Merge branch 'feature-cleanup-typer-12' into 'dev'
Split the solver into separate files, no meaningful changes to the code See merge request ligolang/ligo!647
This commit is contained in:
commit
2112e5dee7
31
src/passes/8-typer-new/README
Normal file
31
src/passes/8-typer-new/README
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
Components:
|
||||||
|
* assignments (passive data structure).
|
||||||
|
Now: just a map from unification vars to types (pb: what about partial types?)
|
||||||
|
maybe just local assignments (allow only vars as children of pair(α,β))
|
||||||
|
* constraint propagation: (buch of constraints) → (new constraints * assignments)
|
||||||
|
* sub-component: constraint selector (worklist / dynamic queries)
|
||||||
|
* sub-sub component: constraint normalizer: remove dupes and give structure
|
||||||
|
right now: union-find of unification vars
|
||||||
|
later: better database-like organisation of knowledge
|
||||||
|
* sub-sub component: lazy selector (don't re-try all selectors every time)
|
||||||
|
For now: just re-try everytime
|
||||||
|
* sub-component: propagation rule
|
||||||
|
For now: break pair(a, b) = pair(c, d) into a = c, b = d
|
||||||
|
* generalizer
|
||||||
|
For now: ?
|
||||||
|
|
||||||
|
Workflow:
|
||||||
|
Start with empty assignments and structured database
|
||||||
|
Receive a new constraint
|
||||||
|
For each normalizer:
|
||||||
|
Use the pre-selector to see if it can be applied
|
||||||
|
Apply the normalizer, get some new items to insert in the structured database
|
||||||
|
For each propagator:
|
||||||
|
Use the selector to query the structured database and see if it can be applied
|
||||||
|
Apply the propagator, get some new constraints and assignments
|
||||||
|
Add the new assignments to the data structure.
|
||||||
|
|
||||||
|
At some point (when?)
|
||||||
|
For each generalizer:
|
||||||
|
Use the generalizer's selector to see if it can be applied
|
||||||
|
Apply the generalizer to produce a new type, possibly with some ∀s injected
|
69
src/passes/8-typer-new/constraint_databases.ml
Normal file
69
src/passes/8-typer-new/constraint_databases.ml
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
module Map = RedBlackTrees.PolyMap
|
||||||
|
module UF = UnionFind.Poly2
|
||||||
|
open Ast_typed.Types
|
||||||
|
|
||||||
|
(* Light wrapper for API for grouped_by_variable in the structured
|
||||||
|
db, to access it modulo unification variable aliases. *)
|
||||||
|
let get_constraints_related_to : type_variable -> structured_dbs -> constraints =
|
||||||
|
fun variable dbs ->
|
||||||
|
let variable , aliases = UF.get_or_set variable dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in
|
||||||
|
match Map.find_opt variable dbs.grouped_by_variable with
|
||||||
|
Some l -> l
|
||||||
|
| None -> {
|
||||||
|
constructor = [] ;
|
||||||
|
poly = [] ;
|
||||||
|
tc = [] ;
|
||||||
|
}
|
||||||
|
let add_constraints_related_to : type_variable -> constraints -> structured_dbs -> structured_dbs =
|
||||||
|
fun variable c dbs ->
|
||||||
|
(* let (variable_repr , _height) , aliases = UF.get_or_set variable dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in *)
|
||||||
|
let variable_repr , aliases = UF.get_or_set variable dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in
|
||||||
|
let grouped_by_variable = Map.update variable_repr (function
|
||||||
|
None -> Some c
|
||||||
|
| Some (x : constraints) -> Some {
|
||||||
|
constructor = c.constructor @ x.constructor ;
|
||||||
|
poly = c.poly @ x.poly ;
|
||||||
|
tc = c.tc @ x.tc ;
|
||||||
|
})
|
||||||
|
dbs.grouped_by_variable
|
||||||
|
in
|
||||||
|
let dbs = { dbs with grouped_by_variable } in
|
||||||
|
dbs
|
||||||
|
|
||||||
|
let merge_constraints : type_variable -> type_variable -> structured_dbs -> structured_dbs =
|
||||||
|
fun variable_a variable_b dbs ->
|
||||||
|
(* get old representant for variable_a *)
|
||||||
|
let variable_repr_a , aliases = UF.get_or_set variable_a dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in
|
||||||
|
(* get old representant for variable_b *)
|
||||||
|
let variable_repr_b , aliases = UF.get_or_set variable_b dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in
|
||||||
|
|
||||||
|
(* alias variable_a and variable_b together *)
|
||||||
|
let aliases = UF.alias variable_a variable_b dbs.aliases in
|
||||||
|
let dbs = { dbs with aliases } in
|
||||||
|
|
||||||
|
(* Replace the two entries in grouped_by_variable by a single one *)
|
||||||
|
(
|
||||||
|
let get_constraints ab =
|
||||||
|
match Map.find_opt ab dbs.grouped_by_variable with
|
||||||
|
| Some x -> x
|
||||||
|
| None -> { constructor = [] ; poly = [] ; tc = [] } in
|
||||||
|
let constraints_a = get_constraints variable_repr_a in
|
||||||
|
let constraints_b = get_constraints variable_repr_b in
|
||||||
|
let all_constraints = {
|
||||||
|
constructor = constraints_a.constructor @ constraints_b.constructor ;
|
||||||
|
poly = constraints_a.poly @ constraints_b.poly ;
|
||||||
|
tc = constraints_a.tc @ constraints_b.tc ;
|
||||||
|
} in
|
||||||
|
let grouped_by_variable =
|
||||||
|
Map.add variable_repr_a all_constraints dbs.grouped_by_variable in
|
||||||
|
let dbs = { dbs with grouped_by_variable} in
|
||||||
|
let grouped_by_variable =
|
||||||
|
Map.remove variable_repr_b dbs.grouped_by_variable in
|
||||||
|
let dbs = { dbs with grouped_by_variable} in
|
||||||
|
dbs
|
||||||
|
)
|
52
src/passes/8-typer-new/heuristic_break_ctor.ml
Normal file
52
src/passes/8-typer-new/heuristic_break_ctor.ml
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
(* selector / propagation rule for breaking down composite types
|
||||||
|
* For now: break pair(a, b) = pair(c, d) into a = c, b = d *)
|
||||||
|
|
||||||
|
open Ast_typed.Misc
|
||||||
|
open Ast_typed.Types
|
||||||
|
open Solver_types
|
||||||
|
|
||||||
|
let selector : (type_constraint_simpl, output_break_ctor) selector =
|
||||||
|
(* find two rules with the shape x = k(var …) and x = k'(var' …) *)
|
||||||
|
fun type_constraint_simpl dbs ->
|
||||||
|
match type_constraint_simpl with
|
||||||
|
SC_Constructor c ->
|
||||||
|
(* finding other constraints related to the same type variable and
|
||||||
|
with the same sort of constraint (constructor vs. constructor)
|
||||||
|
is symmetric *)
|
||||||
|
let other_cs = (Constraint_databases.get_constraints_related_to c.tv dbs).constructor in
|
||||||
|
let other_cs = List.filter (fun (o : c_constructor_simpl) -> Var.equal c.tv o.tv) other_cs in
|
||||||
|
(* TODO double-check the conditions in the propagator, we had a
|
||||||
|
bug here because the selector was too permissive. *)
|
||||||
|
let cs_pairs = List.map (fun x -> { a_k_var = c ; a_k'_var' = x }) other_cs in
|
||||||
|
WasSelected cs_pairs
|
||||||
|
| SC_Alias _ -> WasNotSelected (* TODO: ??? (beware: symmetry) *)
|
||||||
|
| SC_Poly _ -> WasNotSelected (* TODO: ??? (beware: symmetry) *)
|
||||||
|
| SC_Typeclass _ -> WasNotSelected
|
||||||
|
|
||||||
|
let propagator : output_break_ctor propagator =
|
||||||
|
fun selected dbs ->
|
||||||
|
let () = ignore (dbs) in (* this propagator doesn't need to use the dbs *)
|
||||||
|
let a = selected.a_k_var in
|
||||||
|
let b = selected.a_k'_var' in
|
||||||
|
|
||||||
|
(* The selector is expected to provice two constraints with the shape x = k(var …) and x = k'(var' …) *)
|
||||||
|
assert (Var.equal (a : c_constructor_simpl).tv (b : c_constructor_simpl).tv);
|
||||||
|
|
||||||
|
(* produce constraints: *)
|
||||||
|
|
||||||
|
(* a.tv = b.tv *)
|
||||||
|
let eq1 = c_equation { tsrc = "solver: propagator: break_ctor a" ; t = P_variable a.tv} { tsrc = "solver: propagator: break_ctor b" ; t = P_variable b.tv} "propagator: break_ctor" in
|
||||||
|
(* a.c_tag = b.c_tag *)
|
||||||
|
if (Solver_should_be_generated.compare_simple_c_constant a.c_tag b.c_tag) <> 0 then
|
||||||
|
failwith (Format.asprintf "type error: incompatible types, not same ctor %a vs. %a (compare returns %d)"
|
||||||
|
Solver_should_be_generated.debug_pp_c_constructor_simpl a
|
||||||
|
Solver_should_be_generated.debug_pp_c_constructor_simpl b
|
||||||
|
(Solver_should_be_generated.compare_simple_c_constant a.c_tag b.c_tag))
|
||||||
|
else
|
||||||
|
(* a.tv_list = b.tv_list *)
|
||||||
|
if List.length a.tv_list <> List.length b.tv_list then
|
||||||
|
failwith "type error: incompatible types, not same length"
|
||||||
|
else
|
||||||
|
let eqs3 = List.map2 (fun aa bb -> c_equation { tsrc = "solver: propagator: break_ctor aa" ; t = P_variable aa} { tsrc = "solver: propagator: break_ctor bb" ; t = P_variable bb} "propagator: break_ctor") a.tv_list b.tv_list in
|
||||||
|
let eqs = eq1 :: eqs3 in
|
||||||
|
(eqs , []) (* no new assignments *)
|
53
src/passes/8-typer-new/heuristic_specialize1.ml
Normal file
53
src/passes/8-typer-new/heuristic_specialize1.ml
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
(* selector / propagation rule for specializing polymorphic types
|
||||||
|
* For now: (x = forall y, z) and (x = k'(var' …))
|
||||||
|
* produces the new constraint (z[x |-> k'(var' …)])
|
||||||
|
* where [from |-> to] denotes substitution. *)
|
||||||
|
|
||||||
|
module Core = Typesystem.Core
|
||||||
|
open Ast_typed.Misc
|
||||||
|
open Ast_typed.Types
|
||||||
|
open Solver_types
|
||||||
|
|
||||||
|
let selector : (type_constraint_simpl, output_specialize1) selector =
|
||||||
|
(* find two rules with the shape (x = forall b, d) and x = k'(var' …) or vice versa *)
|
||||||
|
(* TODO: do the same for two rules with the shape (a = forall b, d) and tc(a…) *)
|
||||||
|
(* TODO: do the appropriate thing for two rules with the shape (a = forall b, d) and (a = forall b', d') *)
|
||||||
|
fun type_constraint_simpl dbs ->
|
||||||
|
match type_constraint_simpl with
|
||||||
|
SC_Constructor c ->
|
||||||
|
(* vice versa *)
|
||||||
|
let other_cs = (Constraint_databases.get_constraints_related_to c.tv dbs).poly in
|
||||||
|
let other_cs = List.filter (fun (x : c_poly_simpl) -> Var.equal c.tv x.tv) other_cs in
|
||||||
|
let cs_pairs = List.map (fun x -> { poly = x ; a_k_var = c }) other_cs in
|
||||||
|
WasSelected cs_pairs
|
||||||
|
| SC_Alias _ -> WasNotSelected (* TODO: ??? *)
|
||||||
|
| SC_Poly p ->
|
||||||
|
let other_cs = (Constraint_databases.get_constraints_related_to p.tv dbs).constructor in
|
||||||
|
let other_cs = List.filter (fun (x : c_constructor_simpl) -> Var.equal x.tv p.tv) other_cs in
|
||||||
|
let cs_pairs = List.map (fun x -> { poly = p ; a_k_var = x }) other_cs in
|
||||||
|
WasSelected cs_pairs
|
||||||
|
| SC_Typeclass _ -> WasNotSelected
|
||||||
|
|
||||||
|
let propagator : output_specialize1 propagator =
|
||||||
|
fun selected dbs ->
|
||||||
|
let () = ignore (dbs) in (* this propagator doesn't need to use the dbs *)
|
||||||
|
let a = selected.poly in
|
||||||
|
let b = selected.a_k_var in
|
||||||
|
|
||||||
|
(* The selector is expected to provide two constraints with the shape (x = forall y, z) and x = k'(var' …) *)
|
||||||
|
assert (Var.equal (a : c_poly_simpl).tv (b : c_constructor_simpl).tv);
|
||||||
