Data_encoding: split out Binary_stream

This commit is contained in:
Grégoire Henry 2018-05-03 15:29:44 +02:00
parent c9eab8689a
commit 0b31ebb455
4 changed files with 463 additions and 471 deletions

View File

@ -775,467 +775,3 @@ let fixed_length_exn e =
match fixed_length e with match fixed_length e with
| Some n -> n | Some n -> n
| None -> invalid_arg "Data_encoding.Binary.fixed_length_exn" | None -> invalid_arg "Data_encoding.Binary.fixed_length_exn"
(* Facilities to decode streams of binary data *)
type 'a status =
| Success of { res : 'a ; res_len : int ; remaining : MBytes.t list }
| Await of (MBytes.t -> 'a status)
| Error
module Stream_reader = struct
(* used as a zipper to code the function read_checker with the
ability to stop and wait for more data. In 'P_seq' case, data
length is parameterized by the current offset. Hence, it's a
function 'fun_data_len'. For the 'P_list' case, we store the
base offset (before starting reading the elements) and the
number of elements that have been read so far. *)
type path =
| P_top : path
| P_await : { path : path ; encoding : 'a Encoding.t ; data_len : int } -> path
| P_seq : { path : path ; encoding : 'a Encoding.t ;
fun_data_len : int -> int } -> path
| P_list : { path:path ; encoding:'a Encoding.t ; data_len : int ;
base_ofs : int ; nb_elts_read : int } -> path
(* used to accumulate given mbytes when reading a list of blocks,
as well as the current offset and the number of unread bytes *)
type mbytes_stream = {
past : MBytes.t Queue.t ; (* data that have been entirely read *)
future : (MBytes.t * int) Queue.t ; (* data that are not (fully) read *)
mutable past_len : int ; (*length of concatenation of data in 'past'*)
mutable unread : int ; (*number of cells that are unread in 'future'*)
ofs : int (*current absolute offset wrt to concatenation past @ future*)
}
(* exception raised when additional mbytes are needed to continue
decoding *)
exception Need_more_data
(* read a data that is stored in may Mbytes *)
let read_from_many_blocks reader buf ofs d_ofs =
let tmp = MBytes.create d_ofs in (*we will merge data in this mbyte*)
let r = ref d_ofs in (*to count the cells to be read*)
let rel_ofs = ref ofs in (*= ofs for first mbyte, 0 for others*)
while !r > 0 do
assert (not (Queue.is_empty buf.future)) ;
let b, len_b = Queue.peek buf.future in (*take the next mbyte*)
let len_chunk = len_b - !rel_ofs in (*the number of cells to read*)
if !r >= len_chunk then
begin (*copy b in 'past' if it is read entirely*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
(* copy (min !r len_chunk) data from b to tmp *)
MBytes.blit b !rel_ofs tmp (d_ofs - !r) (min !r len_chunk) ;
r := !r - len_chunk ; (* len_chunk data read during this round*)
rel_ofs := 0 ; (*next mbytes will be read starting from zero*)
done ;
reader tmp 0 d_ofs
(* generic function that reads data from an mbytes_stream. It is
parameterized by a function "reader" that effectively reads the
data *)
let generic_read_data delta_ofs reader buf =
let absolute_ofs = buf.ofs in
if buf.unread < delta_ofs then (*not enough data*)
raise Need_more_data ;
if delta_ofs = 0 then (*we'll read nothing*)
buf, reader (MBytes.create 0) 0 0
else
let new_ofs = absolute_ofs + delta_ofs in
let ofs = absolute_ofs - buf.past_len in (*relative ofs wrt 'future'*)
buf.unread <- buf.unread-delta_ofs ; (*'delta_ofs' cells will be read*)
assert (not (Queue.is_empty buf.future)) ; (*we have some data to read*)
let b, len_b = Queue.peek buf.future in
let buf = { buf with ofs = new_ofs } in
if ofs + delta_ofs > len_b then
(*should read data from many mbytes*)
buf, read_from_many_blocks reader buf ofs delta_ofs
else
begin
if ofs + delta_ofs = len_b then
begin (*the rest of b will be entirely read. Put it in 'past'*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
