operation list * storage =
(([]: operation list),
(match action with
Increment n -> add (n, store)
| Decrement n -> sub (n, store)))
```
<!--ReasonLIGO-->
```reasonligo
type action =
| Increment(int)
| Decrement(int);
type parameter =
Increment (int)
| Decrement (int)
;
let main = (p_s: (action, int)) : (list(operation), int) => {
let p, s = p_s;
let result =
switch (p) {
| Increment(n) => s + n
| Decrement(n) => s - n
};
(([]: list(operation)), result);
};
type storage = int;
type return = (list (operation), storage);
let add = ((n, store) : (int, storage)) : storage => store + n;
let sub = ((n, store) : (int, storage)) : storage => store - n;
let main = ((action, store) : (parameter, storage)) : return =>
(([]: list (operation)),
(switch (action) {
| Increment (n) => add ((n, store))
| Decrement (n) => sub ((n, store))
}));
```
<!--END_DOCUSAURUS_CODE_TABS-->
To dry-run the counter contract, we will use the `main` entrypoint, provide a variant parameter of `Increment(5)` and an initial storage value of `5`.
To dry-run the counter contract, we will provide the `main` function
with a variant parameter of value `Increment (5)` and an initial
storage value of `5`.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -131,39 +150,30 @@ Command above will output the following Michelson code:
{ parameter (or (int %decrement) (int %increment)) ;
storage int ;
code { DUP ;
CAR ;
DIP { DUP } ;
SWAP ;
CDR ;
DIP { DUP } ;
SWAP ;
CAR ;
IF_LEFT
{ DUP ;
DIP 2 { DUP } ;
DIG 2 ;
DIP { DUP } ;
DIP { DIP { DUP } ; SWAP } ;
PAIR ;
DUP ;
CDR ;
DIP { DUP ; CAR } ;
SUB ;
SWAP ;
DROP ;
SWAP ;
DROP }
DIP { DROP 2 } }
{ DUP ;
DIP 2 { DUP } ;
DIG 2 ;
DIP { DUP } ;
DIP { DIP { DUP } ; SWAP } ;
PAIR ;
DUP ;
CDR ;
DIP { DUP ; CAR } ;
ADD ;
SWAP ;
DROP ;
SWAP ;
DROP } ;
DIP { DROP 2 } } ;
NIL operation ;
PAIR ;
SWAP ;
DROP ;
SWAP ;
DROP ;
SWAP ;
DROP } }
DIP { DROP 2 } } }
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -180,12 +190,15 @@ ligo compile-storage src/counter.ligo main 5
```
<!--END_DOCUSAURUS_CODE_TABS-->
In our case the LIGO storage value maps 1:1 to its Michelson representation, however this will not be the case once the parameter is of a more complex data type, like a record.
In our case the LIGO storage value maps 1:1 to its Michelson
representation, however this will not be the case once the parameter
is of a more complex data type, like a record.
## Invoking a LIGO contract
Same rules apply for parameters, as apply for translating LIGO storage values to Michelson. We will need to use `compile-parameter` to compile our `action` variant into Michelson, here's how:
Same rules apply for parameters, as apply for translating LIGO storage
values to Michelson. We will need to use `compile-parameter` to
compile our `action` variant into Michelson, here's how:
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
@ -195,6 +208,5 @@ ligo compile-parameter src/counter.ligo main 'Increment(5)'
```
<!--END_DOCUSAURUS_CODE_TABS-->
Now we can use `(Right 5)` which is a Michelson value, to invoke our
contract - e.g. via `tezos-client`
contract - e.g., via `tezos-client`

View File

@ -0,0 +1,17 @@
type parameter is
Increment of int
| Decrement of int
type storage is int
type return is list (operation) * storage
function add (const n : int; const store : storage) : storage is store + n
function sub (const n : int; const store : storage) : storage is store - n
function main (const action : parameter; const store : storage) : return is
((nil : list(operation)),
case action of
Increment (n) -> add (n, store)
| Decrement (n) -> sub (n, store)
end)

View File

@ -0,0 +1,9 @@
function multiply (const a : int; const b : int) : int is
block {
const result : int = a * b
} with result
function add (const a : int; const b : int) : int is a + b
function main (const p : unit; const s : unit) : list (operation) * unit is
((nil : list (operation)), s)

View File

@ -0,0 +1,17 @@
type parameter is
Increment of int
| Decrement of int
type storage is int
type return is list (operation) * storage
function add (const n : int; const store : storage) : storage is store + n
function sub (const n : int; const store : storage) : storage is store - n
function main (const action : parameter; const store : storage) : return is
((nil : list(operation)),
case action of
Increment (n) -> add (n, store)
| Decrement (n) -> sub (n, store)
end)

View File

@ -0,0 +1,5 @@
const four : int = 4
const name : string = "John Doe"
function main (const p : unit; const s : unit) : list (operation) * unit is
((nil : list (operation)), s)

View File

@ -18,23 +18,29 @@ current timestamp value.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=a
const today : timestamp = now
const today : timestamp = Tezos.now
```
> Note that `now` is *deprecated*.
<!--CameLIGO-->
```cameligo group=a
let today : timestamp = Current.time
let today : timestamp = Tezos.now
```
> Note that `Current.time` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=a
let today : timestamp = Current.time;
let today : timestamp = Tezos.now;
```
> Note that `Current.time` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
> When running code, the LIGO CLI option
> `--predecessor-timestamp` allows you to control what `now` returns.
> When running code, the LIGO CLI option `--predecessor-timestamp`
> allows you to control what `Tezos.now` returns.
### Timestamp Arithmetics
@ -46,31 +52,37 @@ constraints on your smart contracts. Consider the following scenarios.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=b
const today : timestamp = now
const today : timestamp = Tezos.now
const one_day : int = 86400
const in_24_hrs : timestamp = today + one_day
const some_date : timestamp = ("2000-01-01T10:10:10Z" : timestamp)
const one_day_later : timestamp = some_date + one_day
```
> Note that `now` is *deprecated*.
<!--CameLIGO-->
```cameligo group=b
let today : timestamp = Current.time
let today : timestamp = Tezos.now
let one_day : int = 86400
let in_24_hrs : timestamp = today + one_day
let some_date : timestamp = ("2000-01-01t10:10:10Z" : timestamp)
let one_day_later : timestamp = some_date + one_day
```
> Note that `Current.time` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=b
let today : timestamp = Current.time;
let today : timestamp = Tezos.now;
let one_day : int = 86400;
let in_24_hrs : timestamp = today + one_day;
let some_date : timestamp = ("2000-01-01t10:10:10Z" : timestamp);
let one_day_later : timestamp = some_date + one_day;
```
> Note that `Current.time` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
#### 24 hours Ago
@ -78,25 +90,32 @@ let one_day_later : timestamp = some_date + one_day;
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=c
const today : timestamp = now
const today : timestamp = Tezos.now
const one_day : int = 86400
const in_24_hrs : timestamp = today - one_day
```
> Note that `now` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
let today : timestamp = Current.time
let today : timestamp = Tezos.now
let one_day : int = 86400
let in_24_hrs : timestamp = today - one_day
```
> Note that `Current.time` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=c
let today : timestamp = Current.time;
let today : timestamp = Tezos.now;
let one_day : int = 86400;
let in_24_hrs : timestamp = today - one_day;
```
> Note that `Current.time` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
### Comparing Timestamps
@ -107,19 +126,26 @@ applying to numbers.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=c
const not_tommorow : bool = (now = in_24_hrs)
const not_tommorow : bool = (Tezos.now = in_24_hrs)
```
> Note that `now` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
let not_tomorrow : bool = (Current.time = in_24_hrs)
let not_tomorrow : bool = (Tezos.now = in_24_hrs)
```
> Note that `Current.time` is *deprecated*.
<!--ReasonLIGO-->
```reasonligo group=c
let not_tomorrow : bool = (Current.time == in_24_hrs);
let not_tomorrow : bool = (Tezos.now == in_24_hrs);
```
> Note that `Current.time` is *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
## Addresses

View File

@ -71,8 +71,8 @@ Note that this table is not compiled before production and currently needs to be
|Variant *(pattern)* matching|<pre><code>let a: action = Increment 5<br/>match a with<br/>&#124; Increment n -> n + 1<br/>&#124; Decrement n -> n - 1<br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int ;<br/>&nbsp;&nbsp;name: string ;<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age = 18;<br/>&nbsp;&nbsp;name = "John Doe";<br/>}<br/><br/>let name: string = john.name</code></pre>|
|Maps|<pre><code>type prices = (nat, tez) map<br/><br/>let prices : prices = Map.literal [<br/>&nbsp;&nbsp;(10n, 60mutez);<br/>&nbsp;&nbsp;(50n, 30mutez);<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]<br/><br/>let price: tez option = Map.find_opt 50n prices<br/><br/>let prices: prices = Map.update 200n (Some 5mutez) prices</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Operation.get_contract destination_address</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction unit amount receiver</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1..."<br/>let contract : unit contract = <br/> Tezos.get_contract destination_address</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Tezos.transaction unit amount receiver</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.")`|
<!--ReasonLIGO-->
@ -103,8 +103,8 @@ Note that this table is not compiled before production and currently needs to be
|Variant *(pattern)* matching|<pre><code>let a: action = Increment(5);<br/>switch(a) {<br/>&#124; Increment(n) => n + 1<br/>&#124; Decrement(n) => n - 1;<br/> } <br/></code></pre>|
|Records|<pre><code>type person = {<br/>&nbsp;&nbsp;age: int,<br/>&nbsp;&nbsp;name: string<br/>}<br/><br/>let john : person = {<br/>&nbsp;&nbsp;age: 18,<br/>&nbsp;&nbsp;name: "John Doe"<br/>};<br/><br/>let name: string = john.name;</code></pre>|
|Maps|<pre><code>type prices = map(nat, tez);<br/><br/>let prices : prices = Map.literal([<br/>&nbsp;&nbsp;(10n, 60mutez),<br/>&nbsp;&nbsp;(50n, 30mutez),<br/>&nbsp;&nbsp;(100n, 10mutez)<br/>]);<br/><br/>let price: option(tez) = Map.find_opt(50n, prices);<br/><br/>let prices: prices = Map.update(200n, Some (5mutez), prices);</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Operation.get_contract(destination_address);</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Operation.transaction (unit, amount, receiver);</code></pre>|
|Contracts & Accounts|<pre><code>let destination_address : address = "tz1...";<br/>let contract : contract(unit) = <br/> Tezos.get_contract(destination_address);</code></pre>|
|Transactions|<pre><code>let payment : operation = <br/> Tezos.transaction (unit, amount, receiver);</code></pre>|
|Exception/Failure|`failwith("Your descriptive error message for the user goes here.");`|

View File

@ -11,8 +11,8 @@ value:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=a
const a : bool = True // Notice the capital letter
const b : bool = False // Same.
const a : bool = True // Also: true
const b : bool = False // Also: false
```
<!--CameLIGO-->
```cameligo group=a
@ -137,7 +137,7 @@ state.
type magnitude is Small | Large // See variant types.
function compare (const n : nat) : magnitude is
if n < 10n then Small (Unit) else Large (Unit) // Unit is needed for now.
if n < 10n then Small else Large
```
You can run the `compare` function defined above using the LIGO compiler
@ -145,7 +145,7 @@ like this:
```shell
ligo run-function
gitlab-pages/docs/language-basics/boolean-if-else/cond.ligo compare 21n'
# Outputs: Large (Unit)
# Outputs: Large(Unit)
```
When the branches of the conditional are not a single expression, as
@ -161,7 +161,7 @@ else skip;
```
As an exception to the rule, the blocks in a conditional branch do not
need to be introduced by the keywor `block`, so, we could have written
need to be introduced by the keyword `block`, so we could have written
instead:
```pascaligo skip
if x < y then {
@ -187,9 +187,15 @@ gitlab-pages/docs/language-basics/boolean-if-else/cond.mligo compare 21n'
# Outputs: Large
```
> Notice that, as in OCaml, in CameLIGO, if a conditional has a branch
> `else ()`, that branch can be omitted. The resulting so-called
> *dangling else* problem is parsed by associating any `else` to the
> closest previous `then`.
<!--ReasonLIGO-->
```reasonligo group=e
type magnitude = | Small | Large; // See variant types.
type magnitude = Small | Large; // See variant types.
let compare = (n : nat) : magnitude =>
if (n < 10n) { Small; } else { Large; };

View File

@ -4,7 +4,15 @@ title: Functions
---
LIGO functions are the basic building block of contracts. For example,
entrypoints are functions.
entrypoints are functions and each smart contract needs a main
function that dispatches control to the entrypoints (it is not already
the default entrypoint).
The semantics of function calls in LIGO is that of a *copy of the
arguments but also of the environment*. In the case of PascaLIGO, this
means that any mutation (assignment) on variables outside the scope of
the function will be lost when the function returns, just as the
mutations inside the functions will be.
## Declaring Functions
@ -230,10 +238,14 @@ function to all its elements.
<!--PascaLIGO-->
```pascaligo group=c
function incr_map (const l : list (int)) : list (int) is
list_map (function (const i : int) : int is i + 1, l)
List.map (function (const i : int) : int is i + 1, l)
```
You can call the function `incr_map` defined above using the LIGO compiler
like so:
> Note that `list_map` is *deprecated*.
You can call the function `incr_map` defined above using the LIGO
compiler like so:
```shell
ligo run-function
gitlab-pages/docs/language-basics/src/functions/incr_map.ligo incr_map