|
|
||||||
|
(* produce constraints: *)
|
||||||
|
|
||||||
|
(* create a fresh existential variable to instantiate the polymorphic type y *)
|
||||||
|
let fresh_existential = Core.fresh_type_variable () in
|
||||||
|
(* Produce the constraint (b.tv = a.body[a.binder |-> fresh_existential])
|
||||||
|
The substitution is obtained by immediately applying the forall. *)
|
||||||
|
let apply = {
|
||||||
|
tsrc = "solver: propagator: specialize1 apply" ;
|
||||||
|
t = P_apply { tf = { tsrc = "solver: propagator: specialize1 tf" ; t = P_forall a.forall };
|
||||||
|
targ = { tsrc = "solver: propagator: specialize1 targ" ; t = P_variable fresh_existential }} } in
|
||||||
|
let (reduced, new_constraints) = Typelang.check_applied @@ Typelang.type_level_eval apply in
|
||||||
|
let eq1 = c_equation { tsrc = "solver: propagator: specialize1 eq1" ; t = P_variable b.tv } reduced "propagator: specialize1" in
|
||||||
|
let eqs = eq1 :: new_constraints in
|
||||||
|
(eqs, []) (* no new assignments *)
|
126
src/passes/8-typer-new/normalizer.ml
Normal file
126
src/passes/8-typer-new/normalizer.ml
Normal file
@ -0,0 +1,126 @@
|
|||||||
|
module Core = Typesystem.Core
|
||||||
|
module Map = RedBlackTrees.PolyMap
|
||||||
|
open Ast_typed.Misc
|
||||||
|
open Ast_typed.Types
|
||||||
|
open Solver_types
|
||||||
|
|
||||||
|
(* sub-sub component: constraint normalizer: remove dupes and give structure
|
||||||
|
* right now: union-find of unification vars
|
||||||
|
* later: better database-like organisation of knowledge *)
|
||||||
|
|
||||||
|
(* Each normalizer returns an updated database (after storing the
|
||||||
|
incoming constraint) and a list of constraints, used when the
|
||||||
|
normalizer rewrites the constraints e.g. into simpler ones. *)
|
||||||
|
(* TODO: If implemented in a language with decent sets, should be 'b set not 'b list. *)
|
||||||
|
type ('a , 'b) normalizer = structured_dbs -> 'a -> (structured_dbs * 'b list)
|
||||||
|
|
||||||
|
(** Updates the dbs.all_constraints field when new constraints are
|
||||||
|
discovered.
|
||||||
|
|
||||||
|
This field contains a list of all the constraints, without any form of
|
||||||
|
grouping or sorting. *)
|
||||||
|
let normalizer_all_constraints : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
||||||
|
fun dbs new_constraint ->
|
||||||
|
({ dbs with all_constraints = new_constraint :: dbs.all_constraints } , [new_constraint])
|
||||||
|
|
||||||
|
(** Updates the dbs.grouped_by_variable field when new constraints are
|
||||||
|
discovered.
|
||||||
|
|
||||||
|
This field contains a map from type variables to lists of
|
||||||
|
constraints that are related to that variable (in other words, the
|
||||||
|
key appears in the equation).
|
||||||
|
*)
|
||||||
|
let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
||||||
|
fun dbs new_constraint ->
|
||||||
|
let store_constraint tvars constraints =
|
||||||
|
let aux dbs (tvar : type_variable) =
|
||||||
|
Constraint_databases.add_constraints_related_to tvar constraints dbs
|
||||||
|
in List.fold_left aux dbs tvars
|
||||||
|
in
|
||||||
|
let dbs = match new_constraint with
|
||||||
|
SC_Constructor ({tv ; c_tag = _ ; tv_list} as c) -> store_constraint (tv :: tv_list) {constructor = [c] ; poly = [] ; tc = []}
|
||||||
|
| SC_Typeclass ({tc = _ ; args} as c) -> store_constraint args {constructor = [] ; poly = [] ; tc = [c]}
|
||||||
|
| SC_Poly ({tv; forall = _} as c) -> store_constraint [tv] {constructor = [] ; poly = [c] ; tc = []}
|
||||||
|
| SC_Alias { a; b } -> Constraint_databases.merge_constraints a b dbs
|
||||||
|
in (dbs , [new_constraint])
|
||||||
|
|
||||||
|
(** Stores the first assinment ('a = ctor('b, …)) that is encountered.
|
||||||
|
|
||||||
|
Subsequent ('a = ctor('b2, …)) with the same 'a are ignored.
|
||||||
|
|
||||||
|
TOOD: are we checking somewhere that 'b … = 'b2 … ? *)
|
||||||
|
let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
||||||
|
fun dbs new_constraint ->
|
||||||
|
match new_constraint with
|
||||||
|
| SC_Constructor ({tv ; c_tag = _ ; tv_list = _} as c) ->
|
||||||
|
let assignments = Map.update tv (function None -> Some c | e -> e) dbs.assignments in
|
||||||
|
let dbs = {dbs with assignments} in
|
||||||
|
(dbs , [new_constraint])
|
||||||
|
| _ ->
|
||||||
|
(dbs , [new_constraint])
|
||||||
|
|
||||||
|
(* TODO: at some point there may be uses of named type aliases (type
|
||||||
|
foo = int; let x : foo = 42). These should be inlined. *)
|
||||||
|
|
||||||
|
(** This function converts constraints from type_constraint to
|
||||||
|
type_constraint_simpl. The former has more possible cases, and the
|
||||||
|
latter uses a more minimalistic constraint language.
|
||||||
|
|
||||||
|
It does not modify the dbs, and only rewrites the constraint
|
||||||
|
|
||||||
|
TODO: update the code to show that the dbs are always copied as-is
|
||||||
|
*)
|
||||||
|
let rec normalizer_simpl : (type_constraint , type_constraint_simpl) normalizer =
|
||||||
|
fun dbs new_constraint ->
|
||||||
|
let insert_fresh a b =
|
||||||
|
let fresh = Core.fresh_type_variable () in
|
||||||
|
let (dbs , cs1) = normalizer_simpl dbs (c_equation { tsrc = "solver: normalizer: simpl 1" ; t = P_variable fresh } a "normalizer: simpl 1") in
|
||||||
|
let (dbs , cs2) = normalizer_simpl dbs (c_equation { tsrc = "solver: normalizer: simpl 2" ; t = P_variable fresh } b "normalizer: simpl 2") in
|
||||||
|
(dbs , cs1 @ cs2) in
|
||||||
|
let split_constant a c_tag args =
|
||||||
|
let fresh_vars = List.map (fun _ -> Core.fresh_type_variable ()) args in
|
||||||
|
let fresh_eqns = List.map (fun (v,t) -> c_equation { tsrc = "solver: normalizer: split_constant" ; t = P_variable v } t "normalizer: split_constant") (List.combine fresh_vars args) in
|
||||||
|
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs fresh_eqns in
|
||||||
|
(dbs , [SC_Constructor {tv=a;c_tag;tv_list=fresh_vars;reason_constr_simpl=Format.asprintf "normalizer: split constant %a = %a (%a)" Var.pp a Ast_typed.PP_generic.constant_tag c_tag (PP_helpers.list_sep Ast_typed.PP_generic.type_value (fun ppf () -> Format.fprintf ppf ", ")) args}] @ List.flatten recur) in
|
||||||
|
let gather_forall a forall = (dbs , [SC_Poly { tv=a; forall ; reason_poly_simpl="normalizer: gather_forall"}]) in
|
||||||
|
let gather_alias a b = (dbs , [SC_Alias { a ; b ; reason_alias_simpl="normalizer: gather_alias"}]) in
|
||||||
|
let reduce_type_app a b =
|
||||||
|
let (reduced, new_constraints) = Typelang.check_applied @@ Typelang.type_level_eval b in
|
||||||
|
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs new_constraints in
|
||||||
|
let (dbs , resimpl) = normalizer_simpl dbs (c_equation a reduced "normalizer: reduce_type_app") in (* Note: this calls recursively but cant't fall in the same case. *)
|
||||||
|
(dbs , resimpl @ List.flatten recur) in
|
||||||
|
let split_typeclass args tc =
|
||||||
|
let fresh_vars = List.map (fun _ -> Core.fresh_type_variable ()) args in
|
||||||
|
let fresh_eqns = List.map (fun (v,t) -> c_equation { tsrc = "solver: normalizer: split typeclass" ; t = P_variable v} t "normalizer: split_typeclass") (List.combine fresh_vars args) in
|
||||||
|
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs fresh_eqns in
|
||||||
|
(dbs, [SC_Typeclass { tc ; args = fresh_vars ; reason_typeclass_simpl="normalizer: split_typeclass"}] @ List.flatten recur) in
|
||||||
|
|
||||||
|
match new_constraint.c with
|
||||||
|
(* break down (forall 'b, body = forall 'c, body') into ('a = forall 'b, body and 'a = forall 'c, body')) *)
|
||||||
|
| C_equation {aval=({ tsrc = _ ; t = P_forall _ } as a); bval=({ tsrc = _ ; t = P_forall _ } as b)} -> insert_fresh a b
|
||||||
|
(* break down (forall 'b, body = c(args)) into ('a = forall 'b, body and 'a = c(args)) *)
|
||||||
|
| C_equation {aval=({ tsrc = _ ; t = P_forall _ } as a); bval=({ tsrc = _ ; t = P_constant _ } as b)} -> insert_fresh a b
|
||||||
|
(* break down (c(args) = c'(args')) into ('a = c(args) and 'a = c'(args')) *)
|
||||||
|
| C_equation {aval=({ tsrc = _ ; t = P_constant _ } as a); bval=({ tsrc = _ ; t = P_constant _ } as b)} -> insert_fresh a b
|
||||||
|
(* break down (c(args) = forall 'b, body) into ('a = c(args) and 'a = forall 'b, body) *)
|
||||||
|
| C_equation {aval=({ tsrc = _ ; t = P_constant _ } as a); bval=({ tsrc = _ ; t = P_forall _ } as b)} -> insert_fresh a b
|
||||||
|
| C_equation {aval={ tsrc = _ ; t = P_forall forall }; bval={ tsrc = _ ; t = P_variable b }} -> gather_forall b forall
|
||||||
|
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_forall forall }} -> gather_forall a forall
|
||||||
|
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_variable b }} -> gather_alias a b
|
||||||
|
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_constant { p_ctor_tag; p_ctor_args } }} -> split_constant a p_ctor_tag p_ctor_args
|
||||||
|
| C_equation {aval={ tsrc = _ ; t = P_constant {p_ctor_tag; p_ctor_args} }; bval={ tsrc = _ ; t = P_variable b }} -> split_constant b p_ctor_tag p_ctor_args
|
||||||
|
(* Reduce the type-level application, and simplify the resulting constraint + the extra constraints (typeclasses) that appeared at the forall binding site *)
|
||||||
|
| C_equation {aval=(_ as a); bval=({ tsrc = _ ; t = P_apply _ } as b)} -> reduce_type_app a b
|
||||||
|
| C_equation {aval=({ tsrc = _ ; t = P_apply _ } as a); bval=(_ as b)} -> reduce_type_app b a
|
||||||
|
(* break down (TC(args)) into (TC('a, …) and ('a = arg) …) *)
|
||||||
|
| C_typeclass { tc_args; typeclass } -> split_typeclass tc_args typeclass
|
||||||
|
| C_access_label { c_access_label_tval; accessor; c_access_label_tvar } -> let _todo = ignore (c_access_label_tval, accessor, c_access_label_tvar) in failwith "TODO" (* tv, label, result *)
|
||||||
|
|
||||||
|
let normalizers : type_constraint -> structured_dbs -> (structured_dbs , 'modified_constraint) state_list_monad =
|
||||||
|
fun new_constraint dbs ->
|
||||||
|
(fun x -> x)
|
||||||
|
@@ lift normalizer_grouped_by_variable
|
||||||
|
@@ lift normalizer_assignments
|
||||||
|
@@ lift normalizer_all_constraints
|
||||||
|
@@ lift normalizer_simpl
|
||||||
|
@@ lift_state_list_monad ~state:dbs ~list:[new_constraint]
|
@ -1,634 +1,24 @@
|
|||||||
open Trace
|
open Trace
|
||||||
|
|
||||||
module Core = Typesystem.Core
|
module Core = Typesystem.Core
|
||||||
module Map = RedBlackTrees.PolyMap
|
module Map = RedBlackTrees.PolyMap
|
||||||
module Set = RedBlackTrees.PolySet
|
module Set = RedBlackTrees.PolySet
|
||||||
module UF = UnionFind.Poly2
|
module UF = UnionFind.Poly2
|
||||||
|
|
||||||
module Wrap = Wrap
|
|
||||||
open Wrap
|
|
||||||
open Ast_typed.Misc
|
|
||||||
|
|
||||||
(* TODO: remove this, it's not used anymore *)
|
|
||||||
module TypeVariable =
|
|
||||||
struct
|
|
||||||
type t = Core.type_variable
|
|
||||||
let compare a b = Var.compare a b
|
|
||||||
let to_string = (fun s -> Format.asprintf "%a" Var.pp s)
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(*
|
|
||||||
|
|
||||||
Components:
|
|
||||||
* assignments (passive data structure).