buf, reader b ofs delta_ofs
end
open Encoding (* open here, shadow below, use shadowed definitions later *)
(* functions that try to read data from a given mbytes_stream,
or raise Need_more_data *)
let int8 buf =
generic_read_data Size.int8 (fun x y _ -> MBytes.get_int8 x y) buf
let uint8 buf =
generic_read_data Size.uint8 (fun x y _ -> MBytes.get_uint8 x y) buf
let char buf =
let buf, v = int8 buf in
buf, Char.chr v
let bool buf =
let buf, v = int8 buf in
buf, v <> 0
let int16 buf =
generic_read_data Size.int16 (fun x y _ -> MBytes.get_int16 x y) buf
let uint16 buf =
generic_read_data Size.uint16 (fun x y _ -> MBytes.get_uint16 x y) buf
let uint30 buf =
generic_read_data Size.uint30
(fun x y _ ->
let v = Int32.to_int (MBytes.get_int32 x y) in
if v < 0 then
failwith "Data_encoding.Binary.Reader.uint30: invalid data." ;
v) buf
let int31 buf =
generic_read_data Size.int31
(fun x y _ -> Int32.to_int (MBytes.get_int32 x y)) buf
let int32 buf =
generic_read_data Size.int32 (fun x y _ -> MBytes.get_int32 x y) buf
let int64 buf =
generic_read_data Size.int64 (fun x y _ -> MBytes.get_int64 x y) buf
(** read a float64 (double) **)
let float buf =
(*Here, float means float64, which is read using MBytes.get_double !!*)
generic_read_data Size.float (fun x y _ -> MBytes.get_double x y) buf
let fixed_length_bytes length buf =
generic_read_data length MBytes.sub buf
let fixed_length_string length buf =
generic_read_data length MBytes.substring buf
let read_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
(* auxiliary function: computing size of data in branches
Objs(`Variable) and Tups(`Variable) *)
let varseq_lengths e1 e2 ofs len = match Encoding.classify e1, Encoding.classify e2 with
| (`Dynamic | `Fixed _), `Variable -> len, (fun ofs' -> len - ofs' + ofs)
| `Variable, `Fixed n -> (len - n), (fun _ -> n)
| _ -> assert false (* Should be rejected by Kind.combine *)
(* adaptation of function read_rec to check binary data
incrementally. The function takes (and returns) a 'path' (for
incrementality), and 'mbytes_stream' *)
let rec data_checker
: type a.
path -> a Encoding.t -> mbytes_stream -> int ->
path * mbytes_stream =
fun path e buf len ->
(*length of data with `Variable kind should be given by the caller*)
assert (Encoding.classify e != `Variable || len >= 0) ;
try match e.encoding with
| Null -> next_path path buf
| Empty -> next_path path buf
| Constant _ -> next_path path buf
| Ignore -> next_path path { buf with ofs = buf.ofs + len }
| Bool -> next_path path (fst (bool buf))
| Int8 -> next_path path (fst (int8 buf))
| Uint8 -> next_path path (fst (uint8 buf))
| Int16 -> next_path path (fst (int16 buf))
| Uint16 -> next_path path (fst (uint16 buf))
| Int31 -> next_path path (fst (int31 buf))
| Int32 -> next_path path (fst (int32 buf))
| Int64 -> next_path path (fst (int64 buf))
| RangedInt { minimum ; maximum } ->
let (stream, ranged) =
match Size.range_to_size ~minimum ~maximum with
| `Int8 -> int8 buf
| `Int16 -> int16 buf
| `Int31 -> int31 buf
| `Uint8 -> uint8 buf
| `Uint16 -> uint16 buf
| `Uint30 -> uint30 buf in
let ranged = if minimum > 0 then ranged + minimum else ranged in
assert (minimum < ranged && ranged < maximum) ;
next_path path stream
| Float -> next_path path (fst (float buf))
| RangedFloat { minimum ; maximum } ->
let stream, float = float buf in
assert (minimum < float && maximum > float) ;
next_path path stream
| Bytes (`Fixed n) ->
next_path path (fst (fixed_length_bytes n buf))
| String (`Fixed n) ->
next_path path (fst (fixed_length_string n buf))
| Bytes `Variable ->
next_path path (fst (fixed_length_bytes len buf))
| String `Variable ->
next_path path (fst (fixed_length_string len buf))
| String_enum (_, arr) ->
next_path path
(match Size.enum_size arr with
