Refactoring of the parser and AST so "let" constructs bind

exactly one variable. (Unfinished)

Fixed minor error in error printing in Lexer.

Added test in ParseMain.ml on --verbose=parser.
This commit is contained in:
Christian Rinderknecht 2019-05-22 19:38:09 +02:00
parent 331b11dcca
commit 24a1068dd4
No known key found for this signature in database
GPG Key ID: 9446816CFD267040
9 changed files with 259 additions and 104 deletions

View File

@ -116,7 +116,7 @@ and declaration =
(* Non-recursive values *) (* Non-recursive values *)
and let_binding = { and let_binding = {
pattern : pattern; variable : variable;
lhs_type : (colon * type_expr) option; lhs_type : (colon * type_expr) option;
eq : equal; eq : equal;
let_rhs : expr let_rhs : expr
@ -320,11 +320,18 @@ and 'a case_clause = {
and let_in = { and let_in = {
kwd_let : kwd_let; kwd_let : kwd_let;
binding : let_binding; binding : let_in_binding;
kwd_in : kwd_in; kwd_in : kwd_in;
body : expr body : expr
} }
and let_in_binding = {
pattern : pattern;
lhs_type : (colon * type_expr) option;
eq : equal;
let_rhs : expr
}
and fun_expr = { and fun_expr = {
kwd_fun : kwd_fun; kwd_fun : kwd_fun;
param : variable; param : variable;
@ -345,16 +352,27 @@ and conditional = {
let sprintf = Printf.sprintf let sprintf = Printf.sprintf
let region_of_type_expr = function
TProd {region; _}
| TSum {region; _}
| TRecord {region; _}
| TApp {region; _}
| TFun {region; _}
| TPar {region; _}
| TAlias {region; _} -> region
let region_of_list_pattern = function let region_of_list_pattern = function
Sugar {region; _} | PCons {region; _} -> region Sugar {region; _} | PCons {region; _} -> region
let region_of_pattern = function let region_of_pattern = function
PList p -> region_of_list_pattern p PList p -> region_of_list_pattern p
| PTuple {region;_} | PVar {region;_} | PTuple {region;_} | PVar {region;_}
| PUnit {region;_} | PInt {region;_} | PTrue region | PFalse region | PUnit {region;_} | PInt {region;_}
| PTrue region | PFalse region
| PString {region;_} | PWild region | PString {region;_} | PWild region
| PConstr {region; _} | PPar {region;_} | PRecord {region; _} | PConstr {region; _} | PPar {region;_}
| PTyped {region; _} -> region | PRecord {region; _} | PTyped {region; _} -> region
let region_of_bool_expr = function let region_of_bool_expr = function
Or {region;_} | And {region;_} Or {region;_} | And {region;_}
@ -472,9 +490,9 @@ and print_type_par {value={lpar;inside=t;rpar}; _} =
print_type_expr t; print_type_expr t;
print_token rpar ")" print_token rpar ")"
and print_projection Region.{value; _} = and print_projection node =
let {struct_name; selector; field_path} = value in let {struct_name; selector; field_path} = node in
print_uident struct_name; print_var struct_name;
print_token selector "."; print_token selector ".";
print_nsepseq "." print_selection field_path print_nsepseq "." print_selection field_path
@ -532,7 +550,17 @@ and print_terminator = function
Some semi -> print_token semi ";" Some semi -> print_token semi ";"
| None -> () | None -> ()
and print_let_binding {pattern; lhs_type; eq; let_rhs} = and print_let_binding {variable; lhs_type; eq; let_rhs} =
print_var variable;
(match lhs_type with
None -> ()
| Some (colon, type_expr) ->
print_token colon ":";
print_type_expr type_expr);
(print_token eq "="; print_expr let_rhs)
and print_let_in_binding (bind: let_in_binding) =
let {pattern; lhs_type; eq; let_rhs} : let_in_binding = bind in
print_pattern pattern; print_pattern pattern;
(match lhs_type with (match lhs_type with
None -> () None -> ()
@ -603,7 +631,7 @@ and print_expr = function
| ECall {value=f,l; _} -> | ECall {value=f,l; _} ->
print_expr f; Utils.nseq_iter print_expr l print_expr f; Utils.nseq_iter print_expr l
| EVar v -> print_var v | EVar v -> print_var v
| EProj p -> print_projection p | EProj p -> print_projection p.value
| EUnit {value=lpar,rpar; _} -> | EUnit {value=lpar,rpar; _} ->
print_token lpar "("; print_token rpar ")" print_token lpar "("; print_token rpar ")"
| EBytes b -> print_bytes b | EBytes b -> print_bytes b
@ -717,9 +745,10 @@ and print_case_clause {value; _} =
print_token arrow "->"; print_token arrow "->";
print_expr rhs print_expr rhs
and print_let_in {kwd_let; binding; kwd_in; body} = and print_let_in (bind: let_in) =
let {kwd_let; binding; kwd_in; body} = bind in
print_token kwd_let "let"; print_token kwd_let "let";
print_let_binding binding; print_let_in_binding binding;
print_token kwd_in "in"; print_token kwd_in "in";
print_expr body print_expr body