|
|
||||||
Now: just a map from unification vars to types (pb: what about partial types?)
|
|
||||||
maybe just local assignments (allow only vars as children of pair(α,β))
|
|
||||||
* constraint propagation: (buch of constraints) → (new constraints * assignments)
|
|
||||||
* sub-component: constraint selector (worklist / dynamic queries)
|
|
||||||
* sub-sub component: constraint normalizer: remove dupes and give structure
|
|
||||||
right now: union-find of unification vars
|
|
||||||
later: better database-like organisation of knowledge
|
|
||||||
* sub-sub component: lazy selector (don't re-try all selectors every time)
|
|
||||||
For now: just re-try everytime
|
|
||||||
* sub-component: propagation rule
|
|
||||||
For now: break pair(a, b) = pair(c, d) into a = c, b = d
|
|
||||||
* generalizer
|
|
||||||
For now: ?
|
|
||||||
|
|
||||||
Workflow:
|
|
||||||
Start with empty assignments and structured database
|
|
||||||
Receive a new constraint
|
|
||||||
For each normalizer:
|
|
||||||
Use the pre-selector to see if it can be applied
|
|
||||||
Apply the normalizer, get some new items to insert in the structured database
|
|
||||||
For each propagator:
|
|
||||||
Use the selector to query the structured database and see if it can be applied
|
|
||||||
Apply the propagator, get some new constraints and assignments
|
|
||||||
Add the new assignments to the data structure.
|
|
||||||
|
|
||||||
At some point (when?)
|
|
||||||
For each generalizer:
|
|
||||||
Use the generalizer's selector to see if it can be applied
|
|
||||||
Apply the generalizer to produce a new type, possibly with some ∀s injected
|
|
||||||
|
|
||||||
*)
|
|
||||||
|
|
||||||
open Ast_typed.Types
|
open Ast_typed.Types
|
||||||
|
open Solver_types
|
||||||
module UnionFindWrapper = struct
|
|
||||||
(* Light wrapper for API for grouped_by_variable in the structured
|
|
||||||
db, to access it modulo unification variable aliases. *)
|
|
||||||
let get_constraints_related_to : type_variable -> structured_dbs -> constraints =
|
|
||||||
fun variable dbs ->
|
|
||||||
let variable , aliases = UF.get_or_set variable dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in
|
|
||||||
match Map.find_opt variable dbs.grouped_by_variable with
|
|
||||||
Some l -> l
|
|
||||||
| None -> {
|
|
||||||
constructor = [] ;
|
|
||||||
poly = [] ;
|
|
||||||
tc = [] ;
|
|
||||||
}
|
|
||||||
let add_constraints_related_to : type_variable -> constraints -> structured_dbs -> structured_dbs =
|
|
||||||
fun variable c dbs ->
|
|
||||||
(* let (variable_repr , _height) , aliases = UF.get_or_set variable dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in *)
|
|
||||||
let variable_repr , aliases = UF.get_or_set variable dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in
|
|
||||||
let grouped_by_variable = Map.update variable_repr (function
|
|
||||||
None -> Some c
|
|
||||||
| Some (x : constraints) -> Some {
|
|
||||||
constructor = c.constructor @ x.constructor ;
|
|
||||||
poly = c.poly @ x.poly ;
|
|
||||||
tc = c.tc @ x.tc ;
|
|
||||||
})
|
|
||||||
dbs.grouped_by_variable
|
|
||||||
in
|
|
||||||
let dbs = { dbs with grouped_by_variable } in
|
|
||||||
dbs
|
|
||||||
|
|
||||||
let merge_constraints : type_variable -> type_variable -> structured_dbs -> structured_dbs =
|
|
||||||
fun variable_a variable_b dbs ->
|
|
||||||
(* get old representant for variable_a *)
|
|
||||||
let variable_repr_a , aliases = UF.get_or_set variable_a dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in
|
|
||||||
(* get old representant for variable_b *)
|
|
||||||
let variable_repr_b , aliases = UF.get_or_set variable_b dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in
|
|
||||||
|
|
||||||
(* alias variable_a and variable_b together *)
|
|
||||||
let aliases = UF.alias variable_a variable_b dbs.aliases in
|
|
||||||
let dbs = { dbs with aliases } in
|
|
||||||
|
|
||||||
(* Replace the two entries in grouped_by_variable by a single one *)
|
|
||||||
(
|
|
||||||
let get_constraints ab =
|
|
||||||
match Map.find_opt ab dbs.grouped_by_variable with
|
|
||||||
| Some x -> x
|
|
||||||
| None -> { constructor = [] ; poly = [] ; tc = [] } in
|
|
||||||
let constraints_a = get_constraints variable_repr_a in
|
|
||||||
let constraints_b = get_constraints variable_repr_b in
|
|
||||||
let all_constraints = {
|
|
||||||
constructor = constraints_a.constructor @ constraints_b.constructor ;
|
|
||||||
poly = constraints_a.poly @ constraints_b.poly ;
|
|
||||||
tc = constraints_a.tc @ constraints_b.tc ;
|
|
||||||
} in
|
|
||||||
let grouped_by_variable =
|
|
||||||
Map.add variable_repr_a all_constraints dbs.grouped_by_variable in
|
|
||||||
let dbs = { dbs with grouped_by_variable} in
|
|
||||||
let grouped_by_variable =
|
|
||||||
Map.remove variable_repr_b dbs.grouped_by_variable in
|
|
||||||
let dbs = { dbs with grouped_by_variable} in
|
|
||||||
dbs
|
|
||||||
)
|
|
||||||
end
|
|
||||||
|
|
||||||
(* sub-sub component: constraint normalizer: remove dupes and give structure
|
|
||||||
* right now: union-find of unification vars
|
|
||||||
* later: better database-like organisation of knowledge *)
|
|
||||||
|
|
||||||
(* Each normalizer returns an updated database (after storing the
|
|
||||||
incoming constraint) and a list of constraints, used when the
|
|
||||||
normalizer rewrites the constraints e.g. into simpler ones. *)
|
|
||||||
(* TODO: If implemented in a language with decent sets, should be 'b set not 'b list. *)
|
|
||||||
type ('a , 'b) normalizer = structured_dbs -> 'a -> (structured_dbs * 'b list)
|
|
||||||
|
|
||||||
(** Updates the dbs.all_constraints field when new constraints are
|
|
||||||
discovered.
|
|
||||||
|
|
||||||
This field contains a list of all the constraints, without any form of
|
|
||||||
grouping or sorting. *)
|
|
||||||
let normalizer_all_constraints : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
|
||||||
fun dbs new_constraint ->
|
|
||||||
({ dbs with all_constraints = new_constraint :: dbs.all_constraints } , [new_constraint])
|
|
||||||
|
|
||||||
(** Updates the dbs.grouped_by_variable field when new constraints are
|
|
||||||
discovered.
|
|
||||||
|
|
||||||
This field contains a map from type variables to lists of
|
|
||||||
constraints that are related to that variable (in other words, the
|
|
||||||
key appears in the equation).
|
|
||||||
*)
|
|
||||||
let normalizer_grouped_by_variable : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
|
||||||
fun dbs new_constraint ->
|
|
||||||
let store_constraint tvars constraints =
|
|
||||||
let aux dbs (tvar : type_variable) =
|
|
||||||
UnionFindWrapper.add_constraints_related_to tvar constraints dbs
|
|
||||||
in List.fold_left aux dbs tvars
|
|
||||||
in
|
|
||||||
let dbs = match new_constraint with
|
|
||||||
SC_Constructor ({tv ; c_tag = _ ; tv_list} as c) -> store_constraint (tv :: tv_list) {constructor = [c] ; poly = [] ; tc = []}
|
|
||||||
| SC_Typeclass ({tc = _ ; args} as c) -> store_constraint args {constructor = [] ; poly = [] ; tc = [c]}
|
|
||||||
| SC_Poly ({tv; forall = _} as c) -> store_constraint [tv] {constructor = [] ; poly = [c] ; tc = []}
|
|
||||||
| SC_Alias { a; b } -> UnionFindWrapper.merge_constraints a b dbs
|
|
||||||
in (dbs , [new_constraint])
|
|
||||||
|
|
||||||
(** Stores the first assinment ('a = ctor('b, …)) that is encountered.
|
|
||||||
|
|
||||||
Subsequent ('a = ctor('b2, …)) with the same 'a are ignored.