| `Uint8 -> fst @@ uint8 buf
| `Uint16 -> fst @@ uint16 buf
| `Uint30 -> fst @@ uint30 buf)
| Array e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| List e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| Obj (Req (_, e)) -> data_checker path e buf len
| Obj (Opt (`Dynamic, _, e)) ->
let buf, v = int8 buf in
if v = 0 then next_path path buf
else data_checker path e buf (len - Size.int8)
| Obj (Opt (`Variable, _, e)) ->
if len = 0 then next_path path buf
else data_checker path e buf len
| Obj (Dft (_, e, _)) -> data_checker path e buf len
| Objs ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Objs (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Tup e -> data_checker path e buf len
| Tups ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Tups (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Conv { encoding = e } -> data_checker path e buf len
| Describe { encoding = e } -> data_checker path e buf len
| Def { encoding = e } -> data_checker path e buf len
| Splitted { encoding = e } -> data_checker path e buf len
| Mu (_, _, self) -> data_checker path (self e) buf len
| Union (_, sz, cases) ->
let buf, ctag = read_tag sz buf in
let opt =
List.fold_left
(fun acc c -> match c with
| (Case { encoding ; tag = Tag tag })
when tag == ctag ->
assert (acc == None) ;
Some (data_checker path encoding buf)
| _ -> acc
)None cases
in
begin match opt with
| None -> raise (Encoding.Unexpected_tag ctag)
| Some func -> func (len - (Size.tag_size sz))
end
| Dynamic_size e ->
let buf, sz = int32 buf in
let sz = Int32.to_int sz in
if sz < 0 then raise (Encoding.Invalid_size sz) ;
data_checker path e buf sz
| Delayed f -> data_checker path (f ()) buf len
with Need_more_data ->
P_await { path ; encoding = e ; data_len = len }, buf
and next_path : path -> mbytes_stream -> path * mbytes_stream =
fun path buf ->
match path with
| P_top ->
P_top, buf (* success case *)
| P_seq { path ; encoding ; fun_data_len } ->
(* check the right branch of a sequence. fun_data_len ofs gives
the length of the data to read *)
data_checker path encoding buf (fun_data_len buf.ofs)
| P_await { path ; encoding ; data_len } ->
(* resume from an await *)
data_checker path encoding buf data_len
| P_list
({ path ; encoding ; base_ofs ; data_len ; nb_elts_read } as r) ->
(* read/check an eventual element of a list *)
if data_len = buf.ofs - base_ofs then
(* we've read all the elements of the list *)
next_path path buf
else
begin
(*some more elements to read*)
assert (data_len > buf.ofs - base_ofs) ;
(*check: if we've already read some elements, then currrent ofs
should be greater then initial ofs *)
assert (nb_elts_read <= 0 || buf.ofs - base_ofs > 0) ;
let path =
P_list { r with nb_elts_read = nb_elts_read + 1} in
data_checker path encoding buf data_len
end
let data_checker = next_path
(* insert a given MBytes.t in a given mbytes_stream *)
let insert_mbytes mb_buf mb =
let len = MBytes.length mb in
if len > 0 then begin
Queue.push (mb, len) mb_buf.future ;
mb_buf.unread <- mb_buf.unread + len ;
end
(* aux function called when data_checker succeeds: splits a given
mbytes_stream into a 'read' and 'unread' queues. This may
modify the content of the given mbytes_stream *)
let split_mbytes_stream { past_len ; past ; future ; unread ; ofs } =
let rel_ofs = ofs - past_len in
assert (rel_ofs >= 0) ;
if rel_ofs = 0 then past, future (* already done *)
else begin
assert (not(Queue.is_empty future)) ; (*because data_checker succeeded*)
let b, len = Queue.pop future in
assert (rel_ofs < len) ; (*inv. maintained by read_from_many_blocks*)
let b1 = MBytes.sub b 0 rel_ofs in (* read part of b *)
let b2 = MBytes.sub b rel_ofs (len-rel_ofs) in (* unread part of b *)
Queue.push b1 past ;
(* push b2 at the beginning of 'future' using Queue.transfer*)