View File

@ -118,14 +118,14 @@ and ast = t
and eof = Region.t and eof = Region.t
and declaration = and declaration =
Let of (kwd_let * let_binding) reg (* let p = e *) Let of (kwd_let * let_binding) reg (* let x = e *)
| LetEntry of (kwd_let_entry * let_binding) reg (* let%entry p = e *) | LetEntry of (kwd_let_entry * let_binding) reg (* let%entry x = e *)
| TypeDecl of type_decl reg (* type ... *) | TypeDecl of type_decl reg (* type ... *)
(* Non-recursive values *) (* Non-recursive values *)
and let_binding = { (* p = e p : t = e *) and let_binding = { (* p = e p : t = e *)
pattern : pattern; variable : variable;
lhs_type : (colon * type_expr) option; lhs_type : (colon * type_expr) option;
eq : equal; eq : equal;
let_rhs : expr let_rhs : expr
@ -329,11 +329,18 @@ and 'a case_clause = {
and let_in = { and let_in = {
kwd_let : kwd_let; kwd_let : kwd_let;
binding : let_binding; binding : let_in_binding;
kwd_in : kwd_in; kwd_in : kwd_in;
body : expr body : expr
} }
and let_in_binding = {
pattern : pattern;
lhs_type : (colon * type_expr) option;
eq : equal;
let_rhs : expr
}
and fun_expr = { and fun_expr = {
kwd_fun : kwd_fun; kwd_fun : kwd_fun;
param : variable; param : variable;
@ -471,6 +478,7 @@ val print_tokens : (*?undo:bool ->*) ast -> unit
val region_of_pattern : pattern -> Region.t val region_of_pattern : pattern -> Region.t
val region_of_expr : expr -> Region.t val region_of_expr : expr -> Region.t
val region_of_type_expr : type_expr -> Region.t
(* Simplifications *) (* Simplifications *)
@ -479,3 +487,7 @@ val region_of_expr : expr -> Region.t
contains. *) contains. *)
val unpar : expr -> expr val unpar : expr -> expr
(* TODO *)
val print_projection : projection -> unit

View File

@ -27,8 +27,7 @@ let help () =
print_endline " (default: <input>.ml)"; print_endline " (default: <input>.ml)";
print_endline " -e, --eval Interpret <input>.mml or stdin"; print_endline " -e, --eval Interpret <input>.mml or stdin";
print_endline " --raw-edits Do not optimise translation edits"; print_endline " --raw-edits Do not optimise translation edits";
print_endline " --verbose=<phases> Colon-separated phases: cmdline, lexer,"; print_endline " --verbose=<phases> Colon-separated phases: cmdline, lexer, parser";
print_endline " parser, unparsing, norm, eval";
print_endline " --version Short commit hash on stdout"; print_endline " --version Short commit hash on stdout";
print_endline " -h, --help This help"; print_endline " -h, --help This help";
exit 0 exit 0