|
|
||||||
|
|
||||||
TOOD: are we checking somewhere that 'b … = 'b2 … ? *)
|
|
||||||
let normalizer_assignments : (type_constraint_simpl , type_constraint_simpl) normalizer =
|
|
||||||
fun dbs new_constraint ->
|
|
||||||
match new_constraint with
|
|
||||||
| SC_Constructor ({tv ; c_tag = _ ; tv_list = _} as c) ->
|
|
||||||
let assignments = Map.update tv (function None -> Some c | e -> e) dbs.assignments in
|
|
||||||
let dbs = {dbs with assignments} in
|
|
||||||
(dbs , [new_constraint])
|
|
||||||
| _ ->
|
|
||||||
(dbs , [new_constraint])
|
|
||||||
|
|
||||||
(** Evaluates a type-leval application. For now, only supports
|
|
||||||
immediate beta-reduction at the root of the type. *)
|
|
||||||
let type_level_eval : type_value -> type_value * type_constraint list =
|
|
||||||
fun tv -> Typesystem.Misc.Substitution.Pattern.eval_beta_root ~tv
|
|
||||||
|
|
||||||
(** Checks that a type-level application has been fully reduced. For
|
|
||||||
now, only some simple cases like applications of `forall`
|
|
||||||
<polymorphic types are allowed. *)
|
|
||||||
let check_applied ((reduced, _new_constraints) as x) =
|
|
||||||
let () = match reduced with
|
|
||||||
{ tsrc = _ ; t = P_apply _ } -> failwith "internal error: shouldn't happen" (* failwith "could not reduce type-level application. Arbitrary type-level applications are not supported for now." *)
|
|
||||||
| _ -> ()
|
|
||||||
in x
|
|
||||||
|
|
||||||
(* TODO: at some point there may be uses of named type aliases (type
|
|
||||||
foo = int; let x : foo = 42). These should be inlined. *)
|
|
||||||
|
|
||||||
(** This function converts constraints from type_constraint to
|
|
||||||
type_constraint_simpl. The former has more possible cases, and the
|
|
||||||
latter uses a more minimalistic constraint language.
|
|
||||||
|
|
||||||
It does not modify the dbs, and only rewrites the constraint
|
|
||||||
|
|
||||||
TODO: update the code to show that the dbs are always copied as-is
|
|
||||||
*)
|
|
||||||
let rec normalizer_simpl : (type_constraint , type_constraint_simpl) normalizer =
|
|
||||||
fun dbs new_constraint ->
|
|
||||||
let insert_fresh a b =
|
|
||||||
let fresh = Core.fresh_type_variable () in
|
|
||||||
let (dbs , cs1) = normalizer_simpl dbs (c_equation { tsrc = "solver: normalizer: simpl 1" ; t = P_variable fresh } a "normalizer: simpl 1") in
|
|
||||||
let (dbs , cs2) = normalizer_simpl dbs (c_equation { tsrc = "solver: normalizer: simpl 2" ; t = P_variable fresh } b "normalizer: simpl 2") in
|
|
||||||
(dbs , cs1 @ cs2) in
|
|
||||||
let split_constant a c_tag args =
|
|
||||||
let fresh_vars = List.map (fun _ -> Core.fresh_type_variable ()) args in
|
|
||||||
let fresh_eqns = List.map (fun (v,t) -> c_equation { tsrc = "solver: normalizer: split_constant" ; t = P_variable v } t "normalizer: split_constant") (List.combine fresh_vars args) in
|
|
||||||
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs fresh_eqns in
|
|
||||||
(dbs , [SC_Constructor {tv=a;c_tag;tv_list=fresh_vars;reason_constr_simpl=Format.asprintf "normalizer: split constant %a = %a (%a)" Var.pp a Ast_typed.PP_generic.constant_tag c_tag (PP_helpers.list_sep Ast_typed.PP_generic.type_value (fun ppf () -> Format.fprintf ppf ", ")) args}] @ List.flatten recur) in
|
|
||||||
let gather_forall a forall = (dbs , [SC_Poly { tv=a; forall ; reason_poly_simpl="normalizer: gather_forall"}]) in
|
|
||||||
let gather_alias a b = (dbs , [SC_Alias { a ; b ; reason_alias_simpl="normalizer: gather_alias"}]) in
|
|
||||||
let reduce_type_app a b =
|
|
||||||
let (reduced, new_constraints) = check_applied @@ type_level_eval b in
|
|
||||||
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs new_constraints in
|
|
||||||
let (dbs , resimpl) = normalizer_simpl dbs (c_equation a reduced "normalizer: reduce_type_app") in (* Note: this calls recursively but cant't fall in the same case. *)
|
|
||||||
(dbs , resimpl @ List.flatten recur) in
|
|
||||||
let split_typeclass args tc =
|
|
||||||
let fresh_vars = List.map (fun _ -> Core.fresh_type_variable ()) args in
|
|
||||||
let fresh_eqns = List.map (fun (v,t) -> c_equation { tsrc = "solver: normalizer: split typeclass" ; t = P_variable v} t "normalizer: split_typeclass") (List.combine fresh_vars args) in
|
|
||||||
let (dbs , recur) = List.fold_map_acc normalizer_simpl dbs fresh_eqns in
|
|
||||||
(dbs, [SC_Typeclass { tc ; args = fresh_vars ; reason_typeclass_simpl="normalizer: split_typeclass"}] @ List.flatten recur) in
|
|
||||||
|
|
||||||
match new_constraint.c with
|
|
||||||
(* break down (forall 'b, body = forall 'c, body') into ('a = forall 'b, body and 'a = forall 'c, body')) *)
|
|
||||||
| C_equation {aval=({ tsrc = _ ; t = P_forall _ } as a); bval=({ tsrc = _ ; t = P_forall _ } as b)} -> insert_fresh a b
|
|
||||||
(* break down (forall 'b, body = c(args)) into ('a = forall 'b, body and 'a = c(args)) *)
|
|
||||||
| C_equation {aval=({ tsrc = _ ; t = P_forall _ } as a); bval=({ tsrc = _ ; t = P_constant _ } as b)} -> insert_fresh a b
|
|
||||||
(* break down (c(args) = c'(args')) into ('a = c(args) and 'a = c'(args')) *)
|
|
||||||
| C_equation {aval=({ tsrc = _ ; t = P_constant _ } as a); bval=({ tsrc = _ ; t = P_constant _ } as b)} -> insert_fresh a b
|
|
||||||
(* break down (c(args) = forall 'b, body) into ('a = c(args) and 'a = forall 'b, body) *)
|
|
||||||
| C_equation {aval=({ tsrc = _ ; t = P_constant _ } as a); bval=({ tsrc = _ ; t = P_forall _ } as b)} -> insert_fresh a b
|
|
||||||
| C_equation {aval={ tsrc = _ ; t = P_forall forall }; bval={ tsrc = _ ; t = P_variable b }} -> gather_forall b forall
|
|
||||||
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_forall forall }} -> gather_forall a forall
|
|
||||||
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_variable b }} -> gather_alias a b
|
|
||||||
| C_equation {aval={ tsrc = _ ; t = P_variable a }; bval={ tsrc = _ ; t = P_constant { p_ctor_tag; p_ctor_args } }} -> split_constant a p_ctor_tag p_ctor_args
|
|
||||||
| C_equation {aval={ tsrc = _ ; t = P_constant {p_ctor_tag; p_ctor_args} }; bval={ tsrc = _ ; t = P_variable b }} -> split_constant b p_ctor_tag p_ctor_args
|
|
||||||
(* Reduce the type-level application, and simplify the resulting constraint + the extra constraints (typeclasses) that appeared at the forall binding site *)
|
|
||||||
| C_equation {aval=(_ as a); bval=({ tsrc = _ ; t = P_apply _ } as b)} -> reduce_type_app a b
|
|
||||||
| C_equation {aval=({ tsrc = _ ; t = P_apply _ } as a); bval=(_ as b)} -> reduce_type_app b a
|
|
||||||
(* break down (TC(args)) into (TC('a, …) and ('a = arg) …) *)
|
|
||||||
| C_typeclass { tc_args; typeclass } -> split_typeclass tc_args typeclass
|
|
||||||
| C_access_label { c_access_label_tval; accessor; c_access_label_tvar } -> let _todo = ignore (c_access_label_tval, accessor, c_access_label_tvar) in failwith "TODO" (* tv, label, result *)
|
|
||||||
|
|
||||||
(* Random notes from live discussion. Kept here to include bits as a rationale later on / remind me of the discussion in the short term.
|
|
||||||
* Feel free to erase if it rots here for too long.