let tmp = Queue.create() in
Queue.push (b2, unread) tmp ;
Queue.transfer future tmp ; (*tmp === b2 ::: future in constant time*)
past, tmp
end
(* given a state, this function returns a new status:
- if data are successfully checked, accumulated mbytes are
passed to 'success_result' that computes the final
result. Unread mbytes are also returned
- if some more data are needed, a function that waits for some
additional mbytes is returned
- eventual errors are reported/returned *)
let rec bytes_stream_reader_rec (path, mb_buf) success_result =
let success =
match path with
| P_top -> true
| P_await _ -> false
| _ -> assert false
in
assert (mb_buf.ofs >= mb_buf.past_len) ;
if success then
let q_read, q_unread = split_mbytes_stream mb_buf in
match success_result q_read mb_buf.ofs with
| Some a ->
let remaining =
List.rev @@
Queue.fold
(fun acc (b, len) ->
if len = 0 then acc else b:: acc) [] q_unread
in
Success { res = a ; res_len = mb_buf.ofs ; remaining }
| None -> Error
(* success_result may fail because data_checker is
approximative in some situations *)
else
Await
(fun mb ->
insert_mbytes mb_buf mb ;
try
let state = data_checker path mb_buf in
bytes_stream_reader_rec state success_result
with _ -> Error)
(* This function checks reading a stream of 'MBytes.t' wrt. a given
encoding:
- the given data encoding should have a 'Fixed' or a 'Dynamic'
size, otherwise an error is returned,
- the function returns an 'Error', a function w
('Await w') that waits for more data (Mbytes.t), or
'Success'. The function is parameterized by 'success_result'
that computes the data to return in case of success.
An exception 'Invalid_argument "streaming data with variable
size"' is raised if the encoding has a variable size *)
let bytes_stream_reader :
MBytes.t list -> 'a t ->
(MBytes.t Queue.t -> int -> 'b option) -> 'b status
= fun l e success_result ->
match classify e with
| `Variable -> invalid_arg "streaming data with variable size"
| `Fixed _ | `Dynamic ->
let mb_buf = {
past = Queue.create() ; past_len = 0 ;
future = Queue.create() ; unread = 0; ofs = 0 }
in
List.iter (insert_mbytes mb_buf) l ;
let path =
P_await { path = P_top ; encoding = e ; data_len = - 1 } in
try bytes_stream_reader_rec (data_checker path mb_buf) success_result
with _ -> Error
end
(* concats a queue of mbytes into one MByte *)
let concat_mbyte_chunks queue tot_len =
if Queue.length queue = 1 then Queue.pop queue (* no copy *)
else (* copy smaller mbytes into one big mbyte *)
let buf = MBytes.create tot_len in
let cpt = ref 0 in
let tot_len' = ref tot_len in
while not (Queue.is_empty queue) do
let mb = Queue.pop queue in
let len = MBytes.length mb in
tot_len' := !tot_len' - len ;
assert (!tot_len' >= 0) ;
MBytes.blit mb 0 buf !cpt len ;
cpt := !cpt + len ;
done ;
assert (!tot_len' = 0) ;
buf
(* Decode a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let read_stream_of_bytes ?(init=[]) encoding =
Stream_reader.bytes_stream_reader init encoding
(fun read_q ofs -> of_bytes encoding (concat_mbyte_chunks read_q ofs))
(* Check reading a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let check_stream_of_bytes ?(init=[]) encoding =
Stream_reader.bytes_stream_reader init encoding (fun _ _ -> Some ())

View File

@ -17,11 +17,5 @@ val to_bytes : 'a Encoding.t -> 'a -> MBytes.t
val of_bytes : 'a Encoding.t -> MBytes.t -> 'a option val of_bytes : 'a Encoding.t -> MBytes.t -> 'a option
val of_bytes_exn : 'a Encoding.t -> MBytes.t -> 'a val of_bytes_exn : 'a Encoding.t -> MBytes.t -> 'a
val to_bytes_list : ?copy_blocks:bool -> int -> 'a Encoding.t -> 'a -> MBytes.t list val to_bytes_list : ?copy_blocks:bool -> int -> 'a Encoding.t -> 'a -> MBytes.t list
type 'a status =
| Success of { res : 'a ; res_len : int ; remaining : MBytes.t list }