View File

@ -414,7 +414,7 @@ let get_token ?log =
(* TODO: Move out (functor). See LIGO. *) (* TODO: Move out (functor). See LIGO. *)
let format_error ~(kind: string) Region.{region; value=msg} = let format_error ~(kind: string) Region.{region; value=msg} =
sprintf "%s error in %s:\n%s%!" sprintf "%s error %s:\n%s%!"
kind (region#to_string `Byte) msg kind (region#to_string `Byte) msg
let prerr ~(kind: string) msg = let prerr ~(kind: string) msg =

View File

@ -3,11 +3,104 @@
open AST open AST
(* Rewrite "let pattern = e" as "let x = e;; let x1 = ...;; let x2 = ...;;" *)
module VMap = Utils.String.Map
let ghost_of value = Region.{region=ghost; value}
let ghost = Region.ghost
let mk_component rank =
let num = string_of_int rank, Z.of_int rank in
let par = {lpar=ghost; inside = ghost_of num; rpar=ghost}
in Component (ghost_of par)
let rec mk_field_path (rank, tail) =
let head = mk_component rank in
match tail with
[] -> head, []
| hd::tl -> mk_field_path (hd,tl) |> Utils.nsepseq_cons head ghost
let mk_projection (fresh : variable) (path : int Utils.nseq) =
{struct_name = fresh;
selector = ghost;
field_path = Utils.nsepseq_rev (mk_field_path path)}
let rec sub_rec fresh path (map, rank) pattern =
let path' = Utils.nseq_cons rank path in
let map' = split fresh map path' pattern
in map', rank+1
and split fresh map path = function
PTuple t -> let apply = sub_rec fresh path in
Utils.nsepseq_foldl apply (map,1) t.value |> fst
| PPar p -> split fresh map path p.value.inside
| PVar v -> if VMap.mem v.value map
then let err = Region.{value="Non-linear pattern.";
region=v.region}
in (Lexer.prerr ~kind:"Syntactical" err; exit 1)
else VMap.add v.value (mk_projection fresh path) map
| PWild _ -> map
| PUnit _ -> map (* TODO *)
| PConstr {region; _}
| PTyped {region; _} ->
let err = Region.{value="Not implemented yet."; region}
in (Lexer.prerr ~kind:"Syntactical" err; exit 1)
| _ -> assert false
let rec split_pattern = function
PPar p -> split_pattern p.value.inside
| PTyped {value=p; _} ->
let var', type', map = split_pattern p.pattern in
(match type' with
None -> var', Some p.type_expr, map
| Some t when t = p.type_expr -> var', Some t, map (* hack *)
| Some t ->
let reg = AST.region_of_type_expr t in
let reg = reg#to_string `Byte in
let value =
Printf.sprintf "Unification with %s is not\
implemented." reg in
let region = AST.region_of_type_expr p.type_expr in
let err = Region.{value; region} in
(Lexer.prerr ~kind:"Syntactical" err; exit 1))
| PConstr {region; _} (* TODO *)
| PRecord {region; _} ->
let err = Region.{value="Not implemented yet."; region}
in (Lexer.prerr ~kind:"Syntactical" err; exit 1)
| PUnit _ ->
let fresh = Utils.gen_sym () |> ghost_of in
let unit = TAlias (ghost_of "unit")
in fresh, Some unit, VMap.empty
| PVar v -> v, None, VMap.empty
| PWild _ -> Utils.gen_sym () |> ghost_of, None, VMap.empty
| PInt {region;_} | PTrue region
| PFalse region | PString {region;_}