View File

@ -79,17 +79,21 @@ let gcd (x,y : nat * nat) : nat =
```
To ease the writing and reading of the iterated functions (here,
`iter`), two predefined functions are provided: `continue` and `stop`:
`iter`), two predefined functions are provided: `Loop.continue` and
`Loop.stop`:
```cameligo group=a
let iter (x,y : nat * nat) : bool * (nat * nat) =
if y = 0n then stop (x,y) else continue (y, x mod y)
if y = 0n then Loop.stop (x,y) else Loop.continue (y, x mod y)
let gcd (x,y : nat * nat) : nat =
let x,y = if x < y then y,x else x,y in
let x,y = Loop.fold_while iter (x,y)
in x
```
> Note that `stop` and `continue` are *deprecated*.
You can call the function `gcd` defined above using the LIGO compiler
like so:
```shell
@ -131,11 +135,12 @@ let gcd = ((x,y) : (nat, nat)) : nat => {
```
To ease the writing and reading of the iterated functions (here,
`iter`), two predefined functions are provided: `continue` and `stop`:
`iter`), two predefined functions are provided: `Loop.continue` and
`Loop.stop`:
```reasonligo group=b
let iter = ((x,y) : (nat, nat)) : (bool, (nat, nat)) =>
if (y == 0n) { stop ((x,y)); } else { continue ((y, x mod y)); };
if (y == 0n) { Loop.stop ((x,y)); } else { Loop.continue ((y, x mod y)); };
let gcd = ((x,y) : (nat, nat)) : nat => {
let (x,y) = if (x < y) { (y,x); } else { (x,y); };
@ -143,6 +148,9 @@ let gcd = ((x,y) : (nat, nat)) : nat => {
x
};
```
> Note that `stop` and `continue` are *deprecated*.
<!--END_DOCUSAURUS_CODE_TABS-->
## Bounded Loops

View File

@ -19,7 +19,7 @@ Let us first consider and example of record type declaration.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=a
```pascaligo group=records1
type user is
record [
id : nat;
@ -29,7 +29,7 @@ type user is
```
<!--CameLIGO-->
```cameligo group=a
```cameligo group=records1
type user = {
id : nat;
is_admin : bool;
@ -38,7 +38,7 @@ type user = {
```
<!--ReasonLIGO-->
```reasonligo group=a
```reasonligo group=records1
type user = {
id : nat,
is_admin : bool,
@ -51,7 +51,7 @@ And here is how a record value is defined:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=a
```pascaligo group=records1
const alice : user =
record [
id = 1n;
@ -61,7 +61,7 @@ const alice : user =
```
<!--CameLIGO-->
```cameligo group=a
```cameligo group=records1
let alice : user = {
id = 1n;
is_admin = true;
@ -70,7 +70,7 @@ let alice : user = {
```
<!--ReasonLIGO-->
```reasonligo group=a
```reasonligo group=records1
let alice : user = {
id : 1n,
is_admin : true,
@ -86,17 +86,17 @@ operator, like so:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=a
```pascaligo group=records1
const alice_admin : bool = alice.is_admin
```
<!--CameLIGO-->
```cameligo group=a
```cameligo group=records1
let alice_admin : bool = alice.is_admin
```
<!--ReasonLIGO-->
```reasonligo group=a
```reasonligo group=records1
let alice_admin : bool = alice.is_admin;
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -123,7 +123,7 @@ In PascaLIGO, the shape of that expression is `<record variable> with
<record value>`. The record variable is the record to update and the
record value is the update itself.
```pascaligo group=b
```pascaligo group=records2
type point is record [x : int; y : int; z : int]
type vector is record [dx : int; dy : int]
@ -151,7 +151,7 @@ the blockless function.
The syntax for the functional updates of record in CameLIGO follows
that of OCaml:
```cameligo group=b
```cameligo group=records2
type point = {x : int; y : int; z : int}
type vector = {dx : int; dy : int}
@ -179,7 +179,7 @@ xy_translate "({x=2;y=3;z=1}, {dx=3;dy=4})"
The syntax for the functional updates of record in ReasonLIGO follows
that of ReasonML:
```reasonligo group=b
```reasonligo group=records2
type point = {x : int, y : int, z : int};
type vector = {dx : int, dy : int};
@ -216,7 +216,7 @@ name "patch").
Let us consider defining a function that translates three-dimensional
points on a plane.
```pascaligo group=c
```pascaligo group=records3
type point is record [x : int; y : int; z : int]
type vector is record [dx : int; dy : int]
@ -242,7 +242,7 @@ Of course, we can actually translate the point with only one `patch`,
as the previous example was meant to show that, after the first patch,
the value of `p` indeed changed. So, a shorter version would be
```pascaligo group=d
```pascaligo group=records4
type point is record [x : int; y : int; z : int]
type vector is record [dx : int; dy : int]
@ -267,7 +267,7 @@ Record patches can actually be simulated with functional updates. All
we have to do is *declare a new record value with the same name as the
one we want to update* and use a functional update, like so:
```pascaligo group=e
```pascaligo group=records5
type point is record [x : int; y : int; z : int]
type vector is record [dx : int; dy : int]
@ -298,71 +298,98 @@ values of the same type. The former are called *key* and the latter
is that the type of the keys must be *comparable*, in the Michelson
sense.
### Declaring a Map
Here is how a custom map from addresses to a pair of integers is
defined.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=f
```pascaligo group=maps
type move is int * int
type register is map (address, move)
```
<!--CameLIGO-->
```cameligo group=f
```cameligo group=maps
type move = int * int
type register = (address, move) map
```
<!--ReasonLIGO-->
```reasonligo group=f
```reasonligo group=maps
type move = (int, int);
type register = map (address, move);
```
<!--END_DOCUSAURUS_CODE_TABS-->
And here is how a map value is defined:
### Creating an Empty Map
Here is how to create an empty map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=maps
const empty : register = map []
```
<!--CameLIGO-->
```cameligo group=maps
let empty : register = Map.empty
```
<!--ReasonLIGO-->
```reasonligo group=maps
let empty : register = Map.empty
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Creating a Non-empty Map
And here is how to create a non-empty map value:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=f
```pascaligo group=maps
const moves : register =
map [
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
```
> Notice the `->` between the key and its value and `;` to separate
> individual map entries. The annotated value `("<string value>" :
> address)` means that we cast a string into an address. Also, `map`
> is a keyword.
Notice the `->` between the key and its value and `;` to separate
individual map entries. The annotated value `("<string value>" :
address)` means that we cast a string into an address. Also, `map` is
a keyword.
<!--CameLIGO-->
```cameligo group=f
```cameligo group=maps
let moves : register =
Map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
```
> The `Map.literal` predefined function builds a map from a list of
> key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
> separate individual map entries. `("<string value>": address)`
> means that we type-cast a string into an address.
The `Map.literal` predefined function builds a map from a list of
key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
separate individual map entries. `("<string value>": address)` means
that we type-cast a string into an address. -->
<!--ReasonLIGO-->
```reasonligo group=f
```reasonligo group=maps
let moves : register =
Map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
```
> The `Map.literal` predefined function builds a map from a list of
> key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
> separate individual map entries. `("<string value>": address)`
> means that we type-cast a string into an address.
The `Map.literal` predefined function builds a map from a list of
key-value pair tuples, `(<key>, <value>)`. Note also the `;` to
separate individual map entries. `("<string value>": address)` means
that we type-cast a string into an address. -->
<!--END_DOCUSAURUS_CODE_TABS-->
@ -375,19 +402,19 @@ In PascaLIGO, we can use the postfix `[]` operator to read the `move`
value associated to a given key (`address` here) in the register. Here
is an example:
```pascaligo group=f
```pascaligo group=maps
const my_balance : option (move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
```
<!--CameLIGO-->
```cameligo group=f
```cameligo group=maps
let my_balance : move option =
Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
```
<!--ReasonLIGO-->
```reasonligo group=f
```reasonligo group=maps
let my_balance : option (move) =
Map.find_opt (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), moves);
```
@ -400,7 +427,7 @@ the reader to account for a missing key in the map. This requires
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=f
```pascaligo group=maps
function force_access (const key : address; const moves : register) : move is
case moves[key] of
Some (move) -> move
@ -409,7 +436,7 @@ function force_access (const key : address; const moves : register) : move is
```
<!--CameLIGO-->
```cameligo group=f
```cameligo group=maps
let force_access (key, moves : address * register) : move =
match Map.find_opt key moves with
Some move -> move
@ -417,7 +444,7 @@ let force_access (key, moves : address * register) : move =
```
<!--ReasonLIGO-->
```reasonligo group=f
```reasonligo group=maps
let force_access = ((key, moves) : (address, register)) : move => {
switch (Map.find_opt (key, moves)) {
| Some (move) => move
@ -443,7 +470,7 @@ The values of a PascaLIGO map can be updated using the usual
assignment syntax `<map variable>[<key>] := <new value>`. Let us
consider an example.
```pascaligo group=f
```pascaligo group=maps
function assign (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
@ -453,7 +480,7 @@ function assign (var m : register) : register is
If multiple bindings need to be updated, PascaLIGO offers a *patch
instruction* for maps, similar to that for records.
```pascaligo group=f
```pascaligo group=maps
function assignments (var m : register) : register is
block {
patch m with map [
@ -463,35 +490,51 @@ function assignments (var m : register) : register is
} with m
```
See further for the removal of bindings.
<!--CameLIGO-->
We can update a binding in a map in CameLIGO by means of the
`Map.update` built-in function:
```cameligo group=f
```cameligo group=maps
let assign (m : register) : register =
Map.update
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) m
```
> Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
> use `None` instead, that would have meant that the binding is
> removed.
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
use `None` instead, that would have meant that the binding is removed.
As a particular case, we can only add a key and its associated value.
```cameligo group=maps
let add (m : register) : register =
Map.add
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (4,9) m
```
<!--ReasonLIGO-->
We can update a binding in a map in ReasonLIGO by means of the
`Map.update` built-in function:
```reasonligo group=f
```reasonligo group=maps
let assign = (m : register) : register =>
Map.update
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), Some ((4,9)), m);
```
> Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
> use `None` instead, that would have meant that the binding is
> removed.
Notice the optional value `Some (4,9)` instead of `(4,9)`. If we had
use `None` instead, that would have meant that the binding is removed.
As a particular case, we can only add a key and its associated value.
```reasonligo group=maps
let add = (m : register) : register =>
Map.add
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (4,9), m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -503,7 +546,7 @@ To remove a binding from a map, we need its key.
In PascaLIGO, there is a special instruction to remove a binding from
a map.
```pascaligo group=f
```pascaligo group=maps
function delete (const key : address; var moves : register) : register is
block {
remove key from map moves
@ -514,7 +557,7 @@ function delete (const key : address; var moves : register) : register is
In CameLIGO, we use the predefined function `Map.remove` as follows:
```cameligo group=f
```cameligo group=maps
let delete (key, moves : address * register) : register =
Map.remove key moves
```
@ -523,7 +566,7 @@ let delete (key, moves : address * register) : register =
In ReasonLIGO, we use the predefined function `Map.remove` as follows:
```reasonligo group=f
```reasonligo group=maps
let delete = ((key, moves) : (address, register)) : register =>
Map.remove (key, moves);
```
@ -549,34 +592,28 @@ no return value: its only use is to produce side-effects. This can be
useful if for example you would like to check that each value inside
of a map is within a certain range, and fail with an error otherwise.
The predefined functional iterator implementing the iterated operation
over maps is called `Map.iter`. In the following example, the register
of moves is iterated to check that the start of each move is above
`3`.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
iterated operation over maps is called `map_iter`. In the following
example, the register of moves is iterated to check that the start of
each move is above `3`.
```pascaligo group=f
```pascaligo group=maps
function iter_op (const m : register) : unit is
block {
function iterated (const i : address; const j : move) : unit is
if j.1 > 3 then Unit else (failwith ("Below range.") : unit)
} with map_iter (iterated, m)
} with Map.iter (iterated, m)
```
> The iterated function must be pure, that is, it cannot mutate
> variables.
> Note that `map_iter` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefinded functional iterator implementing the
iterated operation over maps is called `Map.iter`. In the following
example, the register of moves is iterated to check that the start of
each move is above `3`.
```cameligo group=f
```cameligo group=maps
let iter_op (m : register) : unit =
let predicate = fun (i,j : address * move) -> assert (j.0 > 3)
in Map.iter predicate m
@ -584,12 +621,7 @@ let iter_op (m : register) : unit =
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
iterated operation over maps is called `Map.iter`. In the following
example, the register of moves is iterated to check that the start of
each move is above `3`.
```reasonligo group=f
```reasonligo group=maps
let iter_op = (m : register) : unit => {
let predicate = ((i,j) : (address, move)) => assert (j[0] > 3);
Map.iter (predicate, m);
@ -601,32 +633,28 @@ let iter_op = (m : register) : unit => {
We may want to change all the bindings of a map by applying to them a
function. This is called a *map operation*, not to be confused with
the map data structure.
the map data structure. The predefined functional iterator
implementing the map operation over maps is called `Map.map`. In the
following example, we add `1` to the ordinate of the moves in the
register.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the map
operation over maps is called `map_map` and is used as follows:
```pascaligo group=f
```pascaligo group=maps
function map_op (const m : register) : register is
block {
function increment (const i : address; const j : move) : move is
(j.0, j.1 + 1);
} with map_map (increment, m)
(j.0, j.1 + 1)
} with Map.map (increment, m)
```
> The mapped function must be pure, that is, it cannot mutate
> variables.
> Note that `map_map` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the map
operation over maps is called `Map.map` and is used as follows:
```cameligo group=f
```cameligo group=maps
let map_op (m : register) : register =
let increment = fun (i,j : address * move) -> j.0, j.1 + 1
in Map.map increment m
@ -634,10 +662,7 @@ let map_op (m : register) : register =
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iteratir implementing the map
operation over maps is called `Map.map` and is used as follows:
```reasonligo group=f
```reasonligo group=maps
let map_op = (m : register) : register => {
let increment = ((i,j): (address, move)) => (j[0], j[1] + 1);
Map.map (increment, m);
@ -653,31 +678,26 @@ function takes two arguments: an *accumulator* and the structure
enables having a partial result that becomes complete when the
traversal of the data structure is over.
The predefined functional iterator implementing the folded operation
over maps is called `Map.fold` and is used as follows.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
folded operation over maps is called `map_fold` and is used as
follows:
```pascaligo group=f
function fold_op (const m : register) : int is block {
function folded (const j : int; const cur : address * move) : int is
j + cur.1.1
} with map_fold (folded, m, 5)
```pascaligo group=maps
function fold_op (const m : register) : int is
block {
function folded (const i : int; const j : address * move) : int is
i + j.1.1
} with Map.fold (folded, m, 5)
```
> The folded function must be pure, that is, it cannot mutate
> variables.
> Note that `map_fold` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the
folded operation over maps is called `Map.fold` and is used as
follows:
```cameligo group=f
```cameligo group=maps
let fold_op (m : register) : register =
let folded = fun (i,j : int * (address * move)) -> i + j.1.1
in Map.fold folded m 5
@ -685,11 +705,7 @@ let fold_op (m : register) : register =
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
folded operation over maps is called `Map.fold` and is used as
follows:
```reasonligo group=f
```reasonligo group=maps
let fold_op = (m : register) : register => {
let folded = ((i,j): (int, (address, move))) => i + j[1][1];
Map.fold (folded, m, 5);
@ -709,75 +725,102 @@ were it not for *big maps*. Big maps are a data structure offered by
Michelson which handles the scaling concerns for us. In LIGO, the
interface for big maps is analogous to the one used for ordinary maps.
### Declaring a Map
Here is how we define a big map:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=g
```pascaligo group=big_maps
type move is int * int
type register is big_map (address, move)
```
<!--CameLIGO-->
```cameligo group=g
```cameligo group=big_maps
type move = int * int
type register = (address, move) big_map
```
<!--ReasonLIGO-->
```reasonligo group=g
```reasonligo group=big_maps
type move = (int, int);
type register = big_map (address, move);
```
<!--END_DOCUSAURUS_CODE_TABS-->
And here is how a map value is created:
### Creating an Empty Big Map
Here is how to create an empty big map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=big_maps
const empty : register = big_map []
```
<!--CameLIGO-->
```cameligo group=big_maps
let empty : register = Big_map.empty
```
<!--ReasonLIGO-->
```reasonligo group=big_maps
let empty : register = Big_map.empty
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Creating a Non-empty Map
And here is how to create a non-empty map value:
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=g
```pascaligo group=big_maps
const moves : register =
big_map [
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
```
> Notice the right arrow `->` between the key and its value and the
> semicolon separating individual map entries. The value annotation
> `("<string value>" : address)` means that we cast a string into an
> address.
Notice the right arrow `->` between the key and its value and the -->
semicolon separating individual map entries. The value annotation -->
`("<string value>" : address)` means that we cast a string into an -->
address. -->
<!--CameLIGO-->
```cameligo group=g
```cameligo group=big_maps
let moves : register =
Big_map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
```
> The predefind function `Big_map.literal` constructs a big map from a
> list of key-value pairs `(<key>, <value>)`. Note also the semicolon
> separating individual map entries. The annotated value `("<string
> value>" : address)` means that we cast a string into an address.
The predefind function `Big_map.literal` constructs a big map from a
list of key-value pairs `(<key>, <value>)`. Note also the semicolon
separating individual map entries. The annotated value `("<string>
value>" : address)` means that we cast a string into an address.
<!--ReasonLIGO-->
```reasonligo group=g
```reasonligo group=big_maps
let moves : register =
Big_map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
```
> The predefind function `Big_map.literal` constructs a big map from a
> list of key-value pairs `(<key>, <value>)`. Note also the semicolon
> separating individual map entries. The annotated value `("<string
> value>" : address)` means that we cast a string into an address.
The predefind function `Big_map.literal` constructs a big map from a
list of key-value pairs `(<key>, <value>)`. Note also the semicolon
separating individual map entries. The annotated value `("<string>
value>" : address)` means that we cast a string into an address.
<!--END_DOCUSAURUS_CODE_TABS-->
@ -793,21 +836,21 @@ the value we read is an optional value (in our case, of type `option
<!--PascaLIGO-->
```pascaligo group=g
```pascaligo group=big_maps
const my_balance : option (move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
```
<!--CameLIGO-->
```cameligo group=g
```cameligo group=big_maps
let my_balance : move option =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
```
<!--ReasonLIGO-->
```reasonligo group=g
```reasonligo group=big_maps
let my_balance : option (move) =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, moves);
```
@ -822,7 +865,7 @@ let my_balance : option (move) =
The values of a PascaLIGO big map can be updated using the
assignment syntax for ordinary maps