| Await of (MBytes.t -> 'a status)
| Error
val read_stream_of_bytes : ?init:MBytes.t list -> 'a Encoding.t -> 'a status
val check_stream_of_bytes : ?init:MBytes.t list -> 'a Encoding.t -> unit status
val fixed_length : 'a Encoding.t -> int option val fixed_length : 'a Encoding.t -> int option
val fixed_length_exn : 'a Encoding.t -> int val fixed_length_exn : 'a Encoding.t -> int

View File

@ -0,0 +1,459 @@
(* Facilities to decode streams of binary data *)
type 'a status =
| Success of { res : 'a ; res_len : int ; remaining : MBytes.t list }
| Await of (MBytes.t -> 'a status)
| Error
(* used as a zipper to code the function read_checker with the
ability to stop and wait for more data. In 'P_seq' case, data
length is parameterized by the current offset. Hence, it's a
function 'fun_data_len'. For the 'P_list' case, we store the
base offset (before starting reading the elements) and the
number of elements that have been read so far. *)
type path =
| P_top : path
| P_await : { path : path ; encoding : 'a Encoding.t ; data_len : int } -> path
| P_seq : { path : path ; encoding : 'a Encoding.t ;
fun_data_len : int -> int } -> path
| P_list : { path:path ; encoding:'a Encoding.t ; data_len : int ;
base_ofs : int ; nb_elts_read : int } -> path
(* used to accumulate given mbytes when reading a list of blocks,
as well as the current offset and the number of unread bytes *)
type mbytes_stream = {
past : MBytes.t Queue.t ; (* data that have been entirely read *)
future : (MBytes.t * int) Queue.t ; (* data that are not (fully) read *)
mutable past_len : int ; (*length of concatenation of data in 'past'*)
mutable unread : int ; (*number of cells that are unread in 'future'*)
ofs : int (*current absolute offset wrt to concatenation past @ future*)
}
(* exception raised when additional mbytes are needed to continue
decoding *)
exception Need_more_data
(* read a data that is stored in may Mbytes *)
let read_from_many_blocks reader buf ofs d_ofs =
let tmp = MBytes.create d_ofs in (*we will merge data in this mbyte*)
let r = ref d_ofs in (*to count the cells to be read*)
let rel_ofs = ref ofs in (*= ofs for first mbyte, 0 for others*)
while !r > 0 do
assert (not (Queue.is_empty buf.future)) ;
let b, len_b = Queue.peek buf.future in (*take the next mbyte*)
let len_chunk = len_b - !rel_ofs in (*the number of cells to read*)
if !r >= len_chunk then
begin (*copy b in 'past' if it is read entirely*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
(* copy (min !r len_chunk) data from b to tmp *)
MBytes.blit b !rel_ofs tmp (d_ofs - !r) (min !r len_chunk) ;
r := !r - len_chunk ; (* len_chunk data read during this round*)
rel_ofs := 0 ; (*next mbytes will be read starting from zero*)
done ;
reader tmp 0 d_ofs
(* generic function that reads data from an mbytes_stream. It is
parameterized by a function "reader" that effectively reads the
data *)
let generic_read_data delta_ofs reader buf =
let absolute_ofs = buf.ofs in
if buf.unread < delta_ofs then (*not enough data*)
raise Need_more_data ;
if delta_ofs = 0 then (*we'll read nothing*)
buf, reader (MBytes.create 0) 0 0
else
let new_ofs = absolute_ofs + delta_ofs in
let ofs = absolute_ofs - buf.past_len in (*relative ofs wrt 'future'*)
buf.unread <- buf.unread-delta_ofs ; (*'delta_ofs' cells will be read*)
assert (not (Queue.is_empty buf.future)) ; (*we have some data to read*)
let b, len_b = Queue.peek buf.future in
let buf = { buf with ofs = new_ofs } in
if ofs + delta_ofs > len_b then
(*should read data from many mbytes*)
buf, read_from_many_blocks reader buf ofs delta_ofs
else
begin
if ofs + delta_ofs = len_b then
begin (*the rest of b will be entirely read. Put it in 'past'*)
ignore (Queue.pop buf.future) ;
Queue.push b buf.past ;
buf.past_len <- buf.past_len + len_b ;
end ;