| PList Sugar {region; _} | PList PCons {region; _} ->
let err = Region.{value="Incomplete pattern."; region}
in (Lexer.prerr ~kind:"Syntactical" err; exit 1)
| PTuple t ->
let fresh = Utils.gen_sym () |> ghost_of
and init = VMap.empty, 1 in
let apply (map, rank) pattern =
split fresh map (rank,[]) pattern, rank+1 in
let map = Utils.nsepseq_foldl apply init t.value |> fst
in fresh, None, map
let mk_let_bindings =
let apply var proj let_bindings =
let new_bind : let_binding = {
variable = ghost_of var;
lhs_type = None;
eq = ghost;
let_rhs = EProj (ghost_of proj)} in
let new_let = Let (ghost_of (ghost, new_bind))
in Utils.nseq_cons new_let let_bindings
in VMap.fold apply
(* We rewrite "fun p -> e" into "fun x -> match x with p -> e" *) (* We rewrite "fun p -> e" into "fun x -> match x with p -> e" *)
let norm_fun_expr patterns expr = let norm_fun_expr patterns expr =
let ghost_of value = Region.{region=ghost; value} in
let ghost = Region.ghost in
let apply pattern expr = let apply pattern expr =
match pattern with match pattern with
PVar var -> PVar var ->
@ -15,8 +108,8 @@ let norm_fun_expr patterns expr =
kwd_fun = ghost; kwd_fun = ghost;
param = var; param = var;
arrow = ghost; arrow = ghost;
body = expr} in body = expr}
EFun (ghost_of fun_expr) in EFun (ghost_of fun_expr)
| _ -> let fresh = Utils.gen_sym () |> ghost_of in | _ -> let fresh = Utils.gen_sym () |> ghost_of in
let clause = {pattern; arrow=ghost; rhs=expr} in let clause = {pattern; arrow=ghost; rhs=expr} in
let clause = ghost_of clause in let clause = ghost_of clause in
@ -37,17 +130,6 @@ let norm_fun_expr patterns expr =
in EFun (ghost_of fun_expr) in EFun (ghost_of fun_expr)
in Utils.nseq_foldr apply patterns expr in Utils.nseq_foldr apply patterns expr
(*
let norm_fun_expr patterns expr =
let apply pattern expr =
let fun_expr = {
kwd_fun = Region.ghost;
param = pattern;
arrow = Region.ghost;
body = expr} in
EFun {region=Region.ghost; value=fun_expr}
in Utils.nseq_foldr apply patterns expr
*)
(* END HEADER *) (* END HEADER *)
%} %}
@ -172,7 +254,7 @@ sepseq(item,sep):
type_name : ident { $1 } type_name : ident { $1 }
field_name : ident { $1 } field_name : ident { $1 }
module_name : constr { $1 } module_name : constr { $1 }
struct_name : Ident { $1 } struct_name : ident { $1 }
(* Non-empty comma-separated values (at least two values) *) (* Non-empty comma-separated values (at least two values) *)
@ -191,12 +273,17 @@ list_of(item):
(* Main *) (* Main *)
program: program:
nseq(declaration) eof { {decl=$1; eof=$2} } declarations eof { {decl = Utils.nseq_rev $1; eof=$2} }
declarations:
declaration { $1 }
| declaration declarations {
Utils.(nseq_foldl (fun x y -> nseq_cons y x) $2 $1) }
declaration: declaration:
reg(kwd(Let) let_binding {$1,$2}) { Let $1 } reg(kwd(LetEntry) entry_binding {$1,$2}) { LetEntry $1, [] }
| reg(kwd(LetEntry) let_binding {$1,$2}) { LetEntry $1 } | reg(type_decl) { TypeDecl $1, [] }
| reg(type_decl) { TypeDecl $1 } | let_declaration { $1 }