```pascaligo group=g
```pascaligo group=big_maps
function add (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
@ -836,7 +879,7 @@ const updated_map : register = add (moves)
We can update a big map in CameLIGO using the `Big_map.update`
built-in:
```cameligo group=g
```cameligo group=big_maps
let updated_map : register =
Big_map.update
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) moves
@ -847,10 +890,10 @@ let updated_map : register =
We can update a big map in ReasonLIGO using the `Big_map.update`
built-in:
```reasonligo group=g
```reasonligo group=big_maps
let updated_map : register =
Big_map.update
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some ((4,9)), moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -867,7 +910,7 @@ syntax.
PascaLIGO features a special syntactic construct to remove bindings
from maps, of the form `remove <key> from map <map>`. For example,
```pascaligo group=g
```pascaligo group=big_maps
function rem (var m : register) : register is
block {
remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) from map moves
@ -881,7 +924,7 @@ const updated_map : register = rem (moves)
In CameLIGO, the predefined function which removes a binding in a map
is called `Map.remove` and is used as follows:
```cameligo group=g
```cameligo group=big_maps
let updated_map : register =
Map.remove ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
@ -891,7 +934,7 @@ let updated_map : register =
In ReasonLIGO, the predefined function which removes a binding in a map
is called `Map.remove` and is used as follows:
```reasonligo group=g
```reasonligo group=big_maps
let updated_map : register =
Map.remove (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves)
```

View File

@ -3,13 +3,14 @@ id: operators
title: Operators
---
## Available operators
## Available Operators
> This list is non-exhaustive. More operators will be added in upcoming LIGO releases.
> This list is non-exhaustive. More operators will be added in
> upcoming LIGO releases.
|Michelson |Pascaligo |Description |
|--- |--- |--- |
| `SENDER` | `sender` | Address that initiated the current transaction
| `SOURCE` | `source` | Address that initiated the transaction, which triggered the current transaction. (useful e.g. when there's a transaction sent by another contract)
| `AMOUNT` | `amount` | Amount of tez sent by the transaction that invoked the contract
| `NOW` | `now` | Timestamp of the block whose validation triggered execution of the contract, i.e. current time when the contract is run.
| `SENDER` | `Tezos.sender` | Address that initiated the current transaction
| `SOURCE` | `Tezos.source` | Address that initiated the transaction, which triggered the current transaction. (useful e.g. when there's a transaction sent by another contract)
| `AMOUNT` | `Tezos.amount` | Amount of tez sent by the transaction that invoked the contract
| `NOW` | `Tezos.now` | Timestamp of the block whose validation triggered execution of the contract, i.e. current time when the contract is run.

View File

@ -176,11 +176,6 @@ There are three kinds of functional iterations over LIGO lists: the
*iterated operation*, the *map operation* (not to be confused with the
*map data structure*) and the *fold operation*.
> 💡 Lists can be iterated, folded or mapped to different values. You
> can find additional examples
> [here](https://gitlab.com/ligolang/ligo/tree/dev/src/test/contracts)
> and other built-in operators
> [here](https://gitlab.com/ligolang/ligo/blob/dev/src/passes/operators/operators.ml#L59)
#### Iterated Operation over Lists
@ -188,37 +183,28 @@ The first, the *iterated operation*, is an iteration over the list
with a unit return value. It is useful to enforce certain invariants
on the element of a list, or fail. For example you might want to check
that each value inside of a list is within a certain range, and fail
otherwise.
otherwise. The predefined functional iterator implementing the
iterated operation over lists is called `List.iter`.
In the following example, a list is iterated to check that all its
elements (integers) are strictly greater than `3`.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `list_iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```pascaligo group=lists
function iter_op (const l : list (int)) : unit is
block {
function iterated (const i : int) : unit is
if i > 2 then Unit else (failwith ("Below range.") : unit)
} with list_iter (iterated, l)
if i > 3 then Unit else (failwith ("Below range.") : unit)
} with List.iter (iterated, l)
```
> The iterated function must be pure, that is, it cannot mutate
> variables.
> Note that `list_iter` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `List.iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```cameligo group=lists
let iter_op (l : int list) : unit =
let predicate = fun (i : int) -> assert (i > 3)
@ -227,12 +213,6 @@ let iter_op (l : int list) : unit =
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `List.iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```reasonligo group=lists
let iter_op = (l : list (int)) : unit => {
let predicate = (i : int) => assert (i > 3);
@ -247,32 +227,25 @@ let iter_op = (l : list (int)) : unit => {
We may want to change all the elements of a given list by applying to
them a function. This is called a *map operation*, not to be confused
with the map data structure.
with the map data structure. The predefined functional iterator
implementing the mapped operation over lists is called `List.map` and
is used as follows.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `list_map` and is used as
follows:
```pascaligo group=lists
function increment (const i : int): int is i + 1
// Creates a new list with all elements incremented by 1
const plus_one : list (int) = list_map (increment, larger_list)
const plus_one : list (int) = List.map (increment, larger_list)
```
> The mapped function must be pure, that is, it cannot mutate
> variables.
> Note that `list_map` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `List.map` and is used as
follows:
```cameligo group=lists
let increment (i : int) : int = i + 1
@ -282,10 +255,6 @@ let plus_one : int list = List.map increment larger_list
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `List.map` and is used as
follows:
```reasonligo group=lists
let increment = (i : int) : int => i + 1;
@ -301,29 +270,23 @@ A *folded operation* is the most general of iterations. The folded
function takes two arguments: an *accumulator* and the structure
*element* at hand, with which it then produces a new accumulator. This
enables having a partial result that becomes complete when the
traversal of the data structure is over.
traversal of the data structure is over. The predefined functional
iterator implementing the folded operation over lists is called
`List.fold` and is used as follows.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
folded operation over lists is called `list_fold` and is used as
follows:
```pascaligo group=lists
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = list_fold (sum, my_list, 0)
const sum_of_elements : int = List.fold (sum, my_list, 0)
```
> The folded function must be pure, that is, it cannot mutate
> variables.
> Note that `list_fold` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the folded
operation over lists is called `List.fold` and is used as follows:
```cameligo group=lists
let sum (acc, i: int * int) : int = acc + i
let sum_of_elements : int = List.fold sum my_list 0
@ -331,10 +294,6 @@ let sum_of_elements : int = List.fold sum my_list 0
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
folded operation over lists is called `List.fold` and is used as
follows:
```reasonligo group=lists
let sum = ((result, i): (int, int)): int => result + i;
let sum_of_elements : int = List.fold (sum, my_list, 0);
@ -472,36 +431,31 @@ in a set as follows:
```reasonligo group=sets
let contains_3 : bool = Set.mem (3, my_set);
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Cardinal of Sets
The predefined function `Set.size` returns the number of
elements in a given set as follows.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined function `size` returns the number of
elements in a given set as follows:
```pascaligo group=sets
const set_size : nat = size (my_set)
const cardinal : nat = Set.size (my_set)
```
<!--CameLIGO-->
In CameLIGO, the predefined function `Set.size` returns the number of
elements in a given set as follows:
```cameligo group=sets
let set_size : nat = Set.size my_set
let cardinal : nat = Set.size my_set
```
<!--ReasonLIGO-->
In ReasonLIGO, the predefined function `Set.size` returns the number
of elements in a given set as follows:
```reasonligo group=sets
let set_size : nat = Set.size (my_set);
let cardinal : nat = Set.size (my_set);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -509,20 +463,23 @@ let set_size : nat = Set.size (my_set);
### Updating Sets
There are two ways to update a set, that is to add or remove from
it.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, there are two ways to update a set, that is to add or
remove from it. Either we create a new set from the given one, or we
In PascaLIGO, either we create a new set from the given one, or we
modify it in-place. First, let us consider the former way:
```pascaligo group=sets
const larger_set : set (int) = set_add (4, my_set)
const smaller_set : set (int) = set_remove (3, my_set)
const larger_set : set (int) = Set.add (4, my_set)
const smaller_set : set (int) = Set.remove (3, my_set)
```
> Note that `set_add` and `set_remove` are *deprecated*.
If we are in a block, we can use an instruction to modify the set
bound to a given variable. This is called a *patch*. It is only
possible to add elements by means of a patch, not remove any: it is
@ -544,23 +501,23 @@ const new_set : set (int) = update (my_set)
<!--CameLIGO-->
In CameLIGO, we update a given set by creating another one, with or
In CameLIGO, we can use the predefined functions `Set.add` and
`Set.remove`. We update a given set by creating another one, with or
without some elements.
```cameligo group=sets
let larger_set : int set = Set.add 4 my_set
let smaller_set : int set = Set.remove 3 my_set
```
<!--ReasonLIGO-->
In ReasonLIGO, we update a given set by creating another one, with or
In ReasonLIGO, we can use the predefined functions `Set.add` and
`Set.remove`. We update a given set by creating another one, with or
without some elements.
```reasonligo group=sets
let larger_set : set (int) = Set.add (4, my_set);
let smaller_set : set (int) = Set.remove (3, my_set);
```
<!--END_DOCUSAURUS_CODE_TABS-->
@ -584,35 +541,27 @@ no return value: its only use is to produce side-effects. This can be
useful if for example you would like to check that each value inside
of a map is within a certain range, and fail with an error otherwise.
The predefined functional iterator implementing the iterated operation
over sets is called `Set.iter`. In the following example, a set is
iterated to check that all its elements (integers) are greater than
`3`.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `set_iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```pascaligo group=sets
function iter_op (const s : set (int)) : unit is
block {
function iterated (const i : int) : unit is
if i > 2 then Unit else (failwith ("Below range.") : unit)
} with set_iter (iterated, s)
} with Set.iter (iterated, s)
```
> The iterated function must be pure, that is, it cannot mutate
> variables.
> Note that `set_iter` is *deprecated*.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `Set.iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```cameligo group=sets
let iter_op (s : int set) : unit =
let predicate = fun (i : int) -> assert (i > 3)
@ -621,12 +570,6 @@ let iter_op (s : int set) : unit =
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `Set.iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```reasonligo group=sets
let iter_op = (s : set (int)) : unit => {
let predicate = (i : int) => assert (i > 3);
@ -637,51 +580,51 @@ let iter_op = (s : set (int)) : unit => {
<!--END_DOCUSAURUS_CODE_TABS-->
#### Mapped Operation (NOT IMPLEMENTED YET)
<!-- #### Mapped Operation (NOT IMPLEMENTED YET) -->
We may want to change all the elements of a given set by applying to
them a function. This is called a *mapped operation*, not to be
confused with the map data structure.
<!-- We may want to change all the elements of a given set by applying to -->
<!-- them a function. This is called a *mapped operation*, not to be -->
<!-- confused with the map data structure. -->
<!--DOCUSAURUS_CODE_TABS-->
<!-- <\!--DOCUSAURUS_CODE_TABS-\-> -->
<!--PascaLIGO-->
<!-- <\!--PascaLIGO-\-> -->
In PascaLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `set_map` and is used as follows:
<!-- In PascaLIGO, the predefined functional iterator implementing the -->
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
```pascaligo skip
function increment (const i : int): int is i + 1
<!-- ```pascaligo skip -->
<!-- function increment (const i : int): int is i + 1 -->
// Creates a new set with all elements incremented by 1
const plus_one : set (int) = set_map (increment, larger_set)
```
<!-- // Creates a new set with all elements incremented by 1 -->
<!-- const plus_one : set (int) = Set.map (increment, larger_set) -->
<!-- ``` -->
<!--CameLIGO-->
<!-- <\!--CameLIGO-\-> -->
In CameLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `Set.map` and is used as follows:
<!-- In CameLIGO, the predefined functional iterator implementing the -->
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
```cameligo skip
let increment (i : int) : int = i + 1
<!-- ```cameligo skip -->
<!-- let increment (i : int) : int = i + 1 -->
// Creates a new set with all elements incremented by 1
let plus_one : int set = Set.map increment larger_set
```
<!-- // Creates a new set with all elements incremented by 1 -->
<!-- let plus_one : int set = Set.map increment larger_set -->
<!-- ``` -->
<!--ReasonLIGO-->
<!-- <\!--ReasonLIGO-\-> -->
In ReasonLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `Set.map` and is used as follows:
<!-- In ReasonLIGO, the predefined functional iterator implementing the -->
<!-- mapped operation over sets is called `Set.map` and is used as follows: -->
```reasonligo skip
let increment = (i : int) : int => i + 1;
<!-- ```reasonligo skip -->
<!-- let increment = (i : int) : int => i + 1; -->
// Creates a new set with all elements incremented by 1
let plus_one : set (int) = Set.map (increment, larger_set);
```
<!-- // Creates a new set with all elements incremented by 1 -->
<!-- let plus_one : set (int) = Set.map (increment, larger_set); -->
<!-- ``` -->
<!--END_DOCUSAURUS_CODE_TABS-->
<!-- <\!--END_DOCUSAURUS_CODE_TABS-\-> -->
#### Folded Operation
@ -689,24 +632,20 @@ A *folded operation* is the most general of iterations. The folded
function takes two arguments: an *accumulator* and the structure
*element* at hand, with which it then produces a new accumulator. This
enables having a partial result that becomes complete when the
traversal of the data structure is over.
traversal of the data structure is over. The predefined fold over sets
is called `Set.fold`.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
folded operation over sets is called `set_fold` and is used as
follows:
```pascaligo group=sets
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = set_fold (sum, my_set, 0)
const sum_of_elements : int = Set.fold (sum, my_set, 0)
```
> The folded function must be pure, that is, it cannot mutate
> variables.
> Note that `set_fold` is *deprecated*.
It is possible to use a *loop* over a set as well.
@ -721,8 +660,6 @@ function loop (const s : set (int)) : int is block {
<!--CameLIGO-->
In CameLIGO, the predefined fold over sets is called `Set.fold`.
```cameligo group=sets
let sum (acc, i : int * int) : int = acc + i
@ -731,8 +668,6 @@ let sum_of_elements : int = Set.fold sum my_set 0
<!--ReasonLIGO-->
In ReasonLIGO, the predefined fold over sets is called `Set.fold`.
```reasonligo group=sets
let sum = ((acc, i) : (int, int)) : int => acc + i;

View File

@ -1,4 +1,4 @@
type magnitude is Small | Large // See variant types
function compare (const n : nat) : magnitude is
if n < 10n then Small (Unit) else Large (Unit)
if n < 10n then Small else Large

View File

@ -2,4 +2,4 @@ function increment (const b : int) : int is
(function (const a : int) : int is a + 1) (b)
function incr_map (const l : list (int)) : list (int) is
list_map (function (const i : int) : int is i + 1, l)
List.map (function (const i : int) : int is i + 1, l)

View File

@ -4,9 +4,8 @@ const larger_list : int_list = 5 # my_list
function increment (const i : int): int is i + 1
// Creates a new list with all elements incremented by 1
const plus_one : list (int) = list_map (increment, larger_list);
const plus_one : list (int) = List.map (increment, larger_list);
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = list_fold (sum, my_list, 0)
const sum_of_elements : int = List.fold (sum, my_list, 0)

View File

@ -6,9 +6,9 @@ const contains_3 : bool = my_set contains 3
const set_size : nat = size (my_set)
const larger_set : int_set = set_add (4, my_set)
const larger_set : int_set = Set.add (4, my_set)
const smaller_set : int_set = set_remove (3, my_set)
const smaller_set : int_set = Set.remove (3, my_set)
function update (var s : set (int)) : set (int) is block {
patch s with set [4; 7]
@ -18,7 +18,7 @@ const new_set : set (int) = update (my_set)
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = set_fold (sum, my_set, 0)
const sum_of_elements : int = Set.fold (sum, my_set, 0)
function loop (const s : set (int)) : int is block {
var sum : int := 0;

View File

@ -2,6 +2,6 @@ type coin is Head | Tail
function flip (const c : coin) : coin is
case c of
Head -> Tail (Unit) // Unit needed because of a bug
| Tail -> Head (Unit) // Unit needed because of a bug
Head -> Tail
| Tail -> Head
end

View File

@ -59,21 +59,27 @@ Strings can be sliced using a built-in function:
<!--PascaLIGO-->
```pascaligo group=b
const name : string = "Alice"
const slice : string = string_slice (0n, 1n, name)
const slice : string = String.slice (0n, 1n, name)
```
> Note that `string_slide` is *deprecated*.
<!--CameLIGO-->
```cameligo group=b
let name : string = "Alice"
let slice : string = String.slice 0n 1n name
```
<!--ReasonLIGO-->
```reasonligo group=b
let name : string = "Alice";
let slice : string = String.slice (0n, 1n, name);
```
<!--END_DOCUSAURUS_CODE_TABS-->
> ⚠️ Notice that the offset and length of the slice are natural numbers.
> ⚠️ Notice that the offset and length of the slice are natural
> numbers.
## Length of Strings
@ -83,8 +89,11 @@ The length of a string can be found using a built-in function:
<!--PascaLIGO-->
```pascaligo group=c
const name : string = "Alice"
const length : nat = size (name) // length = 5
const length : nat = String.length (name) // length = 5
```
> Note that `size` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
let name : string = "Alice"

View File

@ -26,9 +26,11 @@ functionality can be accessed from within LIGO.
```pascaligo group=a
function id_string (const p : string) : option (string) is block {
const packed : bytes = bytes_pack (p)
} with (bytes_unpack (packed) : option (string))
} with (Bytes.unpack (packed) : option (string))
```
> Note that `bytes_unpack` is *deprecated*.
<!--CameLIGO-->
```cameligo group=a
let id_string (p : string) : string option =
@ -103,9 +105,11 @@ function check_signature
(const pk : key;
const signed : signature;
const msg : bytes) : bool
is crypto_check (pk, signed, msg)
is Crypto.check (pk, signed, msg)
```
> Note that `crypto_check` is *deprecated*.
<!--CameLIGO-->
```cameligo group=c
let check_signature (pk, signed, msg : key * signature * bytes) : bool =
@ -124,27 +128,29 @@ let check_signature =
## Contract's Own Address
Often you want to get the address of the contract being executed. You
can do it with `self_address`.
can do it with `Tezos.self_address`.
> ⚠️ Due to limitations in Michelson, `self_address` in a contract is
> only allowed at the top-level. Using it in an embedded function will
> cause an error.
> Note that `self_address` is *deprecated*.
> ⚠️ Due to limitations in Michelson, `Tezos.self_address` in a
> contract is only allowed at the top-level. Using it in an embedded
> function will cause an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=d
const current_addr : address = self_address
const current_addr : address = Tezos.self_address
```
<!--CameLIGO-->
```cameligo group=d
let current_addr : address = Current.self_address
let current_addr : address = Tezos.self_address
```
<!--ReasonLIGO-->
```reasonligo group=d
let current_addr : address = Current.self_address;
let current_addr : address = Tezos.self_address;
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -229,7 +229,7 @@ type return = operation list * storage
let back (param, store : unit * storage) : return =
let no_op : operation list = [] in
if Current.time > store.deadline then
if Tezos.now > store.deadline then
(failwith "Deadline passed." : return) // Annotation
else
match Map.find_opt sender store.backers with
@ -255,7 +255,7 @@ type return = (list (operation), storage);
let back = ((param, store) : (unit, storage)) : return => {
let no_op : list (operation) = [];
if (Current.time > store.deadline) {
if (Tezos.now > store.deadline) {
(failwith ("Deadline passed.") : return); // Annotation
}
else {