buf, reader b ofs delta_ofs
end
open Encoding (* open here, shadow below, use shadowed definitions later *)
(* functions that try to read data from a given mbytes_stream,
or raise Need_more_data *)
let int8 buf =
generic_read_data Size.int8 (fun x y _ -> MBytes.get_int8 x y) buf
let uint8 buf =
generic_read_data Size.uint8 (fun x y _ -> MBytes.get_uint8 x y) buf
let char buf =
let buf, v = int8 buf in
buf, Char.chr v
let bool buf =
let buf, v = int8 buf in
buf, v <> 0
let int16 buf =
generic_read_data Size.int16 (fun x y _ -> MBytes.get_int16 x y) buf
let uint16 buf =
generic_read_data Size.uint16 (fun x y _ -> MBytes.get_uint16 x y) buf
let uint30 buf =
generic_read_data Size.uint30
(fun x y _ ->
let v = Int32.to_int (MBytes.get_int32 x y) in
if v < 0 then
failwith "Data_encoding.Binary.Reader.uint30: invalid data." ;
v) buf
let int31 buf =
generic_read_data Size.int31
(fun x y _ -> Int32.to_int (MBytes.get_int32 x y)) buf
let int32 buf =
generic_read_data Size.int32 (fun x y _ -> MBytes.get_int32 x y) buf
let int64 buf =
generic_read_data Size.int64 (fun x y _ -> MBytes.get_int64 x y) buf
(** read a float64 (double) **)
let float buf =
(*Here, float means float64, which is read using MBytes.get_double !!*)
generic_read_data Size.float (fun x y _ -> MBytes.get_double x y) buf
let fixed_length_bytes length buf =
generic_read_data length MBytes.sub buf
let fixed_length_string length buf =
generic_read_data length MBytes.substring buf
let read_tag = function
| `Uint8 -> uint8
| `Uint16 -> uint16
(* auxiliary function: computing size of data in branches
Objs(`Variable) and Tups(`Variable) *)
let varseq_lengths e1 e2 ofs len = match Encoding.classify e1, Encoding.classify e2 with
| (`Dynamic | `Fixed _), `Variable -> len, (fun ofs' -> len - ofs' + ofs)
| `Variable, `Fixed n -> (len - n), (fun _ -> n)
| _ -> assert false (* Should be rejected by Kind.combine *)
(* adaptation of function read_rec to check binary data
incrementally. The function takes (and returns) a 'path' (for
incrementality), and 'mbytes_stream' *)
let rec data_checker
: type a.
path -> a Encoding.t -> mbytes_stream -> int ->
path * mbytes_stream =
fun path e buf len ->
(*length of data with `Variable kind should be given by the caller*)
assert (Encoding.classify e != `Variable || len >= 0) ;
try match e.encoding with
| Null -> next_path path buf
| Empty -> next_path path buf
| Constant _ -> next_path path buf
| Ignore -> next_path path { buf with ofs = buf.ofs + len }
| Bool -> next_path path (fst (bool buf))
| Int8 -> next_path path (fst (int8 buf))
| Uint8 -> next_path path (fst (uint8 buf))
| Int16 -> next_path path (fst (int16 buf))
| Uint16 -> next_path path (fst (uint16 buf))
| Int31 -> next_path path (fst (int31 buf))
| Int32 -> next_path path (fst (int32 buf))
| Int64 -> next_path path (fst (int64 buf))
| RangedInt { minimum ; maximum } ->
let (stream, ranged) =
match Size.range_to_size ~minimum ~maximum with
| `Int8 -> int8 buf
| `Int16 -> int16 buf
| `Int31 -> int31 buf
| `Uint8 -> uint8 buf
| `Uint16 -> uint16 buf
| `Uint30 -> uint30 buf in
let ranged = if minimum > 0 then ranged + minimum else ranged in
assert (minimum < ranged && ranged < maximum) ;
next_path path stream
| Float -> next_path path (fst (float buf))
| RangedFloat { minimum ; maximum } ->
let stream, float = float buf in
assert (minimum < float && maximum > float) ;
next_path path stream
| Bytes (`Fixed n) ->
next_path path (fst (fixed_length_bytes n buf))
| String (`Fixed n) ->
next_path path (fst (fixed_length_string n buf))
| Bytes `Variable ->
next_path path (fst (fixed_length_bytes len buf))
| String `Variable ->
next_path path (fst (fixed_length_string len buf))
| String_enum (_, arr) ->
next_path path
(match Size.enum_size arr with
| `Uint8 -> fst @@ uint8 buf