(* Type declarations *) (* Type declarations *)
@ -227,8 +314,8 @@ core_type:
let arg, constr = $1.value in let arg, constr = $1.value in
let Region.{value=arg_val; _} = arg in let Region.{value=arg_val; _} = arg in
let lpar, rpar = Region.ghost, Region.ghost in let lpar, rpar = Region.ghost, Region.ghost in
let arg_val = {lpar; inside=arg_val,[]; rpar} in let value = {lpar; inside=arg_val,[]; rpar} in
let arg = {arg with value=arg_val} in let arg = {arg with value} in
TApp Region.{$1 with value = constr, arg} TApp Region.{$1 with value = constr, arg}
} }
| reg(type_tuple type_constr {$1,$2}) { | reg(type_tuple type_constr {$1,$2}) {
@ -236,8 +323,8 @@ core_type:
TApp Region.{$1 with value = constr, arg} TApp Region.{$1 with value = constr, arg}
} }
| par(cartesian) { | par(cartesian) {
let Region.{region; value={lpar; inside=prod; rpar}} = $1 in let Region.{value={inside=prod; _}; _} = $1 in
TPar Region.{region; value={lpar; inside = TProd prod; rpar}} } TPar {$1 with value={$1.value with inside = TProd prod}} }
type_projection: type_projection:
type_name { type_name {
@ -277,15 +364,46 @@ field_decl:
field_name colon type_expr { field_name colon type_expr {
{field_name=$1; colon=$2; field_type=$3} } {field_name=$1; colon=$2; field_type=$3} }
(* Non-recursive definitions *) (* Entry points *)
entry_binding:
ident nseq(sub_irrefutable) type_annotation? eq expr {
let let_rhs = norm_fun_expr $2 $5 in
{variable = $1; lhs_type=$3; eq=$4; let_rhs} : let_binding
}
| ident type_annotation? eq fun_expr(expr) {
{variable = $1; lhs_type=$2; eq=$3; let_rhs=$4} : let_binding }
(* Top-level non-recursive definitions *)
let_declaration:
reg(kwd(Let) let_binding {$1,$2}) {
let kwd_let, (binding, map) = $1.value in
let let0 = Let {$1 with value = kwd_let, binding}
in mk_let_bindings map (let0,[])
}
let_binding: let_binding:
ident nseq(sub_irrefutable) type_annotation? eq expr { ident nseq(sub_irrefutable) type_annotation? eq expr {
let let_rhs = norm_fun_expr $2 $5 in let let_rhs = norm_fun_expr $2 $5 in
{pattern = PVar $1; lhs_type=$3; eq = Region.ghost; let_rhs} let map = VMap.empty in
({variable=$1; lhs_type=$3; eq=$4; let_rhs}: let_binding), map
} }
| irrefutable type_annotation? eq expr { | irrefutable type_annotation? eq expr {
{pattern=$1; lhs_type=$2; eq=$3; let_rhs=$4} } let variable, type_opt, map = split_pattern $1 in
({variable; lhs_type=$2; eq=$3; let_rhs=$4}: let_binding), map }
(* TODO *)
let_in_binding:
ident nseq(sub_irrefutable) type_annotation? eq expr {
let let_rhs = norm_fun_expr $2 $5 in
{pattern = PVar $1; lhs_type=$3; eq=$4; let_rhs}: let_in_binding
}
| irrefutable type_annotation? eq expr {
let variable, type_opt, map = split_pattern $1 in
{pattern = PVar variable; lhs_type=$2; eq=$3; let_rhs=$4}
: let_in_binding }
type_annotation: type_annotation:
colon type_expr { $1,$2 } colon type_expr { $1,$2 }
@ -303,8 +421,7 @@ sub_irrefutable:
| par(closed_irrefutable) { PPar $1 } | par(closed_irrefutable) { PPar $1 }