|
|
||||||
*
|
|
||||||
* function (zetype, zevalue) { if (typeof(zevalue) != zetype) { ohlàlà; } else { return zevalue; } }
|
|
||||||
*
|
|
||||||
* let f = (fun {a : Type} (v : a) -> v)
|
|
||||||
*
|
|
||||||
* (forall 'a, 'a -> 'a) ~ (int -> int)
|
|
||||||
* (forall {a : Type}, forall (v : a), a) ~ (forall (v : int), int)
|
|
||||||
* ({a : Type} -> (v : a) -> a) ~ ((v : int) -> int)
|
|
||||||
*
|
|
||||||
* (@f int)
|
|
||||||
*
|
|
||||||
*
|
|
||||||
* 'c 'c
|
|
||||||
* 'd -> 'e && 'c ~ d && 'c ~ 'e
|
|
||||||
* 'c -> 'c ???????????????wtf---->???????????? [ scope of 'c is fun z ]
|
|
||||||
* 'tid ~ (forall 'c, 'c -> 'c)
|
|
||||||
* let id = (fun z -> z) in
|
|
||||||
* let ii = (fun z -> z + 0) : (int -> int) in
|
|
||||||
*
|
|
||||||
* 'a 'b ['a ~ 'b] 'a 'b
|
|
||||||
* 'a 'a 'a 'a 'a
|
|
||||||
* (forall 'a, 'a -> 'a -> 'a ) 'tid 'tid
|
|
||||||
*
|
|
||||||
* 'tid -> 'tid -> 'tid
|
|
||||||
*
|
|
||||||
* (forall 'a, 'a -> 'a -> 'a ) (forall 'c1, 'c1 -> 'c1) (int -> int)
|
|
||||||
* (forall 'c1, 'c1 -> 'c1)~(int -> int)
|
|
||||||
* ('c1 -> 'c1) ~ (int -> int)
|
|
||||||
* (fun x y -> if random then x else y) id ii as toto
|
|
||||||
* id "foo" *)
|
|
||||||
|
|
||||||
type ('state, 'elt) state_list_monad = { state: 'state ; list : 'elt list }
|
|
||||||
let lift_state_list_monad ~state ~list = { state ; list }
|
|
||||||
let lift f =
|
|
||||||
fun { state ; list } ->
|
|
||||||
let (new_state , new_lists) = List.fold_map_acc f state list in
|
|
||||||
{ state = new_state ; list = List.flatten new_lists }
|
|
||||||
|
|
||||||
(* TODO: move this to the List module *)
|
|
||||||
let named_fold_left f ~acc ~lst = List.fold_left (fun acc elt -> f ~acc ~elt) acc lst
|
|
||||||
|
|
||||||
module Fun = struct let id x = x end (* in stdlib as of 4.08, we're in 4.07 for now *)
|
|
||||||
|
|
||||||
let normalizers : type_constraint -> structured_dbs -> (structured_dbs , 'modified_constraint) state_list_monad =
|
|
||||||
fun new_constraint dbs ->
|
|
||||||
Fun.id
|
|
||||||
@@ lift normalizer_grouped_by_variable
|
|
||||||
@@ lift normalizer_assignments
|
|
||||||
@@ lift normalizer_all_constraints
|
|
||||||
@@ lift normalizer_simpl
|
|
||||||
@@ lift_state_list_monad ~state:dbs ~list:[new_constraint]
|
|
||||||
|
|
||||||
(* sub-sub component: lazy selector (don't re-try all selectors every time)
|
(* sub-sub component: lazy selector (don't re-try all selectors every time)
|
||||||
* For now: just re-try everytime *)
|
* For now: just re-try everytime *)
|
||||||
|
|
||||||
type 'old_constraint_type selector_input = 'old_constraint_type (* some info about the constraint just added, so that we know what to look for *)
|
|
||||||
type 'selector_output selector_outputs =
|
|
||||||
WasSelected of 'selector_output list
|
|
||||||
| WasNotSelected
|
|
||||||
type new_constraints = type_constraint list
|
|
||||||
type new_assignments = c_constructor_simpl list
|
|
||||||
|
|
||||||
type ('old_constraint_type, 'selector_output) selector = 'old_constraint_type selector_input -> structured_dbs -> 'selector_output selector_outputs
|
|
||||||
type 'selector_output propagator = 'selector_output -> structured_dbs -> new_constraints * new_assignments
|
|
||||||
|
|
||||||
(* selector / propagation rule for breaking down composite types
|
|
||||||
* For now: break pair(a, b) = pair(c, d) into a = c, b = d *)
|
|
||||||
|
|
||||||
let selector_break_ctor : (type_constraint_simpl, output_break_ctor) selector =
|
|
||||||
(* find two rules with the shape x = k(var …) and x = k'(var' …) *)
|
|
||||||
fun type_constraint_simpl dbs ->
|
|
||||||
match type_constraint_simpl with
|
|
||||||
SC_Constructor c ->
|
|
||||||
(* finding other constraints related to the same type variable and
|
|
||||||
with the same sort of constraint (constructor vs. constructor)
|
|
||||||
is symmetric *)
|
|
||||||
let other_cs = (UnionFindWrapper.get_constraints_related_to c.tv dbs).constructor in
|
|
||||||
let other_cs = List.filter (fun (o : c_constructor_simpl) -> Var.equal c.tv o.tv) other_cs in
|
|
||||||
(* TODO double-check the conditions in the propagator, we had a
|
|
||||||
bug here because the selector was too permissive. *)
|
|
||||||
let cs_pairs = List.map (fun x -> { a_k_var = c ; a_k'_var' = x }) other_cs in
|
|
||||||
WasSelected cs_pairs
|
|
||||||
| SC_Alias _ -> WasNotSelected (* TODO: ??? (beware: symmetry) *)
|
|
||||||
| SC_Poly _ -> WasNotSelected (* TODO: ??? (beware: symmetry) *)
|
|
||||||
| SC_Typeclass _ -> WasNotSelected
|
|
||||||
|
|
||||||
(* TODO: move this to a more appropriate place and/or auto-generate it. *)
|
|
||||||
let compare_simple_c_constant = function
|
|
||||||
| C_arrow -> (function
|
|
||||||
(* N/A -> 1 *)
|
|
||||||
| C_arrow -> 0
|
|
||||||
| C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_option -> (function
|
|
||||||
| C_arrow -> 1
|
|
||||||
| C_option -> 0
|
|
||||||
| C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_record -> (function
|
|
||||||
| C_arrow | C_option -> 1
|
|
||||||
| C_record -> 0
|
|
||||||
| C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_variant -> (function
|
|
||||||
| C_arrow | C_option | C_record -> 1
|
|
||||||
| C_variant -> 0
|
|
||||||
| C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_map -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant -> 1
|
|
||||||
| C_map -> 0
|
|
||||||
| C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_big_map -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map -> 1
|
|
||||||
| C_big_map -> 0
|
|
||||||
| C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_list -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map -> 1
|
|
||||||
| C_list -> 0
|
|
||||||
| C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_set -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list -> 1
|
|
||||||
| C_set -> 0
|
|
||||||
| C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_unit -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set -> 1
|
|
||||||
| C_unit -> 0
|
|
||||||
| C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_string -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit -> 1
|
|
||||||
| C_string -> 0
|
|
||||||
| C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_nat -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string -> 1
|
|
||||||
| C_nat -> 0
|
|
||||||
| C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_mutez -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat -> 1
|
|
||||||
| C_mutez -> 0
|
|
||||||
| C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_timestamp -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez -> 1
|
|
||||||
| C_timestamp -> 0
|
|
||||||
| C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_int -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp -> 1
|
|
||||||
| C_int -> 0
|
|
||||||
| C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_address -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int -> 1
|
|
||||||
| C_address -> 0
|
|
||||||
| C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_bytes -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address -> 1
|
|
||||||
| C_bytes -> 0
|
|
||||||
| C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_key_hash -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes -> 1
|
|
||||||
| C_key_hash -> 0
|
|
||||||
| C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_key -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash -> 1
|
|
||||||
| C_key -> 0
|
|
||||||
| C_signature | C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_signature -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key -> 1
|
|
||||||
| C_signature -> 0
|
|
||||||
| C_operation | C_contract | C_chain_id -> -1)
|
|
||||||
| C_operation -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature -> 1
|
|
||||||
| C_operation -> 0
|
|
||||||
| C_contract | C_chain_id -> -1)
|
|
||||||
| C_contract -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation -> 1
|
|
||||||
| C_contract -> 0
|
|
||||||
| C_chain_id -> -1)
|
|
||||||
| C_chain_id -> (function
|
|
||||||
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract -> 1
|
|
||||||
| C_chain_id -> 0
|
|
||||||
(* N/A -> -1 *)
|
|
||||||
)
|
|
||||||
|
|
||||||
(* Using a pretty-printer from the PP.ml module creates a dependency
|
|
||||||
loop, so the one that we need temporarily for debugging purposes
|
|
||||||
has been copied here. *)
|
|
||||||
let debug_pp_constant : _ -> constant_tag -> unit = fun ppf c_tag ->
|
|
||||||
let ct = match c_tag with
|
|
||||||
| T.C_arrow -> "arrow"
|
|
||||||
| T.C_option -> "option"
|
|
||||||
| T.C_record -> failwith "record"
|
|
||||||
| T.C_variant -> failwith "variant"
|
|
||||||
| T.C_map -> "map"
|
|
||||||
| T.C_big_map -> "big_map"
|
|
||||||
| T.C_list -> "list"
|
|
||||||
| T.C_set -> "set"
|
|
||||||
| T.C_unit -> "unit"
|
|
||||||
| T.C_string -> "string"
|
|
||||||
| T.C_nat -> "nat"
|
|
||||||
| T.C_mutez -> "mutez"
|
|
||||||
| T.C_timestamp -> "timestamp"
|
|
||||||
| T.C_int -> "int"
|
|
||||||
| T.C_address -> "address"
|
|
||||||
| T.C_bytes -> "bytes"
|
|
||||||
| T.C_key_hash -> "key_hash"
|
|
||||||
| T.C_key -> "key"
|
|
||||||
| T.C_signature -> "signature"
|
|
||||||
| T.C_operation -> "operation"
|
|
||||||
| T.C_contract -> "contract"
|
|
||||||
| T.C_chain_id -> "chain_id"
|
|
||||||
in
|
|
||||||
Format.fprintf ppf "%s" ct
|
|
||||||
|
|
||||||
let debug_pp_c_constructor_simpl ppf { tv; c_tag; tv_list } =
|
|
||||||
Format.fprintf ppf "CTOR %a %a(%a)" Var.pp tv debug_pp_constant c_tag PP_helpers.(list_sep Var.pp (const " , ")) tv_list
|
|
||||||
|
|
||||||
let propagator_break_ctor : output_break_ctor propagator =
|
|
||||||
fun selected dbs ->
|
|
||||||
let () = ignore (dbs) in (* this propagator doesn't need to use the dbs *)
|
|
||||||
let a = selected.a_k_var in
|
|
||||||
let b = selected.a_k'_var' in
|
|
||||||
|
|
||||||
(* The selector is expected to provice two constraints with the shape x = k(var …) and x = k'(var' …) *)
|
|
||||||
assert (Var.equal (a : c_constructor_simpl).tv (b : c_constructor_simpl).tv);
|
|
||||||
|
|
||||||
(* produce constraints: *)
|
|
||||||
|
|
||||||
(* a.tv = b.tv *)
|
|
||||||
let eq1 = c_equation { tsrc = "solver: propagator: break_ctor a" ; t = P_variable a.tv} { tsrc = "solver: propagator: break_ctor b" ; t = P_variable b.tv} "propagator: break_ctor" in
|
|
||||||
(* a.c_tag = b.c_tag *)
|
|
||||||
if (compare_simple_c_constant a.c_tag b.c_tag) <> 0 then
|
|
||||||
failwith (Format.asprintf "type error: incompatible types, not same ctor %a vs. %a (compare returns %d)" debug_pp_c_constructor_simpl a debug_pp_c_constructor_simpl b (compare_simple_c_constant a.c_tag b.c_tag))
|
|
||||||
else
|
|
||||||
(* a.tv_list = b.tv_list *)
|
|
||||||
if List.length a.tv_list <> List.length b.tv_list then
|
|
||||||
failwith "type error: incompatible types, not same length"