| `Uint16 -> fst @@ uint16 buf
| `Uint30 -> fst @@ uint30 buf)
| Array e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| List e ->
let p = P_list { path ; encoding = e ; base_ofs = buf.ofs ;
data_len = len ; nb_elts_read = 0 } in
next_path p buf
| Obj (Req (_, e)) -> data_checker path e buf len
| Obj (Opt (`Dynamic, _, e)) ->
let buf, v = int8 buf in
if v = 0 then next_path path buf
else data_checker path e buf (len - Size.int8)
| Obj (Opt (`Variable, _, e)) ->
if len = 0 then next_path path buf
else data_checker path e buf len
| Obj (Dft (_, e, _)) -> data_checker path e buf len
| Objs ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Objs (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Tup e -> data_checker path e buf len
| Tups ((`Fixed _ | `Dynamic), e1, e2) ->
let f_len2 ofs' = len - (ofs' - buf.ofs) in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len
| Tups (`Variable, e1, e2) ->
let len1, f_len2 = varseq_lengths e1 e2 buf.ofs len in
let path =
P_seq { path ; encoding = e2 ; fun_data_len = f_len2 } in
data_checker path e1 buf len1
| Conv { encoding = e } -> data_checker path e buf len
| Describe { encoding = e } -> data_checker path e buf len
| Def { encoding = e } -> data_checker path e buf len
| Splitted { encoding = e } -> data_checker path e buf len
| Mu (_, _, self) -> data_checker path (self e) buf len
| Union (_, sz, cases) ->
let buf, ctag = read_tag sz buf in
let opt =
List.fold_left
(fun acc c -> match c with
| (Case { encoding ; tag = Tag tag })
when tag == ctag ->
assert (acc == None) ;
Some (data_checker path encoding buf)
| _ -> acc
)None cases
in
begin match opt with
| None -> raise (Encoding.Unexpected_tag ctag)
| Some func -> func (len - (Size.tag_size sz))
end
| Dynamic_size e ->
let buf, sz = int32 buf in
let sz = Int32.to_int sz in
if sz < 0 then raise (Encoding.Invalid_size sz) ;
data_checker path e buf sz
| Delayed f -> data_checker path (f ()) buf len
with Need_more_data ->
P_await { path ; encoding = e ; data_len = len }, buf
and next_path : path -> mbytes_stream -> path * mbytes_stream =
fun path buf ->
match path with
| P_top ->
P_top, buf (* success case *)
| P_seq { path ; encoding ; fun_data_len } ->
(* check the right branch of a sequence. fun_data_len ofs gives
the length of the data to read *)
data_checker path encoding buf (fun_data_len buf.ofs)
| P_await { path ; encoding ; data_len } ->
(* resume from an await *)
data_checker path encoding buf data_len
| P_list
({ path ; encoding ; base_ofs ; data_len ; nb_elts_read } as r) ->
(* read/check an eventual element of a list *)
if data_len = buf.ofs - base_ofs then
(* we've read all the elements of the list *)
next_path path buf
else
begin
(*some more elements to read*)
assert (data_len > buf.ofs - base_ofs) ;
(*check: if we've already read some elements, then currrent ofs
should be greater then initial ofs *)
assert (nb_elts_read <= 0 || buf.ofs - base_ofs > 0) ;
let path =
P_list { r with nb_elts_read = nb_elts_read + 1} in
data_checker path encoding buf data_len
end
let data_checker = next_path
(* insert a given MBytes.t in a given mbytes_stream *)
let insert_mbytes mb_buf mb =
let len = MBytes.length mb in
if len > 0 then begin
Queue.push (mb, len) mb_buf.future ;
mb_buf.unread <- mb_buf.unread + len ;
end
(* aux function called when data_checker succeeds: splits a given
mbytes_stream into a 'read' and 'unread' queues. This may
modify the content of the given mbytes_stream *)
let split_mbytes_stream { past_len ; past ; future ; unread ; ofs } =
let rel_ofs = ofs - past_len in
assert (rel_ofs >= 0) ;
if rel_ofs = 0 then past, future (* already done *)
else begin
assert (not(Queue.is_empty future)) ; (*because data_checker succeeded*)
let b, len = Queue.pop future in