closed_irrefutable: closed_irrefutable:
reg(tuple(sub_irrefutable)) { PTuple $1 } irrefutable { $1 }
| sub_irrefutable { $1 }
| reg(constr_pattern) { PConstr $1 } | reg(constr_pattern) { PConstr $1 }
| reg(typed_pattern) { PTyped $1 } | reg(typed_pattern) { PTyped $1 }
@ -384,11 +501,10 @@ conditional(right_expr):
if_then(right_expr): if_then(right_expr):
kwd(If) expr kwd(Then) right_expr { kwd(If) expr kwd(Then) right_expr {
let open Region in
let the_unit = ghost, ghost in let the_unit = ghost, ghost in
let ifnot = EUnit {region=ghost; value=the_unit} in let ifnot = EUnit {region=ghost; value=the_unit} in
{kwd_if=$1; test=$2; kwd_then=$3; ifso=$4; {kwd_if=$1; test=$2; kwd_then=$3; ifso=$4;
kwd_else=Region.ghost; ifnot} } kwd_else=ghost; ifnot} }
if_then_else(right_expr): if_then_else(right_expr):
kwd(If) expr kwd(Then) closed_if kwd(Else) right_expr { kwd(If) expr kwd(Then) closed_if kwd(Else) right_expr {
@ -414,13 +530,12 @@ match_expr(right_expr):
closing = End Region.ghost} closing = End Region.ghost}
} }
| kwd(MatchNat) expr kwd(With) vbar? reg(cases(right_expr)) { | kwd(MatchNat) expr kwd(With) vbar? reg(cases(right_expr)) {
let open Region in
let cases = Utils.nsepseq_rev $5.value in let cases = Utils.nsepseq_rev $5.value in
let cast = EVar {region=ghost; value="assert_pos"} in let cast = EVar {region=ghost; value="assert_pos"} in
let cast = ECall {region=ghost; value=cast,($2,[])} in let cast = ECall {region=ghost; value=cast,($2,[])} in
{kwd_match = $1; expr = cast; opening = With $3; {kwd_match = $1; expr = cast; opening = With $3;
lead_vbar = $4; cases = {$5 with value=cases}; lead_vbar = $4; cases = {$5 with value=cases};
closing = End Region.ghost} } closing = End ghost} }
cases(right_expr): cases(right_expr):
reg(case_clause(right_expr)) { $1, [] } reg(case_clause(right_expr)) { $1, [] }
@ -431,7 +546,7 @@ case_clause(right_expr):
pattern arrow right_expr { {pattern=$1; arrow=$2; rhs=$3} } pattern arrow right_expr { {pattern=$1; arrow=$2; rhs=$3} }
let_expr(right_expr): let_expr(right_expr):
reg(kwd(Let) let_binding kwd(In) right_expr {$1,$2,$3,$4}) { reg(kwd(Let) let_in_binding kwd(In) right_expr {$1,$2,$3,$4}) {
let Region.{region; value = kwd_let, binding, kwd_in, body} = $1 in let Region.{region; value = kwd_let, binding, kwd_in, body} = $1 in
let let_in = {kwd_let; binding; kwd_in; body} let let_in = {kwd_let; binding; kwd_in; body}
in ELetIn {region; value=let_in} } in ELetIn {region; value=let_in} }
@ -576,7 +691,7 @@ module_field:
module_name dot field_name { $1.value ^ "." ^ $3.value } module_name dot field_name { $1.value ^ "." ^ $3.value }
projection: projection:
reg(struct_name) dot nsepseq(selection,dot) { struct_name dot nsepseq(selection,dot) {
{struct_name = $1; selector = $2; field_path = $3} {struct_name = $1; selector = $2; field_path = $3}
} }
| reg(module_name dot field_name {$1,$3}) | reg(module_name dot field_name {$1,$3})