View File

@ -56,8 +56,8 @@ else):
<!--PascaLIGO-->
```pascaligo group=b
type coin is Head | Tail
const head : coin = Head (Unit) // Unit needed for now.
const tail : coin = Tail (Unit) // Unit needed for now.
const head : coin = Head
const tail : coin = Tail
```
<!--CameLIGO-->
@ -69,14 +69,16 @@ let tail : coin = Tail
<!--ReasonLIGO-->
```reasonligo group=b
type coin = | Head | Tail;
type coin = Head | Tail;
let head : coin = Head;
let tail : coin = Tail;
```
<!--END_DOCUSAURUS_CODE_TABS-->
The names `Head` and `Tail` in the definition of the type `coin` are
called *data constructors*, or *variants*.
called *data constructors*, or *variants*. In this particular, they
carry no information beyond their names, so they are called *constant
constructors*.
In general, it is interesting for variants to carry some information,
and thus go beyond enumerated types. In the following, we show how to
@ -94,7 +96,7 @@ type user is
| Guest
const u : user = Admin (1000n)
const g : user = Guest (Unit) // Unit needed because of a bug
const g : user = Guest
```
<!--CameLIGO-->
@ -125,6 +127,9 @@ let g : user = Guest;
<!--END_DOCUSAURUS_CODE_TABS-->
In LIGO, a constant constructor is equivalent to the same constructor
taking an argument of type `unit`, so, for example, `Guest` is the
same value as `Guest (unit)`.
## Optional values
@ -172,8 +177,8 @@ type coin is Head | Tail
function flip (const c : coin) : coin is
case c of
Head -> Tail (Unit) // Unit needed because of a bug
| Tail -> Head (Unit) // Unit needed because of a bug
Head -> Tail
| Tail -> Head
end
```
@ -181,7 +186,7 @@ You can call the function `flip` by using the LIGO compiler like so:
```shell
ligo run-function
gitlab-pages/docs/language-basics/src/unit-option-pattern-matching/flip.ligo
flip "(Head (Unit))"
flip "Head"
# Outputs: Tail(Unit)
```