assert (rel_ofs < len) ; (*inv. maintained by read_from_many_blocks*)
let b1 = MBytes.sub b 0 rel_ofs in (* read part of b *)
let b2 = MBytes.sub b rel_ofs (len-rel_ofs) in (* unread part of b *)
Queue.push b1 past ;
(* push b2 at the beginning of 'future' using Queue.transfer*)
let tmp = Queue.create() in
Queue.push (b2, unread) tmp ;
Queue.transfer future tmp ; (*tmp === b2 ::: future in constant time*)
past, tmp
end
(* given a state, this function returns a new status:
- if data are successfully checked, accumulated mbytes are
passed to 'success_result' that computes the final
result. Unread mbytes are also returned
- if some more data are needed, a function that waits for some
additional mbytes is returned
- eventual errors are reported/returned *)
let rec bytes_stream_reader_rec (path, mb_buf) success_result =
let success =
match path with
| P_top -> true
| P_await _ -> false
| _ -> assert false
in
assert (mb_buf.ofs >= mb_buf.past_len) ;
if success then
let q_read, q_unread = split_mbytes_stream mb_buf in
match success_result q_read mb_buf.ofs with
| Some a ->
let remaining =
List.rev @@
Queue.fold
(fun acc (b, len) ->
if len = 0 then acc else b:: acc) [] q_unread
in
Success { res = a ; res_len = mb_buf.ofs ; remaining }
| None -> Error
(* success_result may fail because data_checker is
approximative in some situations *)
else
Await
(fun mb ->
insert_mbytes mb_buf mb ;
try
let state = data_checker path mb_buf in
bytes_stream_reader_rec state success_result
with _ -> Error)
(* This function checks reading a stream of 'MBytes.t' wrt. a given
encoding:
- the given data encoding should have a 'Fixed' or a 'Dynamic'
size, otherwise an error is returned,
- the function returns an 'Error', a function w
('Await w') that waits for more data (Mbytes.t), or
'Success'. The function is parameterized by 'success_result'
that computes the data to return in case of success.
An exception 'Invalid_argument "streaming data with variable
size"' is raised if the encoding has a variable size *)
let bytes_stream_reader :
MBytes.t list -> 'a t ->
(MBytes.t Queue.t -> int -> 'b option) -> 'b status
= fun l e success_result ->
match classify e with
| `Variable -> invalid_arg "streaming data with variable size"
| `Fixed _ | `Dynamic ->
let mb_buf = {
past = Queue.create() ; past_len = 0 ;
future = Queue.create() ; unread = 0; ofs = 0 }
in
List.iter (insert_mbytes mb_buf) l ;
let path =
P_await { path = P_top ; encoding = e ; data_len = - 1 } in
try bytes_stream_reader_rec (data_checker path mb_buf) success_result
with _ -> Error
(* concats a queue of mbytes into one MByte *)
let concat_mbyte_chunks queue tot_len =
if Queue.length queue = 1 then Queue.pop queue (* no copy *)
else (* copy smaller mbytes into one big mbyte *)
let buf = MBytes.create tot_len in
let cpt = ref 0 in
let tot_len' = ref tot_len in
while not (Queue.is_empty queue) do
let mb = Queue.pop queue in
let len = MBytes.length mb in
tot_len' := !tot_len' - len ;
assert (!tot_len' >= 0) ;
MBytes.blit mb 0 buf !cpt len ;
cpt := !cpt + len ;
done ;
assert (!tot_len' = 0) ;
buf
(* Decode a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let read_stream_of_bytes ?(init=[]) encoding =
bytes_stream_reader init encoding
(fun read_q ofs -> Binary.of_bytes encoding (concat_mbyte_chunks read_q ofs))
(* Check reading a stream of MBytes. see
Stream_reader.bytes_stream_traversal for more details *)
let check_stream_of_bytes ?(init=[]) encoding =
bytes_stream_reader init encoding (fun _ _ -> Some ())

View File

@ -21,7 +21,10 @@ include Encoding
module Json = Json module Json = Json
module Bson = Bson module Bson = Bson
module Binary = Binary module Binary = struct
include Binary
include Binary_stream
end
type json = Json.t type json = Json.t
let json = Json.encoding let json = Json.encoding