|
|
||||||
else
|
|
||||||
let eqs3 = List.map2 (fun aa bb -> c_equation { tsrc = "solver: propagator: break_ctor aa" ; t = P_variable aa} { tsrc = "solver: propagator: break_ctor bb" ; t = P_variable bb} "propagator: break_ctor") a.tv_list b.tv_list in
|
|
||||||
let eqs = eq1 :: eqs3 in
|
|
||||||
(eqs , []) (* no new assignments *)
|
|
||||||
|
|
||||||
(* TODO : with our selectors, the selection depends on the order in which the constraints are added :-( :-( :-( :-(
|
(* TODO : with our selectors, the selection depends on the order in which the constraints are added :-( :-( :-( :-(
|
||||||
We need to return a lazy stream of constraints. *)
|
We need to return a lazy stream of constraints. *)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let (<?) ca cb =
|
|
||||||
if ca = 0 then cb () else ca
|
|
||||||
let rec compare_list f = function
|
|
||||||
| hd1::tl1 -> (function
|
|
||||||
[] -> 1
|
|
||||||
| hd2::tl2 ->
|
|
||||||
f hd1 hd2 <? fun () ->
|
|
||||||
compare_list f tl1 tl2)
|
|
||||||
| [] -> (function [] -> 0 | _::_ -> -1) (* This follows the behaviour of Pervasives.compare for lists of different length *)
|
|
||||||
let compare_type_variable a b =
|
|
||||||
Var.compare a b
|
|
||||||
let compare_label (a:label) (b:label) =
|
|
||||||
let Label a = a in
|
|
||||||
let Label b = b in
|
|
||||||
String.compare a b
|
|
||||||
let rec compare_typeclass a b = compare_list (compare_list compare_type_expression) a b
|
|
||||||
and compare_type_expression { tsrc = _ ; t = ta } { tsrc = _ ; t = tb } =
|
|
||||||
(* Note: this comparison ignores the tsrc, the idea is that types
|
|
||||||
will often be compared to see if they are the same, regardless of
|
|
||||||
where the type comes from .*)
|
|
||||||
compare_type_expression_ ta tb
|
|
||||||
and compare_type_expression_ = function
|
|
||||||
| P_forall { binder=a1; constraints=a2; body=a3 } -> (function
|
|
||||||
| P_forall { binder=b1; constraints=b2; body=b3 } ->
|
|
||||||
compare_type_variable a1 b1 <? fun () ->
|
|
||||||
compare_list compare_type_constraint a2 b2 <? fun () ->
|
|
||||||
compare_type_expression a3 b3
|
|
||||||
| P_variable _ -> -1
|
|
||||||
| P_constant _ -> -1
|
|
||||||
| P_apply _ -> -1)
|
|
||||||
| P_variable a -> (function
|
|
||||||
| P_forall _ -> 1
|
|
||||||
| P_variable b -> compare_type_variable a b
|
|
||||||
| P_constant _ -> -1
|
|
||||||
| P_apply _ -> -1)
|
|
||||||
| P_constant { p_ctor_tag=a1; p_ctor_args=a2 } -> (function
|
|
||||||
| P_forall _ -> 1
|
|
||||||
| P_variable _ -> 1
|
|
||||||
| P_constant { p_ctor_tag=b1; p_ctor_args=b2 } -> compare_simple_c_constant a1 b1 <? fun () -> compare_list compare_type_expression a2 b2
|
|
||||||
| P_apply _ -> -1)
|
|
||||||
| P_apply { tf=a1; targ=a2 } -> (function
|
|
||||||
| P_forall _ -> 1
|
|
||||||
| P_variable _ -> 1
|
|
||||||
| P_constant _ -> 1
|
|
||||||
| P_apply { tf=b1; targ=b2 } -> compare_type_expression a1 b1 <? fun () -> compare_type_expression a2 b2)
|
|
||||||
and compare_type_constraint = fun { c = ca ; reason = ra } { c = cb ; reason = rb } ->
|
|
||||||
let c = compare_type_constraint_ ca cb in
|
|
||||||
if c < 0 then -1
|
|
||||||
else if c = 0 then String.compare ra rb
|
|
||||||
else 1
|
|
||||||
and compare_type_constraint_ = function
|
|
||||||
| C_equation { aval=a1; bval=a2 } -> (function
|
|
||||||
| C_equation { aval=b1; bval=b2 } -> compare_type_expression a1 b1 <? fun () -> compare_type_expression a2 b2
|
|
||||||
| C_typeclass _ -> -1
|
|
||||||
| C_access_label _ -> -1)
|
|
||||||
| C_typeclass { tc_args=a1; typeclass=a2 } -> (function
|
|
||||||
| C_equation _ -> 1
|
|
||||||
| C_typeclass { tc_args=b1; typeclass=b2 } -> compare_list compare_type_expression a1 b1 <? fun () -> compare_typeclass a2 b2
|
|
||||||
| C_access_label _ -> -1)
|
|
||||||
| C_access_label { c_access_label_tval=a1; accessor=a2; c_access_label_tvar=a3 } -> (function
|
|
||||||
| C_equation _ -> 1
|
|
||||||
| C_typeclass _ -> 1
|
|
||||||
| C_access_label { c_access_label_tval=b1; accessor=b2; c_access_label_tvar=b3 } -> compare_type_expression a1 b1 <? fun () -> compare_label a2 b2 <? fun () -> compare_type_variable a3 b3)
|
|
||||||
let compare_type_constraint_list = compare_list compare_type_constraint
|
|
||||||
let compare_p_forall
|
|
||||||
{ binder = a1; constraints = a2; body = a3 }
|
|
||||||
{ binder = b1; constraints = b2; body = b3 } =
|
|
||||||
compare_type_variable a1 b1 <? fun () ->
|
|
||||||
compare_type_constraint_list a2 b2 <? fun () ->
|
|
||||||
compare_type_expression a3 b3
|
|
||||||
let compare_c_poly_simpl { tv = a1; forall = a2 } { tv = b1; forall = b2 } =
|
|
||||||
compare_type_variable a1 b1 <? fun () ->
|
|
||||||
compare_p_forall a2 b2
|
|
||||||
let compare_c_constructor_simpl { reason_constr_simpl = _ ; tv=a1; c_tag=a2; tv_list=a3 } { reason_constr_simpl = _ ; tv=b1; c_tag=b2; tv_list=b3 } =
|
|
||||||
(* We do not compare the reasons, as they are only for debugging and
|
|
||||||
not part of the type *)
|
|
||||||
compare_type_variable a1 b1 <? fun () -> compare_simple_c_constant a2 b2 <? fun () -> compare_list compare_type_variable a3 b3
|
|
||||||
|
|
||||||
let compare_output_specialize1 { poly = a1; a_k_var = a2 } { poly = b1; a_k_var = b2 } =
|
|
||||||
compare_c_poly_simpl a1 b1 <? fun () ->
|
|
||||||
compare_c_constructor_simpl a2 b2
|
|
||||||
|
|
||||||
let compare_output_break_ctor { a_k_var=a1; a_k'_var'=a2 } { a_k_var=b1; a_k'_var'=b2 } =
|
|
||||||
compare_c_constructor_simpl a1 b1 <? fun () -> compare_c_constructor_simpl a2 b2
|
|
||||||
|
|
||||||
let selector_specialize1 : (type_constraint_simpl, output_specialize1) selector =
|
|
||||||
(* find two rules with the shape (x = forall b, d) and x = k'(var' …) or vice versa *)
|
|
||||||
(* TODO: do the same for two rules with the shape (a = forall b, d) and tc(a…) *)
|
|
||||||
(* TODO: do the appropriate thing for two rules with the shape (a = forall b, d) and (a = forall b', d') *)
|
|
||||||
fun type_constraint_simpl dbs ->
|
|
||||||
match type_constraint_simpl with
|
|
||||||
SC_Constructor c ->
|
|
||||||
(* vice versa *)
|
|
||||||
let other_cs = (UnionFindWrapper.get_constraints_related_to c.tv dbs).poly in
|
|
||||||
let other_cs = List.filter (fun (x : c_poly_simpl) -> Var.equal c.tv x.tv) other_cs in
|
|
||||||
let cs_pairs = List.map (fun x -> { poly = x ; a_k_var = c }) other_cs in
|
|
||||||
WasSelected cs_pairs
|
|
||||||
| SC_Alias _ -> WasNotSelected (* TODO: ??? *)
|
|
||||||
| SC_Poly p ->
|
|
||||||
let other_cs = (UnionFindWrapper.get_constraints_related_to p.tv dbs).constructor in
|
|
||||||
let other_cs = List.filter (fun (x : c_constructor_simpl) -> Var.equal x.tv p.tv) other_cs in
|
|
||||||
let cs_pairs = List.map (fun x -> { poly = p ; a_k_var = x }) other_cs in
|
|
||||||
WasSelected cs_pairs
|
|
||||||
| SC_Typeclass _ -> WasNotSelected
|
|
||||||
|
|
||||||
let propagator_specialize1 : output_specialize1 propagator =
|
|
||||||
fun selected dbs ->
|
|
||||||
let () = ignore (dbs) in (* this propagator doesn't need to use the dbs *)
|
|
||||||
let a = selected.poly in
|
|
||||||
let b = selected.a_k_var in
|
|
||||||
|
|
||||||
(* The selector is expected to provice two constraints with the shape (x = forall y, z) and x = k'(var' …) *)
|
|
||||||
assert (Var.equal (a : c_poly_simpl).tv (b : c_constructor_simpl).tv);
|
|
||||||
|
|
||||||
(* produce constraints: *)
|
|
||||||
|
|
||||||
(* create a fresh existential variable to instantiate the polymorphic type y *)
|
|
||||||
let fresh_existential = Core.fresh_type_variable () in
|
|
||||||
(* Produce the constraint (b.tv = a.body[a.binder |-> fresh_existential])
|
|
||||||
The substitution is obtained by immediately applying the forall. *)
|
|
||||||
let apply = { tsrc = "solver: propagator: specialize1 apply" ; t = P_apply {tf = { tsrc = "solver: propagator: specialize1 tf" ; t = P_forall a.forall }; targ = { tsrc = "solver: propagator: specialize1 targ" ; t = P_variable fresh_existential }} } in
|
|
||||||
let (reduced, new_constraints) = check_applied @@ type_level_eval apply in
|
|
||||||
let eq1 = c_equation { tsrc = "solver: propagator: specialize1 eq1" ; t = P_variable b.tv } reduced "propagator: specialize1" in
|
|
||||||
let eqs = eq1 :: new_constraints in
|
|
||||||
(eqs, []) (* no new assignments *)
|
|
||||||
|
|
||||||
let select_and_propagate : ('old_input, 'selector_output) selector -> _ propagator -> _ -> 'a -> structured_dbs -> _ * new_constraints * new_assignments =
|
let select_and_propagate : ('old_input, 'selector_output) selector -> _ propagator -> _ -> 'a -> structured_dbs -> _ * new_constraints * new_assignments =
|
||||||
fun selector propagator ->
|
fun selector propagator ->
|
||||||
fun already_selected old_type_constraint dbs ->
|
fun already_selected old_type_constraint dbs ->
|
||||||
(* TODO: thread some state to know which selector outputs were already seen *)
|
(* TODO: thread some state to know which selector outputs were already seen *)
|
||||||
match selector old_type_constraint dbs with
|
match selector old_type_constraint dbs with
|
||||||
WasSelected selected_outputs ->
|
WasSelected selected_outputs ->
|
||||||
let open RedBlackTrees.PolySet in
|
let Set.{ set = already_selected ; duplicates = _ ; added = selected_outputs } = Set.add_list selected_outputs already_selected in
|
||||||
let { set = already_selected ; duplicates = _ ; added = selected_outputs } = add_list selected_outputs already_selected in
|
|
||||||
(* Call the propagation rule *)
|
(* Call the propagation rule *)
|
||||||
let new_contraints_and_assignments = List.map (fun s -> propagator s dbs) selected_outputs in
|
let new_contraints_and_assignments = List.map (fun s -> propagator s dbs) selected_outputs in
|
||||||
let (new_constraints , new_assignments) = List.split new_contraints_and_assignments in
|
let (new_constraints , new_assignments) = List.split new_contraints_and_assignments in
|
||||||
@ -637,8 +27,9 @@ let select_and_propagate : ('old_input, 'selector_output) selector -> _ propagat
|
|||||||
| WasNotSelected ->
|
| WasNotSelected ->
|
||||||
(already_selected, [] , [])
|
(already_selected, [] , [])
|
||||||
|
|
||||||
let select_and_propagate_break_ctor = select_and_propagate selector_break_ctor propagator_break_ctor
|
(* TODO: put the heuristics with their state in a list. *)
|
||||||
let select_and_propagate_specialize1 = select_and_propagate selector_specialize1 propagator_specialize1
|
let select_and_propagate_break_ctor = select_and_propagate Heuristic_break_ctor.selector Heuristic_break_ctor.propagator
|
||||||
|
let select_and_propagate_specialize1 = select_and_propagate Heuristic_specialize1.selector Heuristic_specialize1.propagator
|
||||||
|
|
||||||
(* Takes a constraint, applies all selector+propagator pairs to it.
|
(* Takes a constraint, applies all selector+propagator pairs to it.