View File

@ -60,7 +60,10 @@ a *global scope*, but they can be declared and used within functions,
or as function parameters.
> ⚠️ Please be wary that mutation only works within the function scope
> itself, values outside of the function scope will not be affected.
> itself, values outside of the function scope will not be
> affected. In other words, when a function is called, its arguments
> are copied, *as well as the environment*. Any side-effect to that
> environment is therefore lost when the function returns.
```pascaligo group=b

View File

@ -1,128 +1,128 @@
---
id: big-map-reference
title: Big Map — Scalable hashmap primitive
title: Big Map — Scalable Maps
---
## Defining A Big Map Type
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
type move is (int * int)
type moveset is big_map (address, move)
type foo is big_map (int, int)
```pascaligo group=big_map
type move is int * int
type register is big_map (address, move)
```
<!--CameLIGO-->
```cameligo
```cameligo group=big_map
type move = int * int
type moveset = (address, move) big_map
type foo = (int, int) big_map
type register = (address, move) big_map
```
<!--ReasonLIGO-->
```reasonligo
```reasonligo group=big_map
type move = (int, int);
type moveset = big_map(address, move);
type foo = big_map(int, int);
type register = big_map (address, move);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Creating A Map
## Creating an Empty Big Map
Create an empty big map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=big_map
const empty : register = big_map []
```
<!--CameLIGO-->
```cameligo group=big_map
let empty : register = Big_map.empty
```
<!--ReasonLIGO-->
```reasonligo group=big_map
let empty : register = Big_map.empty
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Populating A Big Map
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const moves: moveset =
big_map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
end
```pascaligo group=big_map
const moves: register =
big_map [
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
```
<!--CameLIGO-->
```cameligo
let moves: moveset =
```cameligo group=big_map
let moves: register =
Big_map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
]
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
```
<!--ReasonLIGO-->
```reasonligo
let moves: moveset =
```reasonligo group=big_map
let moves: register =
Big_map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0,3)),
]);
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.find_opt(k: a', m: (a',b') big_map) : b' option
## Retrieving a Value in a Big Map
Retrieve the value associated with a particular key. This version returns an option
which can either shift logic in response to a missing value or throw an error.
Retrieve the value associated with a particular key. This version
returns an option which can either shift logic in response to a
missing value or throw an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : option(move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)]
```pascaligo group=big_map
const my_balance : option (move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
```
<!--CameLIGO-->
```cameligo
The function is `Big_map.find_opt` whose type is `'key ->
('key,'value) big_map) -> 'value option`. Recall that the function
`Big_map.find_opt` must always be fully applied to its arguments. Here
is an example:
```cameligo group=big_map
let my_balance : move option =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
```
<!--ReasonLIGO-->
```reasonligo
let my_balance : option(move) =
Big_map.find_opt("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
The function is `Big_map.find_opt` whose type is `('key, ('key,
'value) big_map) : 'value option`. Here is an example:
```reasonligo group=big_map
let my_balance : option (move) =
Big_map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.find(k: a', m: (a', b') big_map) : b'
## Updating a Binding in a Big Map
Forcefully retrieve the value associated with a particular key. If that value
doesn't exist, this function throws an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : move =
get_force (("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
```
<!--CameLIGO-->
```cameligo
let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
<!--ReasonLIGO-->
```reasonligo
let my_balance : move =
Big_map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.update(k: a', v: b', m: (a', b') big_map) : (a', b') big_map
Change the value associated with a particular key, if that value doesn't already
exist add it.
Given a map, we may want to add a new binding, remove one, or modify
one by changing the value associated to an already existing key. We
may even want to retain the key but not the associated value. All
those operations are called *updates*.
<!--DOCUSAURUS_CODE_TABS-->
@ -131,138 +131,123 @@ exist add it.
The values of a PascaLIGO big map can be updated using the ordinary
assignment syntax:
```pascaligo
function set_ (var m : moveset) : moveset is
```pascaligo group=big_map
function add (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
} with m
const updated_map : register = add (moves)
```
See further for the removal of bindings.
<!--Cameligo-->
```cameligo
let updated_map : moveset =
Big_map.update ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) (Some (4,9)) moves
In CameLIGO, you need the predefined function `Big_map.update` whose
type is `'key -> 'value option -> ('key, 'value) big_map -> ('key,
'value) big_map`. If the value (second argument) is `None`, then the
binding is to be removed. Recall that the function `Big_map.update`
must always be fully applied to its arguments. Here is an example:
```cameligo group=big_map
let updated_map : register =
Big_map.update
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) moves
```
<!--Reasonligo-->
```reasonligo
let updated_map : moveset =
Big_map.update(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
In ReasonLIGO, you need the predefined function `Big_map.update` whose
type is `('key, 'value option, ('key, 'value) big_map) : ('key,
'value) big_map`. If the value (second componenat) is `None`, then the
binding is to be removed. Here is an example:
```reasonligo group=big_map
let updated_map : register =
Big_map.update
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some ((4,9)), moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.add(k: a', v: b', m: (a', b') big_map) : (a', b') big_map
## Adding a Binding to a Big Map
Add a key and its associated value to the big map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function set_ (var n : int ; var m : foo) : foo is block {
m[23] := n ;
} with m
```pascaligo group=big_map
function add (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
} with m
const updated_map : register = add (moves)
```
<!--CameLIGO-->
```cameligo
let add (n,m : int * foo) : foo = Big_map.add 23 n m
In CameLIGO, we use the predefined function `Big_map.add`, whose type
is `'key -> 'value -> ('key, 'value) big_map -> ('key, 'value)
big_map`. Recall that the function `Big_map.add` must always be fully
applied to its arguments. Here is an example:
```cameligo group=big_map
let add (m : register) : register =
Map.add
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (4,9) m
```
<!--ReasonLIGO-->
```reasonligo
let add = ((n,m): (int, foo)): foo => Big_map.add(23, n, m);
In ReasonLIGO, we use the predefined function `Big_map.add`, whose
type is `('key, 'value, ('key, 'value) big_map : ('key, 'value)
big_map`. Here is an example:
```reasonligo group=big_map
let add = (m : register) : register =>
Map.add
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (4,9), m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.remove(k: a', m: (a', b') big_map) : (a', b') big_map
## Removing a Binding from a Big Map
Remove a key and its associated value from the big map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function rm (var m : foo) : foo is block {
remove 42 from map m;
} with m
```
<!--CameLIGO-->
```cameligo
let rm (m : foo) : foo = Big_map.remove 42 m
```
<!--ReasonLIGO-->
```reasonligo
let rm = (m: foo): foo => Big_map.remove(42, m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.literal(key_value_pair_list: (a', b') list) : (a', b') big_map
Constructs a big map from a list of key-value pair tuples.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const moves: moveset =
big_map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0,3);
end
```pascaligo group=big_map
function delete (const key : address; var moves : register) : register is
block {
remove key from map moves
} with moves
```
<!--CameLIGO-->
```cameligo
let moves: moveset =
Big_map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0,3));
]
In CameLIGO, we use the predefined function `Big_map.remove` whose
type is `'key -> ('key, 'value) big_map -> ('key, 'value)
big_map`. Note that, despite being curried, the calls to that function
must be complete. Here is an example:
```cameligo group=big_map
let delete (key, moves : address * register) : register =
Map.remove key moves
```
<!--ReasonLIGO-->
```reasonligo
let moves: moveset =
Big_map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0,3)),
]);
In ReasonLIGO, we use the predefined function `Big_map.remove` whose
type is `('key, ('key, 'value) big_map) : ('key, 'value)
big_map`. Here is an example:
```reasonligo group=big_map
let delete = ((key, moves) : (address, register)) : register =>
Map.remove (key, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Big_map.empty() : (a', b') big_map
Create an empty big map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
const empty_big_map : big_map(int,int) = big_map end
```
<!--CameLIGO-->
```cameligo
let empty_map : foo = Big_map.empty
```
<!--ReasonLIGO-->
```reasonligo
let empty_map: foo = Big_map.empty;
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -1,9 +1,182 @@
---
id: list-reference
title: List — Ordered collection of a type
title: List — Linear Collections
---
## List.size(lst: a' list) : nat
Lists are linear collections of elements of the same type. Linear
means that, in order to reach an element in a list, we must visit all
the elements before (sequential access). Elements can be repeated, as
only their order in the collection matters. The first element is
called the *head*, and the sub-list after the head is called the
*tail*. For those familiar with algorithmic data structure, you can
think of a list a *stack*, where the top is written on the left.
## Defining Lists
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=lists
const empty_list : list (int) = nil // Or list []
const my_list : list (int) = list [1; 2; 2] // The head is 1
```
<!--CameLIGO-->
```cameligo group=lists
let empty_list : int list = []
let my_list : int list = [1; 2; 2] // The head is 1
```
<!--ReasonLIGO-->
```reasonligo group=lists
let empty_list : list (int) = [];
let my_list : list (int) = [1, 2, 2]; // The head is 1
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Adding to Lists
Lists can be augmented by adding an element before the head (or, in
terms of stack, by *pushing an element on top*).
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=lists
const larger_list : list (int) = 5 # my_list // [5;1;2;2]
```
<!--CameLIGO-->
```cameligo group=lists
let larger_list : int list = 5 :: my_list // [5;1;2;2]
```
<!--ReasonLIGO-->
```reasonligo group=lists
let larger_list : list (int) = [5, ...my_list]; // [5,1,2,2]
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Functional Iteration over Lists
A *functional iterator* is a function that traverses a data structure
and calls in turn a given function over the elements of that structure
to compute some value. Another approach is possible in PascaLIGO:
*loops* (see the relevant section).
There are three kinds of functional iterations over LIGO lists: the
*iterated operation*, the *map operation* (not to be confused with the
*map data structure*) and the *fold operation*.
#### Iterated Operation over Lists
The first, the *iterated operation*, is an iteration over the list
with a unit return value. It is useful to enforce certain invariants
on the element of a list, or fail.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=lists
function iter_op (const l : list (int)) : unit is
block {
function iterated (const i : int) : unit is
if i > 2 then Unit else (failwith ("Below range.") : unit)
} with list_iter (iterated, l)
```
<!--CameLIGO-->
```cameligo group=lists
let iter_op (l : int list) : unit =
let predicate = fun (i : int) -> assert (i > 3)
in List.iter predicate l
```
<!--ReasonLIGO-->
```reasonligo group=lists
let iter_op = (l : list (int)) : unit => {
let predicate = (i : int) => assert (i > 3);
List.iter (predicate, l);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
#### Mapped Operation over Lists
We may want to change all the elements of a given list by applying to
them a function. This is called a *map operation*, not to be confused
with the map data structure.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=lists
function increment (const i : int): int is i + 1
// Creates a new list with all elements incremented by 1
const plus_one : list (int) = list_map (increment, larger_list)
```
<!--CameLIGO-->
```cameligo group=lists
let increment (i : int) : int = i + 1
// Creates a new list with all elements incremented by 1
let plus_one : int list = List.map increment larger_list
```
<!--ReasonLIGO-->
```reasonligo group=lists
let increment = (i : int) : int => i + 1;
// Creates a new list with all elements incremented by 1
let plus_one : list (int) = List.map (increment, larger_list);
```
<!--END_DOCUSAURUS_CODE_TABS-->
#### Folded Operation over Lists
A *folded operation* is the most general of iterations. The folded
function takes two arguments: an *accumulator* and the structure
*element* at hand, with which it then produces a new accumulator. This
enables having a partial result that becomes complete when the
traversal of the data structure is over.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=lists
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = list_fold (sum, my_list, 0)
```
<!--CameLIGO-->
```cameligo group=lists
let sum (acc, i: int * int) : int = acc + i
let sum_of_elements : int = List.fold sum my_list 0
```
<!--ReasonLIGO-->
```reasonligo group=lists
let sum = ((result, i): (int, int)): int => result + i;
let sum_of_elements : int = List.fold (sum, my_list, 0);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## List Length
Get the number of elements in a list.
@ -11,29 +184,25 @@ Get the number of elements in a list.
<!--PascaLIGO-->
```pascaligo
function size_ (const m : list(int)) : nat is size(m)
function size_of (const l : list (int)) : nat is List.length (l)
```
<!--CameLIGO-->
```cameligo
let size_ (s: int list) : nat = List.size s
let size_of (l : int list) : nat = List.length l
```
<!--ReasonLIGO-->
```reasonligo
let size_ = (s: list(int)): nat => List.size(s);
let size_of = (l : list (int)) : nat => List.length (l);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## List.length(lst: a' list) : nat
Alias of `List.size`.
## List.map(map_function: a' -> b', lst: a' list) : 'b list
Apply an operation defined by `map_function` to each element of a list and return
a list of the modified elements.
Apply an operation defined by `map_function` to each element of a list
and return a list of the modified elements.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->

View File

@ -1,392 +1,274 @@
---
id: map-reference
title: Map — Hashmaps that it makes sense to iterate over
title: Map
---
## Defining A Map Type
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
```pascaligo group=map
type move is int * int
type moveset is map(address, move)
type register is map (address, move)
```
<!--CameLIGO-->
```cameligo
```cameligo group=map
type move = int * int
type moveset = (address, move) map
type register = (address, move) map
```
<!--ReasonLIGO-->
```reasonligo
```reasonligo group=map
type move = (int, int);
type moveset = map(address, move);
type register = map (address, move);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Creating A Map
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const moves: moveset = map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1, 2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0, 3);
end
```
<!--CameLIGO-->
```cameligo
let moves: moveset = Map.literal
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ;
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0, 3)) ;
]
```
<!--ReasonLIGO-->
```reasonligo
let moves : moveset =
Map.literal([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1, 2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0, 3)),
]);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.find_opt(k: a', m: (a',b') map) : b' option
Retrieve the value associated with a particular key. This version returns an option
which can either shift logic in response to a missing value or throw an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : option(move) = moves[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)];
```
<!--CameLIGO-->
```cameligo
let my_balance : move option = Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
<!--ReasonLIGO-->
```reasonligo
let my_balance : option(move) =
Map.find_opt("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.find(k: a', m: (a', b') map) : b'
Forcefully retrieve the value associated with a particular key. If that value
doesn't exist, this function throws an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const my_balance : move = get_force(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), moves);
```
<!--CameLIGO-->
```cameligo
let my_balance : move = Map.find ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) moves
```
<!--ReasonLIGO-->
```reasonligo
let my_balance : move =
Map.find("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.update(k: a', v: b', m: (a', b') map) : (a', b') map
Change the value associated with a particular key, if that value doesn't already
exist add it.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
The values of a PascaLIGO map can be updated using the ordinary assignment syntax:
```pascaligo
function set_ (var m: moveset) : moveset is
block {
m[("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9);
} with m
```
<!--Cameligo-->
We can update a map in CameLIGO using the `Map.update` built-in:
```cameligo
let updated_map: moveset = Map.update ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) (Some (4,9)) moves
```
<!--Reasonligo-->
We can update a map in ReasonLIGO using the `Map.update` built-in:
```reasonligo
let updated_map: moveset = Map.update(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some((4,9)), moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.add(k: a', v: b', m: (a', b') map) : (a', b') map
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function set_ (var n : int ; var m : map(int, int)) : map(int, int) is block {
m[23] := n ;
} with m
```
<!--CameLIGO-->
```cameligo
let add (n,m: int * (int, int) map) : foobar = Map.add 23 n m
```
<!--ReasonLIGO-->
```reasonligo
let add = (n: int, m: map(int, int)) : foobar => Map.add(23, n, m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.remove(k: a', m: (a', b') map) : (a', b') map
Remove a key and its associated value from the map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function rm (var m : map(int, int)) : map(int, int) is block {
remove 42 from map m
} with m
```
<!--CameLIGO-->
```cameligo
let rm (m: (int, int) map) : (int, int) map = Map.remove 42 m
```
<!--ReasonLIGO-->
```reasonligo
let rm = (m: map(int, int)): map(int, int) => Map.remove(42, m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.iter(iterator_function: (a', b') -> unit, m: (a', b') map) : unit
Run a function returning unit over the contents of a map's key-value pairs.
For example an assertion.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
function iter_op (const m : moveset) : unit is
block {
function aggregate (const i : address ; const j : move) : unit is block
{ if j.1 > 1 then skip else failwith("fail") } with unit
} with map_iter(aggregate, m);
```
<!--CameLIGO-->
```cameligo
let iter_op (m : moveset) : unit =
let assert_eq = fun (i,j: address * move) -> assert (j.0 > 1)
in Map.iter assert_eq m
```
<!--ReasonLIGO-->
```reasonligo
let iter_op = (m: moveset): unit => {
let assert_eq = ((i,j): (address, move)) => assert (j[0] > 1);
Map.iter(assert_eq, m);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.map(mapping_function: (a', b') -> b', m: (a', b') map) : (a', b') map
Update the values associated with every key in the map according to some update
rule `mapping_function`.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
function map_op (const m : moveset) : moveset is
block {
function increment (const i : address ; const j : move) : move is (j.0, j.1 + 1);
} with map_map (increment, m);
```
<!--CameLIGO-->
```cameligo
let map_op (m : moveset) : moveset =
let increment = fun (i,j: address * move) -> (j.0, j.1 + 1)
in Map.map increment m
```
<!--ReasonLIGO-->
```reasonligo
let map_op = (m: moveset): moveset => {
let increment = ((i,j): (address, move)) => (j[0], j[1] + 1);
Map.map(increment, m);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.fold(folding_function: (b', (a', b')) -> b', m: (a', b') map, initial: b') : b'
Combine every value in the map together according to a fold rule `folding_function`.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
function fold_op (const m : moveset) : int is
block {
function aggregate (const j : int; const cur : address * (int * int)) : int is j + cur.1.1
} with map_fold(aggregate, m, 5)
```
<!--CameLIGO-->
```cameligo
let fold_op (m : moveset) : moveset =
let aggregate = fun (i,j: int * (address * (int * int))) -> i + j.1.1
in Map.fold aggregate m 5
```
<!--ReasonLIGO-->
```reasonligo
let fold_op = (m: moveset): moveset => {
let aggregate = ((i,j): (int, (address, (int,int)))) => i + j[1][1];
Map.fold(aggregate, m, 5);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.mem(k: a', m: (a', b') map) : bool
Test whether a particular key `k` exists in a given map `m`.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function mem (const k: int; const m: map(int, int)) : bool is map_mem(k, m)
```
<!--CameLIGO-->
```cameligo
let mem (k,m: int * (int, int) map) : bool = Map.mem k m
```
<!--ReasonLIGO-->
```reasonligo
let mem = ((k,m): (int, map(int,int))): bool => Map.mem(k, m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.empty() : (a', b') map
## Creating an Empty Map
Create an empty map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
const empty_map : map(int, int) = map end
```pascaligo group=map
const empty : register = map []
```
<!--CameLIGO-->
```cameligo
let empty_map : (int, int) map = Map.empty
```cameligo group=map
let empty : register = Map.empty
```
<!--ReasonLIGO-->
```reasonligo
let empty_map: map(int, int) = Map.empty;
```reasonligo group=map
let empty : register = Map.empty
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.literal(key_value_pair_list: (a', b') list) : (a', b') map
## Populating A Map
Constructs a map from a list of key-value pair tuples.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=map
const moves: register =
map [
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address) -> (1,2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) -> (0,3)]
```
<!--CameLIGO-->
```cameligo group=map
let moves: register =
Map.literal [
(("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address), (1,2));
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (0,3))]
```
<!--ReasonLIGO-->
```reasonligo group=map
let moves: register =
Map.literal ([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx" : address, (1,2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, (0,3))]);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Retrieving a Value in a Map
Retrieve the value associated with a particular key. This version
returns an option which can either shift logic in response to a
missing value or throw an error.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo group=map
const my_balance : option (move) =
moves [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address)]
```
<!--CameLIGO-->
The function is `Map.find_opt` whose type is `'key ->
('key,'value) map) -> 'value option`. Recall that the function
`Map.find_opt` must always be fully applied to its arguments. Here
is an example:
```cameligo group=map
let my_balance : move option =
Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) moves
```
<!--ReasonLIGO-->
The function is `Map.find_opt` whose type is `('key, ('key,
'value) map) : 'value option`. Here is an example:
```reasonligo group=map
let my_balance : option (move) =
Map.find_opt ("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Updating a Binding in a Map
Given a map, we may want to add a new binding, remove one, or modify
one by changing the value associated to an already existing key. We
may even want to retain the key but not the associated value. All
those operations are called *updates*.
<!--DOCUSAURUS_CODE_TABS-->
<!--Pascaligo-->
```pascaligo
const moves: moveset = map
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address) -> (1, 2);
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address) -> (0, 3);
end
The values of a PascaLIGO map can be updated using the ordinary
assignment syntax:
```pascaligo group=map
function add (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
} with m
const updated_map : register = add (moves)
```
See further for the removal of bindings.
<!--Cameligo-->
In CameLIGO, you need the predefined function `Map.update` whose
type is `'key -> 'value option -> ('key, 'value) map -> ('key,
'value) map`. If the value (second argument) is `None`, then the
binding is to be removed. Recall that the function `Map.update`
must always be fully applied to its arguments. Here is an example:
```cameligo group=map
let updated_map : register =
Map.update
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (Some (4,9)) moves
```
<!--Reasonligo-->
In ReasonLIGO, you need the predefined function `Map.update` whose
type is `('key, 'value option, ('key, 'value) map) : ('key,
'value) map`. If the value (second componenat) is `None`, then the
binding is to be removed. Here is an example:
```reasonligo group=map
let updated_map : register =
Map.update
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), Some ((4,9)), moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Adding a Binding to a Map
Add a key and its associated value to the map.
<!--DOCUSAURUS_CODE_TABS-->
```pascaligo group=map
function add (var m : register) : register is
block {
m [("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address)] := (4,9)
} with m
const updated_map : register = add (moves)
```
<!--CameLIGO-->
```cameligo
let moves: moveset = Map.literal
[ (("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address), (1, 2)) ;
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address), (0, 3)) ;
]
In CameLIGO, we use the predefined function `Map.add`, whose type
is `'key -> 'value -> ('key, 'value) map -> ('key, 'value)
map`. Recall that the function `Map.add` must always be fully
applied to its arguments. Here is an example:
```cameligo group=map
let add (m : register) : register =
Map.add
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address) (4,9) m
```
<!--ReasonLIGO-->
```reasonligo
let moves : moveset =
Map.literal([
("tz1KqTpEZ7Yob7QbPE4Hy4Wo8fHG8LhKxZSx": address, (1, 2)),
("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN": address, (0, 3)),
]);
In ReasonLIGO, we use the predefined function `Map.add`, whose
type is `('key, 'value, ('key, 'value) map : ('key, 'value)
map`. Here is an example:
```reasonligo group=map
let add = (m : register) : register =>
Map.add
(("tz1gjaF81ZRRvdzjobyfVNsAeSC6PScjfQwN" : address), (4,9), m);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Map.size(m: (a', b') map) : nat
## Removing a Binding from a Map
Get the size of a given map `m`.
Remove a key and its associated value from the map.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo
function size_ (const m : map(int, int)) : nat is
block {skip} with (size(m))
```pascaligo group=map
function delete (const key : address; var moves : register) : register is
block {
remove key from map moves
} with moves
```
<!--CameLIGO-->
```cameligo
let size_ (m: (int, int) map) : nat = Map.size m
In CameLIGO, we use the predefined function `Map.remove` whose
type is `'key -> ('key, 'value) map -> ('key, 'value)
map`. Note that, despite being curried, the calls to that function
must be complete. Here is an example:
```cameligo group=map
let delete (key, moves : address * register) : register =
Map.remove key moves
```
<!--ReasonLIGO-->
```reasonligo
let size_ = (m: map(int, int)): nat => Map.size(m);
In ReasonLIGO, we use the predefined function `Map.remove` whose
type is `('key, ('key, 'value) map) : ('key, 'value)
map`. Here is an example:
```reasonligo group=map
let delete = ((key, moves) : (address, register)) : register =>
Map.remove (key, moves);
```
<!--END_DOCUSAURUS_CODE_TABS-->
## Getting the Size of a Map
The size of a map is its number of bindings.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
```pascaligo group=map
function size_of (const m : register) : nat is size (m)
```
<!--CameLIGO-->
```cameligo group=map
let size_of (m : register) : nat = Map.size m
```
<!--ReasonLIGO-->
```reasonligo group=map
let size_of = (m : register): nat => Map.size (m);
```
<!--END_DOCUSAURUS_CODE_TABS-->