View File

@ -38,7 +38,8 @@ let tokeniser =
let () = let () =
try try
let ast = Parser.program tokeniser buffer in let ast = Parser.program tokeniser buffer in
AST.print_tokens ast if Utils.String.Set.mem "parser" options.verbose
then AST.print_tokens ast
with with
Lexer.Error diag -> Lexer.Error diag ->
close_in cin; Lexer.prerr ~kind:"Lexical" diag close_in cin; Lexer.prerr ~kind:"Lexical" diag

View File

@ -141,7 +141,7 @@ end
let gen_sym = let gen_sym =
let counter = ref 0 in let counter = ref 0 in
fun () -> incr counter; "v" ^ string_of_int !counter fun () -> incr counter; "#" ^ string_of_int !counter
(* General tracing function *) (* General tracing function *)

View File

@ -25,73 +25,73 @@ type ('a,'sep) sepseq = ('a,'sep) nsepseq option
(* Consing *) (* Consing *)
val nseq_cons: 'a -> 'a nseq -> 'a nseq val nseq_cons : 'a -> 'a nseq -> 'a nseq
val nsepseq_cons: 'a -> 'sep -> ('a,'sep) nsepseq -> ('a,'sep) nsepseq val nsepseq_cons : 'a -> 'sep -> ('a,'sep) nsepseq -> ('a,'sep) nsepseq
val sepseq_cons: 'a -> 'sep -> ('a,'sep) sepseq -> ('a,'sep) nsepseq val sepseq_cons : 'a -> 'sep -> ('a,'sep) sepseq -> ('a,'sep) nsepseq
(* Reversing *) (* Reversing *)
val nseq_rev: 'a nseq -> 'a nseq val nseq_rev : 'a nseq -> 'a nseq
val nsepseq_rev: ('a,'sep) nsepseq -> ('a,'sep) nsepseq val nsepseq_rev : ('a,'sep) nsepseq -> ('a,'sep) nsepseq
val sepseq_rev: ('a,'sep) sepseq -> ('a,'sep) sepseq val sepseq_rev : ('a,'sep) sepseq -> ('a,'sep) sepseq
(* Rightwards iterators *) (* Rightwards iterators *)
val nseq_foldl: ('a -> 'b -> 'a) -> 'a -> 'b nseq -> 'a val nseq_foldl : ('a -> 'b -> 'a) -> 'a -> 'b nseq -> 'a
val nsepseq_foldl: ('a -> 'b -> 'a) -> 'a -> ('b,'c) nsepseq -> 'a val nsepseq_foldl : ('a -> 'b -> 'a) -> 'a -> ('b,'c) nsepseq -> 'a
val sepseq_foldl: ('a -> 'b -> 'a) -> 'a -> ('b,'c) sepseq -> 'a val sepseq_foldl : ('a -> 'b -> 'a) -> 'a -> ('b,'c) sepseq -> 'a
val nseq_iter: ('a -> unit) -> 'a nseq -> unit val nseq_iter : ('a -> unit) -> 'a nseq -> unit
val nsepseq_iter: ('a -> unit) -> ('a,'b) nsepseq -> unit val nsepseq_iter : ('a -> unit) -> ('a,'b) nsepseq -> unit
val sepseq_iter: ('a -> unit) -> ('a,'b) sepseq -> unit val sepseq_iter : ('a -> unit) -> ('a,'b) sepseq -> unit
(* Leftwards iterators *) (* Leftwards iterators *)
val nseq_foldr: ('a -> 'b -> 'b) -> 'a nseq -> 'b -> 'b val nseq_foldr : ('a -> 'b -> 'b) -> 'a nseq -> 'b -> 'b
val nsepseq_foldr: ('a -> 'b -> 'b) -> ('a,'c) nsepseq -> 'b -> 'b val nsepseq_foldr : ('a -> 'b -> 'b) -> ('a,'c) nsepseq -> 'b -> 'b
val sepseq_foldr: ('a -> 'b -> 'b) -> ('a,'c) sepseq -> 'b -> 'b val sepseq_foldr : ('a -> 'b -> 'b) -> ('a,'c) sepseq -> 'b -> 'b
(* Conversions to lists *) (* Conversions to lists *)
val nseq_to_list: 'a nseq -> 'a list val nseq_to_list : 'a nseq -> 'a list
val nsepseq_to_list: ('a,'b) nsepseq -> 'a list val nsepseq_to_list : ('a,'b) nsepseq -> 'a list
val sepseq_to_list: ('a,'b) sepseq -> 'a list val sepseq_to_list : ('a,'b) sepseq -> 'a list
(* Effectful symbol generator *) (* Effectful symbol generator *)
val gen_sym: unit -> string val gen_sym : unit -> string
(* General tracing function *) (* General tracing function *)
val trace: string -> out_channel option -> unit val trace : string -> out_channel option -> unit
(* Printing a string in red to standard error *) (* Printing a string in red to standard error *)
val highlight: string -> unit val highlight : string -> unit
(* Working with optional values *) (* Working with optional values *)
module Option: module Option:
sig sig
val apply: ('a -> 'b) -> 'a option -> 'b option val apply : ('a -> 'b) -> 'a option -> 'b option
val rev_apply: ('a -> 'a) option -> 'a -> 'a val rev_apply : ('a -> 'a) option -> 'a -> 'a
val to_string: string option -> string val to_string : string option -> string
end end
(* An extension to the standard module [String] *) (* An extension to the standard module [String] *)
module String: module String :
sig sig
include module type of String include module type of String
module Map: Map.S with type key = t module Map : Map.S with type key = t
module Set: Set.S with type elt = t module Set : Set.S with type elt = t
end end
(* Integer maps *) (* Integer maps *)
module Int: module Int :
sig sig
type t = int type t = int
module Map: Map.S with type key = t module Map : Map.S with type key = t
module Set: Set.S with type elt = t module Set : Set.S with type elt = t
end end

View File

@ -1 +0,0 @@
let version = "UNKNOWN"