|
||||||
Keeps track of which constraints have already been selected. *)
|
Keeps track of which constraints have already been selected. *)
|
||||||
@ -671,7 +62,7 @@ let rec select_and_propagate_all : _ -> type_constraint selector_input list -> s
|
|||||||
match new_constraints with
|
match new_constraints with
|
||||||
| [] -> (already_selected, dbs)
|
| [] -> (already_selected, dbs)
|
||||||
| new_constraint :: tl ->
|
| new_constraint :: tl ->
|
||||||
let { state = dbs ; list = modified_constraints } = normalizers new_constraint dbs in
|
let { state = dbs ; list = modified_constraints } = Normalizer.normalizers new_constraint dbs in
|
||||||
let (already_selected , new_constraints' , dbs) =
|
let (already_selected , new_constraints' , dbs) =
|
||||||
List.fold_left
|
List.fold_left
|
||||||
(fun (already_selected , nc , dbs) c ->
|
(fun (already_selected , nc , dbs) c ->
|
||||||
@ -686,42 +77,22 @@ let rec select_and_propagate_all : _ -> type_constraint selector_input list -> s
|
|||||||
|
|
||||||
(* constraint propagation: (buch of constraints) → (new constraints * assignments) *)
|
(* constraint propagation: (buch of constraints) → (new constraints * assignments) *)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(* Below is a draft *)
|
(* Below is a draft *)
|
||||||
|
|
||||||
(* type state = {
|
let initial_state : typer_state = {
|
||||||
* (\* when α-renaming x to y, we put them in the same union-find class *\)
|
structured_dbs =
|
||||||
* unification_vars : unionfind ;
|
{
|
||||||
*
|
all_constraints = ([] : type_constraint_simpl list) ;
|
||||||
* (\* assigns a value to the representant in the unionfind *\)
|
aliases = UF.empty (fun s -> Format.asprintf "%a" Var.pp s) Var.compare;
|
||||||
* assignments : type_expression TypeVariableMap.t ;
|
assignments = (Map.create ~cmp:Var.compare : (type_variable, c_constructor_simpl) Map.t);
|
||||||
*
|
grouped_by_variable = (Map.create ~cmp:Var.compare : (type_variable, constraints) Map.t);
|
||||||
* (\* constraints related to a type variable *\)
|
cycle_detection_toposort = ();
|
||||||
* constraints : constraints TypeVariableMap.t ;
|
} ;
|
||||||
* } *)
|
already_selected = {
|
||||||
|
break_ctor = Set.create ~cmp:Solver_should_be_generated.compare_output_break_ctor;
|
||||||
let initial_state : typer_state = (* {
|
specialize1 = Set.create ~cmp:Solver_should_be_generated.compare_output_specialize1 ;
|
||||||
* unification_vars = UF.empty ;
|
}
|
||||||
* constraints = TypeVariableMap.empty ;
|
|
||||||
* assignments = TypeVariableMap.empty ;
|
|
||||||
* } *)
|
|
||||||
{
|
|
||||||
structured_dbs =
|
|
||||||
{
|
|
||||||
all_constraints = [] ; (* type_constraint_simpl list *)
|
|
||||||
aliases = UF.empty (fun s -> Format.asprintf "%a" Var.pp s) Var.compare ; (* unionfind *)
|
|
||||||
assignments = Map.create ~cmp:Var.compare; (* c_constructor_simpl TypeVariableMap.t *)
|
|
||||||
grouped_by_variable = Map.create ~cmp:Var.compare; (* constraints TypeVariableMap.t *)
|
|
||||||
cycle_detection_toposort = (); (* unit *)
|
|
||||||
} ;
|
|
||||||
already_selected = {
|
|
||||||
break_ctor = Set.create ~cmp:compare_output_break_ctor;
|
|
||||||
specialize1 = Set.create ~cmp:compare_output_specialize1 ;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
(* This function is called when a program is fully compiled, and the
|
(* This function is called when a program is fully compiled, and the
|
||||||
typechecker's state is discarded. TODO: either get rid of the state
|
typechecker's state is discarded. TODO: either get rid of the state
|
||||||
@ -732,23 +103,6 @@ let initial_state : typer_state = (* {
|
|||||||
state any further. Suzanne *)
|
state any further. Suzanne *)
|
||||||
let discard_state (_ : typer_state) = ()
|
let discard_state (_ : typer_state) = ()
|
||||||
|
|
||||||
(* let replace_var_in_state = fun (v : type_variable) (state : state) -> *)
|
|
||||||
(* let aux_tv : type_expression -> _ = function *)
|
|
||||||
(* | P_forall (w , cs , tval) -> failwith "TODO" *)
|
|
||||||
(* | P_variable (w) -> *)
|
|
||||||
(* if w = v then *)
|
|
||||||
(* (*…*) *)
|
|
||||||
(* else *)
|
|
||||||
(* (*…*) *)
|
|
||||||
(* | P_constant (c , args) -> failwith "TODO" *)
|
|
||||||
(* | P_access_label (tv , label) -> failwith "TODO" in *)
|
|
||||||
(* let aux_tc tc = *)
|
|
||||||
(* List.map (fun l -> List.map aux_tv l) tc in *)
|
|
||||||
(* let aux : type_constraint -> _ = function *)
|
|
||||||
(* | C_equation (l , r) -> C_equation (aux_tv l , aux_tv r) *)
|
|
||||||
(* | C_typeclass (l , rs) -> C_typeclass (List.map aux_tv l , aux_tc rs) *)
|
|
||||||
(* in List.map aux state *)
|
|
||||||
|
|
||||||
(* This is the solver *)
|
(* This is the solver *)
|
||||||
let aggregate_constraints : typer_state -> type_constraint list -> typer_state result = fun state newc ->
|
let aggregate_constraints : typer_state -> type_constraint list -> typer_state result = fun state newc ->
|
||||||
(* TODO: Iterate over constraints *)
|
(* TODO: Iterate over constraints *)
|
||||||
@ -758,12 +112,6 @@ let aggregate_constraints : typer_state -> type_constraint list -> typer_state r
|
|||||||
(*let { constraints ; eqv } = state in
|
(*let { constraints ; eqv } = state in
|
||||||
ok { constraints = constraints @ newc ; eqv }*)
|
ok { constraints = constraints @ newc ; eqv }*)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(* Later on, we'll ensure that all the heuristics register the
|
(* Later on, we'll ensure that all the heuristics register the
|
||||||
existential/unification variables that they create, as well as the
|
existential/unification variables that they create, as well as the
|
||||||
new constraints that they create. We will then check that they only
|
new constraints that they create. We will then check that they only
|
||||||
|
214
src/passes/8-typer-new/solver_should_be_generated.ml
Normal file
214
src/passes/8-typer-new/solver_should_be_generated.ml
Normal file
@ -0,0 +1,214 @@
|
|||||||
|
(* The contents of this file should be auto-generated. *)
|
||||||
|
|
||||||
|
open Ast_typed.Types
|
||||||
|
module T = Ast_typed.Types
|
||||||
|
|
||||||
|
let compare_simple_c_constant = function
|
||||||
|
| C_arrow -> (function
|
||||||
|
(* N/A -> 1 *)
|
||||||
|
| C_arrow -> 0
|
||||||
|
| C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_option -> (function
|
||||||
|
| C_arrow -> 1
|
||||||
|
| C_option -> 0
|
||||||
|
| C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_record -> (function
|
||||||
|
| C_arrow | C_option -> 1
|
||||||
|
| C_record -> 0
|
||||||
|
| C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_variant -> (function
|
||||||
|
| C_arrow | C_option | C_record -> 1
|
||||||
|
| C_variant -> 0
|
||||||
|
| C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_map -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant -> 1
|
||||||
|
| C_map -> 0
|
||||||
|
| C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_big_map -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map -> 1
|
||||||
|
| C_big_map -> 0
|
||||||
|
| C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_list -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map -> 1
|
||||||
|
| C_list -> 0
|
||||||
|
| C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_set -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list -> 1
|
||||||
|
| C_set -> 0
|
||||||
|
| C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_unit -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set -> 1
|
||||||
|
| C_unit -> 0
|
||||||
|
| C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_string -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit -> 1
|
||||||
|
| C_string -> 0
|
||||||
|
| C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_nat -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string -> 1
|
||||||
|
| C_nat -> 0
|
||||||
|
| C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_mutez -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat -> 1
|
||||||
|
| C_mutez -> 0
|
||||||
|
| C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_timestamp -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez -> 1
|
||||||
|
| C_timestamp -> 0
|
||||||
|
| C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_int -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp -> 1
|
||||||
|
| C_int -> 0
|
||||||
|
| C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_address -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int -> 1
|
||||||
|
| C_address -> 0
|
||||||
|
| C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_bytes -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address -> 1
|
||||||
|
| C_bytes -> 0
|
||||||
|
| C_key_hash | C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_key_hash -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes -> 1
|
||||||
|
| C_key_hash -> 0
|
||||||
|
| C_key | C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_key -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash -> 1
|
||||||
|
| C_key -> 0
|
||||||
|
| C_signature | C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_signature -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key -> 1
|
||||||
|
| C_signature -> 0
|
||||||
|
| C_operation | C_contract | C_chain_id -> -1)
|
||||||
|
| C_operation -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature -> 1
|
||||||
|
| C_operation -> 0
|
||||||
|
| C_contract | C_chain_id -> -1)
|
||||||
|
| C_contract -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation -> 1
|
||||||
|
| C_contract -> 0
|
||||||
|
| C_chain_id -> -1)
|
||||||
|
| C_chain_id -> (function
|
||||||
|
| C_arrow | C_option | C_record | C_variant | C_map | C_big_map | C_list | C_set | C_unit | C_string | C_nat | C_mutez | C_timestamp | C_int | C_address | C_bytes | C_key_hash | C_key | C_signature | C_operation | C_contract -> 1
|
||||||
|
| C_chain_id -> 0
|
||||||
|
(* N/A -> -1 *)
|
||||||
|
)
|
||||||
|
|
||||||
|
let (<?) ca cb =
|
||||||
|
if ca = 0 then cb () else ca
|
||||||
|
let rec compare_list f = function
|
||||||
|
| hd1::tl1 -> (function
|
||||||
|
[] -> 1
|
||||||
|
| hd2::tl2 ->
|
||||||
|
f hd1 hd2 <? fun () ->
|
||||||
|
compare_list f tl1 tl2)
|
||||||
|
| [] -> (function [] -> 0 | _::_ -> -1) (* This follows the behaviour of Pervasives.compare for lists of different length *)
|
||||||
|
let compare_type_variable a b =
|
||||||
|
Var.compare a b
|
||||||
|
let compare_label (a:label) (b:label) =
|
||||||
|
let Label a = a in
|
||||||
|