View File

@ -1,10 +0,0 @@
type action is
| Increment of int
| Decrement of int
function main (const p : action ; const s : int) : (list(operation) * int) is
block {skip} with ((nil : list(operation)),
case p of
| Increment n -> s + n
| Decrement n -> s - n
end)

View File

@ -1,10 +0,0 @@
function multiply (const a : int ; const b : int) : int is
begin
const result : int = a * b ;
end with result
function add (const a : int ; const b : int) : int is
block { skip } with a + b
function main (const p : unit ; const s : unit) : (list(operation) * unit) is
block {skip} with ((nil : list(operation)), s)

View File

@ -1,16 +0,0 @@
type action is
| Increment of int
| Decrement of int
function add (const a : int ; const b : int) : int is
block { skip } with a + b
function subtract (const a : int ; const b : int) : int is
block { skip } with a - b
function main (const p : action ; const s : int) : (list(operation) * int) is
block {skip} with ((nil : list(operation)),
case p of
| Increment n -> add(s, n)
| Decrement n -> subtract(s, n)
end)

View File

@ -1,5 +0,0 @@
const four : int = 4;
const name : string = "John Doe";
function main (const p : unit ; const s : unit) : (list(operation) * unit) is
block {skip} with ((nil : list(operation)), s)

View File

@ -20,3 +20,4 @@ $HOME/git/ligo/vendors/ligo-utils/simple-utils/region.ml
../shared/LexerUnit.ml
../shared/ParserUnit.ml
Stubs/Simple_utils.ml
$HOME/git/ligo/_build/default/src/passes/1-parser/cameligo/ParErr.ml

View File

@ -266,7 +266,6 @@ let keywords = [
let reserved =
let open SSet in
empty
|> add "and"
|> add "as"
|> add "asr"
|> add "class"

View File

@ -1,5 +1,7 @@
(* Driver for the CameLIGO lexer *)
module Region = Simple_utils.Region
module IO =
struct
let ext = ".mligo"

View File

@ -593,10 +593,14 @@ core_expr:
| par(expr ":" type_expr {$1,$2,$3}) { EAnnot $1 }
module_field:
module_name "." field_name {
module_name "." module_fun {
let region = cover $1.region $3.region in
{region; value = $1.value ^ "." ^ $3.value} }
module_fun:
field_name { $1 }
| "or" { {value="or"; region=$1} }
projection:
struct_name "." nsepseq(selection,".") {
let start = $1.region in

View File

@ -24,3 +24,4 @@ $HOME/git/ligo/vendors/ligo-utils/simple-utils/region.ml
../shared/Memo.mli
../shared/Memo.ml
Stubs/Simple_utils.ml
$HOME/git/ligo/_build/default/src/passes/1-parser/pascaligo/ParErr.ml

View File

@ -103,6 +103,7 @@ sepseq(X,Sep):
%inline fun_name : "<ident>" { $1 }
%inline field_name : "<ident>" { $1 }
%inline struct_name : "<ident>" { $1 }
%inline module_name : "<constr>" { $1 }
(* Main *)
@ -829,7 +830,7 @@ core_expr:
"<int>" { EArith (Int $1) }
| "<nat>" { EArith (Nat $1) }
| "<mutez>" { EArith (Mutez $1) }
| var { EVar $1 }
| "<ident>" | module_field { EVar $1 }
| "<string>" { EString (String $1) }
| "<bytes>" { EBytes $1 }
| "False" { ELogic (BoolExpr (False $1)) }
@ -902,13 +903,32 @@ path:
var { Name $1 }
| projection { Path $1 }
module_field:
module_name "." module_fun {
let region = cover $1.region $3.region in
{region; value = $1.value ^ "." ^ $3.value} }
module_fun:
field_name { $1 }
| "map" { {value="map"; region=$1} }
| "or" { {value="or"; region=$1} }
| "and" { {value="and"; region=$1} }
| "remove" { {value="remove"; region=$1} }
projection:
struct_name "." nsepseq(selection,".") {
let stop = nsepseq_to_region selection_to_region $3 in
let region = cover $1.region stop
and value = {struct_name = $1;
selector = $2;
field_path = $3}
and value = {struct_name=$1; selector=$2; field_path=$3}
in {region; value}
}
| module_name "." field_name "." nsepseq(selection,".") {
let value = $1.value ^ "." ^ $3.value in
let struct_name = {$1 with value} in
let start = $1.region in
let stop = nsepseq_to_region selection_to_region $5 in
let region = cover start stop in
let value = {struct_name; selector=$4; field_path=$5}
in {region; value} }
selection:
@ -939,31 +959,26 @@ record_expr:
update_record:
path "with" ne_injection("record",field_path_assignment){
let region = cover (path_to_region $1) $3.region in
let value = {
record = $1;
kwd_with = $2;
updates = $3}
let value = {record=$1; kwd_with=$2; updates=$3}
in {region; value} }
field_assignment:
field_name "=" expr {
let region = cover $1.region (expr_to_region $3)
and value = {field_name = $1;
equal = $2;
field_expr = $3}
and value = {field_name=$1; equal=$2; field_expr=$3}
in {region; value} }
field_path_assignment:
nsepseq(field_name,".") "=" expr {
let region = cover (nsepseq_to_region (fun x -> x.region) $1) (expr_to_region $3)
and value = {field_path = $1;
equal = $2;
field_expr = $3}
let start = nsepseq_to_region (fun x -> x.region) $1
and stop = expr_to_region $3 in
let region = cover start stop
and value = {field_path=$1; equal=$2; field_expr=$3}
in {region; value} }
fun_call:
fun_name arguments {
fun_name arguments
| module_field arguments {
let region = cover $1.region $2.region
in {region; value = (EVar $1),$2} }