let Label b = b in
|
||||||
|
String.compare a b
|
||||||
|
let rec compare_typeclass a b = compare_list (compare_list compare_type_expression) a b
|
||||||
|
and compare_type_expression { tsrc = _ ; t = ta } { tsrc = _ ; t = tb } =
|
||||||
|
(* Note: this comparison ignores the tsrc, the idea is that types
|
||||||
|
will often be compared to see if they are the same, regardless of
|
||||||
|
where the type comes from .*)
|
||||||
|
compare_type_expression_ ta tb
|
||||||
|
and compare_type_expression_ = function
|
||||||
|
| P_forall { binder=a1; constraints=a2; body=a3 } -> (function
|
||||||
|
| P_forall { binder=b1; constraints=b2; body=b3 } ->
|
||||||
|
compare_type_variable a1 b1 <? fun () ->
|
||||||
|
compare_list compare_type_constraint a2 b2 <? fun () ->
|
||||||
|
compare_type_expression a3 b3
|
||||||
|
| P_variable _ -> -1
|
||||||
|
| P_constant _ -> -1
|
||||||
|
| P_apply _ -> -1)
|
||||||
|
| P_variable a -> (function
|
||||||
|
| P_forall _ -> 1
|
||||||
|
| P_variable b -> compare_type_variable a b
|
||||||
|
| P_constant _ -> -1
|
||||||
|
| P_apply _ -> -1)
|
||||||
|
| P_constant { p_ctor_tag=a1; p_ctor_args=a2 } -> (function
|
||||||
|
| P_forall _ -> 1
|
||||||
|
| P_variable _ -> 1
|
||||||
|
| P_constant { p_ctor_tag=b1; p_ctor_args=b2 } -> compare_simple_c_constant a1 b1 <? fun () -> compare_list compare_type_expression a2 b2
|
||||||
|
| P_apply _ -> -1)
|
||||||
|
| P_apply { tf=a1; targ=a2 } -> (function
|
||||||
|
| P_forall _ -> 1
|
||||||
|
| P_variable _ -> 1
|
||||||
|
| P_constant _ -> 1
|
||||||
|
| P_apply { tf=b1; targ=b2 } -> compare_type_expression a1 b1 <? fun () -> compare_type_expression a2 b2)
|
||||||
|
and compare_type_constraint = fun { c = ca ; reason = ra } { c = cb ; reason = rb } ->
|
||||||
|
let c = compare_type_constraint_ ca cb in
|
||||||
|
if c < 0 then -1
|
||||||
|
else if c = 0 then String.compare ra rb
|
||||||
|
else 1
|
||||||
|
and compare_type_constraint_ = function
|
||||||
|
| C_equation { aval=a1; bval=a2 } -> (function
|
||||||
|
| C_equation { aval=b1; bval=b2 } -> compare_type_expression a1 b1 <? fun () -> compare_type_expression a2 b2
|
||||||
|
| C_typeclass _ -> -1
|
||||||
|
| C_access_label _ -> -1)
|
||||||
|
| C_typeclass { tc_args=a1; typeclass=a2 } -> (function
|
||||||
|
| C_equation _ -> 1
|
||||||
|
| C_typeclass { tc_args=b1; typeclass=b2 } -> compare_list compare_type_expression a1 b1 <? fun () -> compare_typeclass a2 b2
|
||||||
|
| C_access_label _ -> -1)
|
||||||
|
| C_access_label { c_access_label_tval=a1; accessor=a2; c_access_label_tvar=a3 } -> (function
|
||||||
|
| C_equation _ -> 1
|
||||||
|
| C_typeclass _ -> 1
|
||||||
|
| C_access_label { c_access_label_tval=b1; accessor=b2; c_access_label_tvar=b3 } -> compare_type_expression a1 b1 <? fun () -> compare_label a2 b2 <? fun () -> compare_type_variable a3 b3)
|
||||||
|
let compare_type_constraint_list = compare_list compare_type_constraint
|
||||||
|
let compare_p_forall
|
||||||
|
{ binder = a1; constraints = a2; body = a3 }
|
||||||
|
{ binder = b1; constraints = b2; body = b3 } =
|
||||||
|
compare_type_variable a1 b1 <? fun () ->
|
||||||
|
compare_type_constraint_list a2 b2 <? fun () ->
|
||||||
|
compare_type_expression a3 b3
|
||||||
|
let compare_c_poly_simpl { tv = a1; forall = a2 } { tv = b1; forall = b2 } =
|
||||||
|
compare_type_variable a1 b1 <? fun () ->
|
||||||
|
compare_p_forall a2 b2
|
||||||
|
let compare_c_constructor_simpl { reason_constr_simpl = _ ; tv=a1; c_tag=a2; tv_list=a3 } { reason_constr_simpl = _ ; tv=b1; c_tag=b2; tv_list=b3 } =
|
||||||
|
(* We do not compare the reasons, as they are only for debugging and
|
||||||
|
not part of the type *)
|
||||||
|
compare_type_variable a1 b1 <? fun () -> compare_simple_c_constant a2 b2 <? fun () -> compare_list compare_type_variable a3 b3
|
||||||
|
|
||||||
|
(* TODO: use Ast_typed.Compare_generic.output_specialize1 etc. but don't compare the reasons *)
|
||||||
|
let compare_output_specialize1 { poly = a1; a_k_var = a2 } { poly = b1; a_k_var = b2 } =
|
||||||
|
compare_c_poly_simpl a1 b1 <? fun () ->
|
||||||
|
compare_c_constructor_simpl a2 b2
|
||||||
|
|
||||||
|
let compare_output_break_ctor { a_k_var=a1; a_k'_var'=a2 } { a_k_var=b1; a_k'_var'=b2 } =
|
||||||
|
compare_c_constructor_simpl a1 b1 <? fun () -> compare_c_constructor_simpl a2 b2
|
||||||
|
|
||||||
|
(* Using a pretty-printer from the PP.ml module creates a dependency
|
||||||
|
loop, so the one that we need temporarily for debugging purposes
|
||||||
|
has been copied here. *)
|
||||||
|
let debug_pp_constant : _ -> constant_tag -> unit = fun ppf c_tag ->
|
||||||
|
let ct = match c_tag with
|
||||||
|
| T.C_arrow -> "arrow"
|
||||||
|
| T.C_option -> "option"
|
||||||
|
| T.C_record -> failwith "record"
|
||||||
|
| T.C_variant -> failwith "variant"
|
||||||
|
| T.C_map -> "map"
|
||||||
|
| T.C_big_map -> "big_map"
|
||||||
|
| T.C_list -> "list"
|
||||||
|
| T.C_set -> "set"
|
||||||
|
| T.C_unit -> "unit"
|
||||||
|
| T.C_string -> "string"
|
||||||
|
| T.C_nat -> "nat"
|
||||||
|
| T.C_mutez -> "mutez"
|
||||||
|
| T.C_timestamp -> "timestamp"
|
||||||
|
| T.C_int -> "int"
|
||||||
|
| T.C_address -> "address"
|
||||||
|
| T.C_bytes -> "bytes"
|
||||||
|
| T.C_key_hash -> "key_hash"
|
||||||
|
| T.C_key -> "key"
|
||||||
|
| T.C_signature -> "signature"
|
||||||
|
| T.C_operation -> "operation"
|
||||||
|
| T.C_contract -> "contract"
|
||||||
|
| T.C_chain_id -> "chain_id"
|
||||||
|
in
|
||||||
|
Format.fprintf ppf "%s" ct
|
||||||
|
|
||||||
|
let debug_pp_c_constructor_simpl ppf { tv; c_tag; tv_list } =
|
||||||
|
Format.fprintf ppf "CTOR %a %a(%a)" Var.pp tv debug_pp_constant c_tag PP_helpers.(list_sep Var.pp (const " , ")) tv_list
|
18
src/passes/8-typer-new/solver_types.ml
Normal file
18
src/passes/8-typer-new/solver_types.ml
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
open Ast_typed.Types
|
||||||
|
|
||||||
|
type 'old_constraint_type selector_input = 'old_constraint_type (* some info about the constraint just added, so that we know what to look for *)
|
||||||
|
type 'selector_output selector_outputs =
|
||||||
|
WasSelected of 'selector_output list
|
||||||
|
| WasNotSelected
|
||||||
|
type new_constraints = type_constraint list
|
||||||
|
type new_assignments = c_constructor_simpl list
|
||||||
|
type ('old_constraint_type, 'selector_output) selector = 'old_constraint_type selector_input -> structured_dbs -> 'selector_output selector_outputs
|
||||||
|
type 'selector_output propagator = 'selector_output -> structured_dbs -> new_constraints * new_assignments
|
||||||
|
|
||||||
|
(* state+list monad *)
|
||||||
|
type ('state, 'elt) state_list_monad = { state: 'state ; list : 'elt list }
|
||||||
|
let lift_state_list_monad ~state ~list = { state ; list }
|
||||||
|
let lift f =
|
||||||
|
fun { state ; list } ->
|
||||||
|
let (new_state , new_lists) = List.fold_map_acc f state list in
|
||||||
|
{ state = new_state ; list = List.flatten new_lists }
|
18
src/passes/8-typer-new/typelang.ml
Normal file
18
src/passes/8-typer-new/typelang.ml
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
(* This file implements the type-level language. For now limited to
|
||||||
|
type constants, type functions and their application. *)
|
||||||
|
|
||||||
|
open Ast_typed.Types
|
||||||
|
|
||||||
|
(** Evaluates a type-leval application. For now, only supports
|
||||||
|
immediate beta-reduction at the root of the type. *)
|
||||||
|
let type_level_eval : type_value -> type_value * type_constraint list =
|
||||||
|
fun tv -> Typesystem.Misc.Substitution.Pattern.eval_beta_root ~tv
|
||||||
|
|
||||||
|
(** Checks that a type-level application has been fully reduced. For
|
||||||
|
now, only some simple cases like applications of `forall`
|
||||||
|
<polymorphic types are allowed. *)
|
||||||
|
let check_applied ((reduced, _new_constraints) as x) =
|
||||||
|
let () = match reduced with
|
||||||
|
{ tsrc = _ ; t = P_apply _ } -> failwith "internal error: shouldn't happen" (* failwith "could not reduce type-level application. Arbitrary type-level applications are not supported for now." *)
|
||||||
|
| _ -> ()
|
||||||
|
in x
|
@ -416,11 +416,11 @@ and type_lambda e state {
|
|||||||
let%bind input_type' = bind_map_option (evaluate_type e) input_type in
|
let%bind input_type' = bind_map_option (evaluate_type e) input_type in
|
||||||
let%bind output_type' = bind_map_option (evaluate_type e) output_type in
|
let%bind output_type' = bind_map_option (evaluate_type e) output_type in
|
||||||
|
|
||||||
let fresh : O.type_expression = t_variable (Solver.Wrap.fresh_binder ()) () in
|
let fresh : O.type_expression = t_variable (Wrap.fresh_binder ()) () in
|
||||||
let e' = Environment.add_ez_binder (binder) fresh e in
|
let e' = Environment.add_ez_binder (binder) fresh e in
|
||||||
|
|
||||||
let%bind (result , state') = type_expression e' state result in
|
let%bind (result , state') = type_expression e' state result in
|
||||||
let wrapped = Solver.Wrap.lambda fresh input_type' output_type' result.type_expression in
|
let wrapped = Wrap.lambda fresh input_type' output_type' result.type_expression in
|
||||||
ok (({binder;result}:O.lambda),state',wrapped)
|
ok (({binder;result}:O.lambda),state',wrapped)
|
||||||
|
|
||||||
and type_constant (name:I.constant') (lst:O.type_expression list) (tv_opt:O.type_expression option) : (O.constant' * O.type_expression) result =
|
and type_constant (name:I.constant') (lst:O.type_expression list) (tv_opt:O.type_expression option) : (O.constant' * O.type_expression) result =
|
||||||
|
@ -2,6 +2,7 @@ module Types = Types
|
|||||||
module Environment = Environment
|
module Environment = Environment
|
||||||
module PP = PP
|
module PP = PP
|
||||||
module PP_generic = PP_generic
|
module PP_generic = PP_generic
|
||||||
|
module Compare_generic = Compare_generic
|
||||||
module Combinators = struct
|
module Combinators = struct
|
||||||
include Combinators
|
include Combinators
|
||||||
end
|
end
|
||||||
|
@ -127,4 +127,3 @@ let fold_map__poly_set : type a state new_a . new_a extra_info__comparable -> (s
|
|||||||
ok (state , PolySet.add new_elt s) in
|
ok (state , PolySet.add new_elt s) in
|
||||||
let%bind (state , m) = PolySet.fold_inc aux s ~init:(ok (state, PolySet.create ~cmp:new_compare)) in
|
let%bind (state , m) = PolySet.fold_inc aux s ~init:(ok (state, PolySet.create ~cmp:new_compare)) in
|
||||||
ok (state , m)
|
ok (state , m)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user