View File

@ -26,3 +26,4 @@ Stubs/Parser_cameligo.ml
../cameligo/ParserLog.ml
../cameligo/Scoping.mli
../cameligo/Scoping.ml
$HOME/git/ligo/_build/default/src/passes/1-parser/reasonligo/ParErr.ml

View File

@ -238,12 +238,9 @@ let keywords = [
(fun reg -> True reg);
(fun reg -> Type reg)]
(* See: http://caml.inria.fr/pub/docs/manual-ocaml/lex.html#sec86 and
https://github.com/facebook/reason/blob/master/src/reason-parser/reason_parser.mly *)
let reserved =
let open SSet in
empty
|> add "and"
|> add "as"
|> add "asr"
|> add "begin"

View File

@ -1,5 +1,7 @@
(* Driver for the ReasonLIGO lexer *)
module Region = Simple_utils.Region
module IO =
struct
let ext = ".religo"

View File

@ -834,10 +834,13 @@ core_expr:
| par(expr) { EPar $1 }
module_field:
module_name "." field_name {
let region = cover $1.region $3.region
and value = $1.value ^ "." ^ $3.value
in {region; value} }
module_name "." module_fun {
let region = cover $1.region $3.region in
{region; value = $1.value ^ "." ^ $3.value} }
module_fun:
field_name { $1 }
| "or" { {value="or"; region=$1} }
selection:
"[" "<int>" "]" selection {

View File

@ -36,7 +36,7 @@ module Simplify = struct
let type_constants s =
match s with
| "chain_id" -> ok TC_chain_id
"chain_id" -> ok TC_chain_id
| "unit" -> ok TC_unit
| "string" -> ok TC_string
| "bytes" -> ok TC_bytes
@ -50,82 +50,69 @@ module Simplify = struct
| "key_hash" -> ok TC_key_hash
| "signature" -> ok TC_signature
| "timestamp" -> ok TC_timestamp
| _ -> simple_fail @@ "Not a type_constant " ^ s
| _ -> simple_fail @@ "Not a built-in type (" ^ s ^ ")."
let type_operators s =
match s with
| "list" -> ok @@ TC_list unit_expr
"list" -> ok @@ TC_list unit_expr
| "option" -> ok @@ TC_option unit_expr
| "set" -> ok @@ TC_set unit_expr
| "map" -> ok @@ TC_map (unit_expr,unit_expr)
| "big_map" -> ok @@ TC_big_map (unit_expr,unit_expr)
| "contract" -> ok @@ TC_contract unit_expr
| _ -> simple_fail @@ "Not a typ_operator " ^ s
| _ -> simple_fail @@ "Not a built-in type (" ^ s ^ ")."
module Pascaligo = struct
let constants = function
| "assert" -> ok C_ASSERTION
| "get_chain_id" -> ok C_CHAIN_ID
| "transaction" -> ok C_CALL
| "get_contract" -> ok C_CONTRACT
| "get_contract_opt"-> ok C_CONTRACT_OPT
| "get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT
| "get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
| "size" -> ok C_SIZE
(* Tezos module (ex-Michelson) *)
| "Tezos.chain_id" -> ok C_CHAIN_ID
| "chain_id" -> ok C_CHAIN_ID (* Deprecated *)
| "get_chain_id" -> ok C_CHAIN_ID (* Deprecated *)
| "Tezos.balance" -> ok C_BALANCE
| "balance" -> ok C_BALANCE (* Deprecated *)
| "Tezos.now" -> ok C_NOW
| "now" -> ok C_NOW (* Deprecated *)
| "Tezos.amount" -> ok C_AMOUNT
| "amount" -> ok C_AMOUNT (* Deprecated *)
| "Tezos.sender" -> ok C_SENDER
| "sender" -> ok C_SENDER (* Deprecated *)
| "Tezos.address" -> ok C_ADDRESS
| "address" -> ok C_ADDRESS (* Deprecated *)
| "Tezos.self_address" -> ok C_SELF_ADDRESS
| "self_address" -> ok C_SELF_ADDRESS (* Deprecated *)
| "Tezos.implicit_account" -> ok C_IMPLICIT_ACCOUNT
| "implicit_account" -> ok C_IMPLICIT_ACCOUNT (* Deprecated *)
| "Tezos.source" -> ok C_SOURCE
| "source" -> ok C_SOURCE (* Deprecated *)
| "Tezos.failwith" -> ok C_FAILWITH
| "failwith" -> ok C_FAILWITH
| "Tezos.transaction" -> ok C_CALL
| "transaction" -> ok C_CALL (* Deprecated *)
| "Tezos.set_delegate" -> ok C_SET_DELEGATE
| "set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
| "get_contract" -> ok C_CONTRACT (* Deprecated *)
| "Tezos.get_contract_opt" -> ok C_CONTRACT_OPT
| "get_contract_opt" -> ok C_CONTRACT_OPT (* Deprecated *)
| "get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT (* Deprecated *)
| "Tezos.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
| "get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT (* Deprecated *)
| "Michelson.is_nat" -> ok C_IS_NAT (* Deprecated *)
| "is_nat" -> ok C_IS_NAT
| "int" -> ok C_INT
| "abs" -> ok C_ABS
| "is_nat" -> ok C_IS_NAT
| "amount" -> ok C_AMOUNT
| "balance" -> ok C_BALANCE
| "now" -> ok C_NOW
| "unit" -> ok C_UNIT
| "source" -> ok C_SOURCE
| "sender" -> ok C_SENDER
| "failwith" -> ok C_FAILWITH
| "bitwise_or" -> ok C_OR
| "bitwise_and" -> ok C_AND
| "bitwise_xor" -> ok C_XOR
| "bitwise_lsl" -> ok C_LSL
| "bitwise_lsr" -> ok C_LSR
| "string_concat" -> ok C_CONCAT
| "string_slice" -> ok C_SLICE
| "crypto_check" -> ok C_CHECK_SIGNATURE
| "crypto_hash_key" -> ok C_HASH_KEY
| "bytes_concat" -> ok C_CONCAT
| "bytes_slice" -> ok C_SLICE
| "bytes_pack" -> ok C_BYTES_PACK
| "bytes_unpack" -> ok C_BYTES_UNPACK
| "set_empty" -> ok C_SET_EMPTY
| "set_mem" -> ok C_SET_MEM
| "set_add" -> ok C_SET_ADD
| "set_remove" -> ok C_SET_REMOVE
| "set_iter" -> ok C_SET_ITER
| "set_fold" -> ok C_SET_FOLD
| "list_iter" -> ok C_LIST_ITER
| "list_fold" -> ok C_LIST_FOLD
| "list_map" -> ok C_LIST_MAP
| "get_force" -> ok C_MAP_FIND
| "map_iter" -> ok C_MAP_ITER
| "map_map" -> ok C_MAP_MAP
| "map_fold" -> ok C_MAP_FOLD
| "map_remove" -> ok C_MAP_REMOVE
| "map_update" -> ok C_MAP_UPDATE
| "map_get" -> ok C_MAP_FIND_OPT
| "map_mem" -> ok C_MAP_MEM
| "sha_256" -> ok C_SHA256
| "sha_512" -> ok C_SHA512
| "blake2b" -> ok C_BLAKE2b
| "cons" -> ok C_CONS
| "EQ" -> ok C_EQ
| "NEQ" -> ok C_NEQ
| "NEG" -> ok C_NEG
| "ADD" -> ok C_ADD
| "SUB" -> ok C_SUB
| "TIMES" -> ok C_MUL
| "DIV" -> ok C_DIV
| "MOD" -> ok C_MOD
| "EQ" -> ok C_EQ
| "NOT" -> ok C_NOT
| "AND" -> ok C_AND
| "OR" -> ok C_OR
@ -134,11 +121,125 @@ module Simplify = struct
| "LT" -> ok C_LT
| "LE" -> ok C_LE
| "CONS" -> ok C_CONS
| "address" -> ok C_ADDRESS
| "self_address" -> ok C_SELF_ADDRESS
| "implicit_account"-> ok C_IMPLICIT_ACCOUNT
| "set_delegate" -> ok C_SET_DELEGATE
| _ -> simple_fail "Not a PascaLIGO constant"
| "cons" -> ok C_CONS (* Deprecated *)
| "NEQ" -> ok C_NEQ
(* Crypto module *)
| "Crypto.check" -> ok C_CHECK_SIGNATURE
| "crypto_check" -> ok C_CHECK_SIGNATURE (* Deprecated *)
| "Crypto.hash_key" -> ok C_HASH_KEY
| "crypto_hash_key" -> ok C_HASH_KEY (* Deprecated *)
| "Crypto.blake2b" -> ok C_BLAKE2b
| "blake2b" -> ok C_BLAKE2b (* Deprecated *)
| "Crypto.sha256" -> ok C_SHA256
| "sha_256" -> ok C_SHA256 (* Deprecated *)
| "Crypto.sha512" -> ok C_SHA512
| "sha_512" -> ok C_SHA512 (* Deprecated *)
(* Bytes module *)
| "Bytes.pack" -> ok C_BYTES_PACK
| "bytes_pack" -> ok C_BYTES_PACK (* Deprecated *)
| "Bytes.unpack" -> ok C_BYTES_UNPACK
| "bytes_unpack" -> ok C_BYTES_UNPACK (* Deprecated *)
| "Bytes.length" -> ok C_SIZE
| "Bytes.size" -> ok C_SIZE
| "bytes_concat" -> ok C_CONCAT (* Deprecated *)
| "Bytes.concat" -> ok C_CONCAT
| "Bytes.slice" -> ok C_SLICE
| "bytes_slice" -> ok C_SLICE (* Deprecated *)
| "Bytes.sub" -> ok C_SLICE
(* List module *)
| "List.length" -> ok C_SIZE
| "List.size" -> ok C_SIZE
| "list_size" -> ok C_SIZE (* Deprecated *)
| "List.iter" -> ok C_LIST_ITER
| "list_iter" -> ok C_LIST_ITER (* Deprecated *)
| "List.map" -> ok C_LIST_MAP
| "list_map" -> ok C_LIST_MAP (* Deprecated *)
| "List.fold" -> ok C_LIST_FOLD
| "list_fold" -> ok C_LIST_FOLD (* Deprecated *)
(* Set module *)
| "Set.size" -> ok C_SIZE
| "set_size" -> ok C_SIZE (* Deprecated *)
| "set_empty" -> ok C_SET_EMPTY (* Deprecated *)
| "Set.mem" -> ok C_SET_MEM
| "set_mem" -> ok C_SET_MEM (* Deprecated *)
| "Set.add" -> ok C_SET_ADD
| "set_add" -> ok C_SET_ADD (* Deprecated *)
| "Set.remove" -> ok C_SET_REMOVE
| "set_remove" -> ok C_SET_REMOVE (* Deprecated *)
| "Set.iter" -> ok C_SET_ITER
| "set_iter" -> ok C_SET_ITER (* Deprecated *)
| "Set.fold" -> ok C_SET_FOLD
| "set_fold" -> ok C_SET_FOLD (* Deprecated *)
(* Map module *)
| "get_force" -> ok C_MAP_FIND (* Deprecated *)
| "map_get" -> ok C_MAP_FIND_OPT (* Deprecated *)
| "Map.find_opt" -> ok C_MAP_FIND_OPT
| "Map.update" -> ok C_MAP_UPDATE
| "map_update" -> ok C_MAP_UPDATE (* Deprecated *)
| "map_remove" -> ok C_MAP_REMOVE (* Deprecated *)
| "Map.iter" -> ok C_MAP_ITER
| "map_iter" -> ok C_MAP_ITER (* Deprecated *)
| "Map.map" -> ok C_MAP_MAP
| "map_map" -> ok C_MAP_MAP (* Deprecated *)
| "Map.fold" -> ok C_MAP_FOLD
| "map_fold" -> ok C_MAP_FOLD (* Deprecated *)
| "Map.mem" -> ok C_MAP_MEM
| "map_mem" -> ok C_MAP_MEM (* Deprecated *)
| "Map.size" -> ok C_SIZE
| "map_size" -> ok C_SIZE (* Deprecated *)
(* Big_map module *)
| "Big_map.find_opt" -> ok C_MAP_FIND_OPT
| "Big_map.update" -> ok C_MAP_UPDATE
| "Big_map.literal" -> ok C_BIG_MAP_LITERAL
| "Big_map.empty" -> ok C_BIG_MAP_EMPTY
| "Big_map.size" -> ok C_SIZE
| "Big_map.mem" -> ok C_MAP_MEM
| "Big_map.iter" -> ok C_MAP_ITER
| "Big_map.map" -> ok C_MAP_MAP
| "Big_map.fold" -> ok C_MAP_FOLD
| "Big_map.remove" -> ok C_MAP_REMOVE
(* Bitwise module *)
| "Bitwise.or" -> ok C_OR
| "bitwise_or" -> ok C_OR (* Deprecated *)
| "Bitwise.and" -> ok C_AND
| "bitwise_and" -> ok C_AND (* Deprecated *)
| "Bitwise.xor" -> ok C_XOR
| "bitwise_xor" -> ok C_XOR (* Deprecated *)
| "Bitwise.shift_left" -> ok C_LSL
| "bitwise_lsl" -> ok C_LSL (* Deprecated *)
| "Bitwise.shift_right" -> ok C_LSR
| "bitwise_lsr" -> ok C_LSR (* Deprecated *)
(* String module *)
| "String.length" -> ok C_SIZE
| "String.size" -> ok C_SIZE
| "String.slice" -> ok C_SLICE
| "string_slice" -> ok C_SLICE (* Deprecated *)
| "String.sub" -> ok C_SLICE
| "String.concat" -> ok C_CONCAT
| "string_concat" -> ok C_CONCAT (* Deprecated *)
(* Others *)
| "assert" -> ok C_ASSERTION
| "size" -> ok C_SIZE (* Deprecated *)
| _ -> simple_fail "Not a PascaLIGO built-in."
let type_constants = type_constants
let type_operators = type_operators
@ -147,29 +248,78 @@ module Simplify = struct
module Cameligo = struct
let constants = function
| "assert" -> ok C_ASSERTION
| "chain_id" -> ok C_CHAIN_ID
| "Current.balance" -> ok C_BALANCE
| "balance" -> ok C_BALANCE
| "Current.time" -> ok C_NOW
| "time" -> ok C_NOW
| "Current.amount" -> ok C_AMOUNT
| "amount" -> ok C_AMOUNT
| "Current.sender" -> ok C_SENDER
| "Current.address" -> ok C_ADDRESS
| "Current.self_address" -> ok C_SELF_ADDRESS
| "Current.implicit_account" -> ok C_IMPLICIT_ACCOUNT
| "sender" -> ok C_SENDER
| "Current.source" -> ok C_SOURCE
| "source" -> ok C_SOURCE
| "Current.failwith" -> ok C_FAILWITH
(* Tezos (ex-Michelson, ex-Current, ex-Operation) *)
| "Tezos.chain_id" -> ok C_CHAIN_ID
| "chain_id" -> ok C_CHAIN_ID (* Deprecated *)
| "Tezos.balance" -> ok C_BALANCE
| "Current.balance" -> ok C_BALANCE (* Deprecated *)
| "balance" -> ok C_BALANCE (* Deprecated *)
| "Tezos.now" -> ok C_NOW
| "Current.time" -> ok C_NOW (* Deprecated *)
| "time" -> ok C_NOW (* Deprecated *)
| "Tezos.amount" -> ok C_AMOUNT
| "Current.amount" -> ok C_AMOUNT (* Deprecated *)
| "amount" -> ok C_AMOUNT (* Deprecated *)
| "Tezos.sender" -> ok C_SENDER
| "Current.sender" -> ok C_SENDER (* Deprecated *)
| "sender" -> ok C_SENDER (* Deprecated *)
| "Tezos.address" -> ok C_ADDRESS
| "Current.address" -> ok C_ADDRESS (* Deprecated *)
| "Tezos.self_address" -> ok C_SELF_ADDRESS
| "Current.self_address" -> ok C_SELF_ADDRESS (* Deprecated *)
| "Tezos.implicit_account" -> ok C_IMPLICIT_ACCOUNT
| "Current.implicit_account" -> ok C_IMPLICIT_ACCOUNT (* Deprecated *)
| "Tezos.source" -> ok C_SOURCE
| "Current.source" -> ok C_SOURCE (* Deprecated *)
| "source" -> ok C_SOURCE (* Deprecated *)
| "Tezos.failwith" -> ok C_FAILWITH
| "Current.failwith" -> ok C_FAILWITH (* Deprecated *)
| "failwith" -> ok C_FAILWITH
| "Tezos.transaction" -> ok C_CALL
| "Operation.transaction" -> ok C_CALL (* Deprecated *)
| "Tezos.set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
| "Operation.set_delegate" -> ok C_SET_DELEGATE (* Deprecated *)
| "Operation.get_contract" -> ok C_CONTRACT (* Deprecated *)
| "Tezos.get_contract_opt" -> ok C_CONTRACT_OPT
| "Operation.get_contract_opt" -> ok C_CONTRACT_OPT (* Deprecated *)
| "Operation.get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT (* Deprecated *)
| "Tezos.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
| "Operation.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT (* Deprecated *)
| "Michelson.is_nat" -> ok C_IS_NAT (* Deprecated *)
| "is_nat" -> ok C_IS_NAT
| "int" -> ok C_INT
| "abs" -> ok C_ABS
| "unit" -> ok C_UNIT
| "NEG" -> ok C_NEG
| "ADD" -> ok C_ADD
| "SUB" -> ok C_SUB
| "TIMES" -> ok C_MUL
| "DIV" -> ok C_DIV
| "MOD" -> ok C_MOD
| "EQ" -> ok C_EQ
| "NOT" -> ok C_NOT
| "AND" -> ok C_AND
| "OR" -> ok C_OR
| "GT" -> ok C_GT
| "GE" -> ok C_GE
| "LT" -> ok C_LT
| "LE" -> ok C_LE
| "CONS" -> ok C_CONS
| "NEQ" -> ok C_NEQ
(* Crypto module *)
| "Crypto.check" -> ok C_CHECK_SIGNATURE
| "Crypto.hash_key" -> ok C_HASH_KEY
| "Crypto.blake2b" -> ok C_BLAKE2b
| "Crypto.sha256" -> ok C_SHA256
| "Crypto.sha512" -> ok C_SHA512
| "Crypto.hash_key" -> ok C_HASH_KEY
| "Crypto.check" -> ok C_CHECK_SIGNATURE
(* Bytes module *)
| "Bytes.pack" -> ok C_BYTES_PACK
| "Bytes.unpack" -> ok C_BYTES_UNPACK
@ -179,6 +329,16 @@ module Simplify = struct
| "Bytes.slice" -> ok C_SLICE
| "Bytes.sub" -> ok C_SLICE
(* List module *)
| "List.length" -> ok C_SIZE
| "List.size" -> ok C_SIZE
| "List.iter" -> ok C_LIST_ITER
| "List.map" -> ok C_LIST_MAP
| "List.fold" -> ok C_LIST_FOLD
(* Set module *)
| "Set.mem" -> ok C_SET_MEM
| "Set.iter" -> ok C_SET_ITER
| "Set.empty" -> ok C_SET_EMPTY
@ -188,8 +348,10 @@ module Simplify = struct
| "Set.fold" -> ok C_SET_FOLD
| "Set.size" -> ok C_SIZE
(* Map module *)
| "Map.find_opt" -> ok C_MAP_FIND_OPT
| "Map.find" -> ok C_MAP_FIND
| "Map.find" -> ok C_MAP_FIND (* Deprecated *)
| "Map.update" -> ok C_MAP_UPDATE
| "Map.add" -> ok C_MAP_ADD
| "Map.remove" -> ok C_MAP_REMOVE
@ -201,6 +363,8 @@ module Simplify = struct
| "Map.literal" -> ok C_MAP_LITERAL
| "Map.size" -> ok C_SIZE
(* Big_map module *)
| "Big_map.find_opt" -> ok C_MAP_FIND_OPT
| "Big_map.find" -> ok C_MAP_FIND
| "Big_map.update" -> ok C_MAP_UPDATE
@ -209,57 +373,38 @@ module Simplify = struct
| "Big_map.literal" -> ok C_BIG_MAP_LITERAL
| "Big_map.empty" -> ok C_BIG_MAP_EMPTY
| "Bitwise.lor" -> ok C_OR
| "Bitwise.land" -> ok C_AND
| "Bitwise.lxor" -> ok C_XOR
(* Bitwise module *)
| "Bitwise.or" -> ok C_OR
| "Bitwise.lor" -> ok C_OR (* Deprecated *)
| "Bitwise.and" -> ok C_AND
| "Bitwise.land" -> ok C_AND (* Deprecated *)
| "Bitwise.xor" -> ok C_XOR
| "Bitwise.lxor" -> ok C_XOR (* Deprecated *)
| "Bitwise.shift_left" -> ok C_LSL
| "Bitwise.shift_right" -> ok C_LSR
(* String module *)
| "String.length" -> ok C_SIZE
| "String.size" -> ok C_SIZE
| "String.slice" -> ok C_SLICE
| "String.sub" -> ok C_SLICE
| "String.concat" -> ok C_CONCAT
| "List.length" -> ok C_SIZE
| "List.size" -> ok C_SIZE
| "List.iter" -> ok C_LIST_ITER
| "List.map" -> ok C_LIST_MAP
| "List.fold" -> ok C_LIST_FOLD
(* Loop module *)
| "Loop.fold_while" -> ok C_FOLD_WHILE
| "continue" -> ok C_CONTINUE
| "stop" -> ok C_STOP
| "Loop.continue" -> ok C_CONTINUE
| "continue" -> ok C_CONTINUE (* Deprecated *)
| "Loop.stop" -> ok C_STOP
| "stop" -> ok C_STOP (* Deprecated *)
| "Operation.transaction" -> ok C_CALL
| "Operation.set_delegate" -> ok C_SET_DELEGATE
| "Operation.get_contract" -> ok C_CONTRACT
| "Operation.get_contract_opt" -> ok C_CONTRACT_OPT
| "Operation.get_entrypoint" -> ok C_CONTRACT_ENTRYPOINT
| "Operation.get_entrypoint_opt" -> ok C_CONTRACT_ENTRYPOINT_OPT
| "int" -> ok C_INT
| "abs" -> ok C_ABS
| "unit" -> ok C_UNIT
(* Others *)
| "NEG" -> ok C_NEG
| "ADD" -> ok C_ADD
| "SUB" -> ok C_SUB
| "TIMES" -> ok C_MUL
| "DIV" -> ok C_DIV
| "MOD" -> ok C_MOD
| "EQ" -> ok C_EQ
| "NOT" -> ok C_NOT
| "AND" -> ok C_AND
| "OR" -> ok C_OR
| "GT" -> ok C_GT
| "GE" -> ok C_GE
| "LT" -> ok C_LT
| "LE" -> ok C_LE
| "CONS" -> ok C_CONS
| "NEQ" -> ok C_NEQ
| "assert" -> ok C_ASSERTION
| "Michelson.is_nat" -> ok C_IS_NAT
| _ -> simple_fail "Not a constant"
| _ -> simple_fail "Not a CameLIGO built-in."
let type_constants = type_constants
let type_operators = type_operators
@ -821,19 +966,19 @@ module Typer = struct
let%bind key = get_t_set set in
if eq_1 elt key
then ok @@ t_bool ()
else fail @@ Operator_errors.type_error "Set_mem: elt and set don't match" elt key ()
else fail @@ Operator_errors.type_error "Set.mem: elt and set don't match" elt key ()
let set_add = typer_2 "SET_ADD" @@ fun elt set ->
let%bind key = get_t_set set in
if eq_1 elt key
then ok set
else fail @@ Operator_errors.type_error "Set_add: elt and set don't match" elt key ()
else fail @@ Operator_errors.type_error "Set.add: elt and set don't match" elt key ()
let set_remove = typer_2 "SET_REMOVE" @@ fun elt set ->
let%bind key = get_t_set set in
if eq_1 elt key
then ok set
else fail @@ Operator_errors.type_error "Set_remove: elt and set don't match" key elt ()
else fail @@ Operator_errors.type_error "Set.remove: elt and set don't match" key elt ()
let set_iter = typer_2 "SET_ITER" @@ fun body set ->
let%bind (arg , res) = get_t_function body in

View File

@ -1,11 +1,7 @@
// Test PascaLIGO bitwise operators
function or_op (const n : nat) : nat is bitwise_or (n, 4n)
function and_op (const n : nat) : nat is bitwise_and (n, 7n)
function xor_op (const n : nat) : nat is bitwise_xor (n, 7n)
function lsl_op (const n : nat) : nat is bitwise_lsl (n, 7n)
function lsr_op (const n : nat) : nat is bitwise_lsr (n, 7n)
function or_op (const n : nat) : nat is Bitwise.or (n, 4n)
function and_op (const n : nat) : nat is Bitwise.and (n, 7n)
function xor_op (const n : nat) : nat is Bitwise.xor (n, 7n)
function lsl_op (const n : nat) : nat is Bitwise.shift_left (n, 7n)
function lsr_op (const n : nat) : nat is Bitwise.shift_right (n, 7n)

View File

@ -1,7 +1,7 @@
(* Test CameLIGO bitwise operators *)
let or_op (n: nat) : nat = Bitwise.lor n 4n
let and_op (n: nat) : nat = Bitwise.land n 7n
let xor_op (n: nat) : nat = Bitwise.lxor n 7n
let or_op (n: nat) : nat = Bitwise.or n 4n
let and_op (n: nat) : nat = Bitwise.and n 7n
let xor_op (n: nat) : nat = Bitwise.xor n 7n
let lsl_op (n: nat) : nat = Bitwise.shift_left n 7n
let lsr_op (n: nat) : nat = Bitwise.shift_right n 7n

View File

@ -1,7 +1,7 @@
/* Test ReasonLigo bitwise operators */
let or_op = (n: nat): nat => Bitwise.lor(n, 4n);
let and_op = (n: nat): nat => Bitwise.land(n, 7n);
let xor_op = (n: nat): nat => Bitwise.lxor(n, 7n);
let lsl_op = (n: nat) : nat => Bitwise.shift_left(n, 7n);
let lsr_op = (n: nat) : nat => Bitwise.shift_right(n, 7n);
let or_op = (n : nat) : nat => Bitwise.or (n, 4n);
let and_op = (n : nat) : nat => Bitwise.and (n, 7n);
let xor_op = (n : nat) : nat => Bitwise.xor (n, 7n);
let lsl_op = (n : nat) : nat => Bitwise.shift_left (n, 7n);
let lsr_op = (n : nat) : nat => Bitwise.shift_right (n, 7n);