Data_encoding: binary description printing

This commit is contained in:
Milo Davis 2018-02-03 14:48:08 -05:00 committed by Benjamin Canou
parent 4c03952e43
commit 0a88f1887c
12 changed files with 1008 additions and 22 deletions

View File

@ -200,7 +200,7 @@ module Description = struct
pp_button ppf
~default:true ~shortlabel:"descr" ~content:"Description"
target_ref ;
Option.iter service.input ~f: begin fun __ ->
Option.iter service.input ~f: begin fun _ ->
pp_button ppf
~default:false ~shortlabel:"input" ~content:"Input format"
target_ref
@ -212,14 +212,14 @@ module Description = struct
pp_content ppf
~tag:"p" ~shortlabel:"descr" target_ref
pp_description service ;
Option.iter service.input ~f: begin fun schema ->
Option.iter service.input ~f: begin fun (schema, _) ->
pp_content ppf
~tag:"pre" ~shortlabel:"input" target_ref
Json_schema.pp schema ;
end ;
pp_content ppf
~tag:"pre" ~shortlabel:"output" target_ref
Json_schema.pp service.output ;
Json_schema.pp (fst service.output) ;
end
end

View File

@ -301,12 +301,12 @@ let schema meth url (cctxt : #Client_context.full) =
"No service found at this URL (but this is a valid prefix)\n%!" >>= fun () ->
return ()
| { input = Some input ; output } ->
let json = `O [ "input", Json_schema.to_json input ;
"output", Json_schema.to_json output ] in
let json = `O [ "input", Json_schema.to_json (fst input) ;
"output", Json_schema.to_json (fst output) ] in
cctxt#message "%a" Json_repr.(pp (module Ezjsonm)) json >>= fun () ->
return ()
| { input = None ; output } ->
let json = `O [ "output", Json_schema.to_json output ] in
let json = `O [ "output", Json_schema.to_json (fst output) ] in
cctxt#message "%a" Json_repr.(pp (module Ezjsonm)) json >>= fun () ->
return ()
end
@ -315,9 +315,14 @@ let schema meth url (cctxt : #Client_context.full) =
"No service found at this URL (but this is a valid prefix)\n%!" >>= fun () ->
return ()
let format meth url (cctxt : #Client_context.io_rpcs) =
let format binary meth url (cctxt : #Client_context.io_rpcs) =
let args = String.split '/' url in
let open RPC_description in
let pp =
if binary then
(fun ppf (_, schema) -> Data_encoding.Binary_schema.pp ppf schema)
else
(fun ppf (schema, _) -> Json_schema.pp ppf schema) in
RPC_description.describe cctxt ~recurse:false args >>=? function
| Static { services } -> begin
match RPC_service.MethMap.find meth services with
@ -331,15 +336,15 @@ let format meth url (cctxt : #Client_context.io_rpcs) =
@[<v 2>Input format:@,%a@]@,\
@[<v 2>Output format:@,%a@]@,\
@]"
Json_schema.pp input
Json_schema.pp output >>= fun () ->
pp input
pp output >>= fun () ->
return ()
| { input = None ; output } ->
cctxt#message
"@[<v 0>\
@[<v 2>Output format:@,%a@]@,\
@]"
Json_schema.pp output >>= fun () ->
pp output >>= fun () ->
return ()
end
| _ ->
@ -381,7 +386,7 @@ let call meth raw_url (cctxt : #Client_context.full) =
cctxt#generic_json_call meth uri >>=?
display_answer cctxt
| { input = Some input } ->
fill_in ~show_optionals:false input >>= function
fill_in ~show_optionals:false (fst input) >>= function
| Error msg ->
cctxt#error "%s" msg >>= fun () ->
return ()
@ -470,12 +475,16 @@ let commands = [
command ~group
~desc: "Get the humanoid readable input and output formats of an RPC."
no_options
(args1
(switch
~doc:"Binary format"
~short:'b'
~long:"binary" ()))
(prefixes [ "rpc" ; "format"] @@
meth_params @@
string ~name: "url" ~desc: "the RPC URL" @@
stop)
(fun () -> format) ;
format ;
command ~group
~desc: "Call an RPC with the GET method."

View File

@ -0,0 +1,412 @@
(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2018. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
let unopt_lazy func = function
| None -> func ()
| Some x -> x
type recursives = string list
type references = { descriptions : (string * Binary_schema.toplevel_encoding) list } [@@unwrapped]
(* Simple Union find implementation, there are several optimizations
that give UF it's usual time complexity that could be added.
If this is a bottleneck, they're easy to add. *)
module UF : sig
type t
val add : t -> Binary_schema.description -> unit
val find : t -> string -> Binary_schema.description
val union : t -> new_cannonical:Binary_schema.description -> existing:string -> unit
val empty : unit -> t
val pp : Format.formatter -> t -> unit
end = struct
open Binary_schema
type ele = Ref of string | Root of description
type t = (string, ele) Hashtbl.t
let add t x = Hashtbl.replace t x.name (Root x)
let rec find tbl key =
match Hashtbl.find tbl key with
| Ref s -> find tbl s
| Root desc -> desc
let union tbl ~new_cannonical ~existing =
add tbl new_cannonical ;
let root = find tbl existing in
if root.name = new_cannonical.name
then ()
else Hashtbl.replace tbl root.name (Ref new_cannonical.name)
let empty () = Hashtbl.create 128
let pp ppf tbl =
Format.fprintf ppf "@[<v 2>UF:@,%a@]"
(fun ppf ->
(Hashtbl.iter (fun k v ->
Format.fprintf ppf "'%s' ---> %a@,"
k (fun ppf -> function
| Root { name } -> Format.fprintf ppf "Root '%s'" name
| Ref s -> Format.fprintf ppf "Ref '%s'" s) v))) tbl
end
let fixup_references uf =
let open Binary_schema in
let rec fixup_layout = function
| Ref s -> Ref (UF.find uf s).name
| Enum (i, name) -> Enum (i, (UF.find uf name).name)
| Seq layout -> Seq (fixup_layout layout)
| (Zero_width
| Int _
| Bool
| RangedInt (_, _)
| RangedFloat (_, _)
| Float
| Bytes
| String) as enc -> enc in
let field = function
| Named_field (name, kind, layout) ->
Named_field (name, kind, fixup_layout layout)
| Anonymous_field (kind, layout) ->
Anonymous_field (kind, fixup_layout layout)
| Dynamic_field i ->
Dynamic_field i
| (Option_indicator_field _) as field -> field in
function
| Obj { fields } -> Obj { fields = List.map field fields }
| Cases ({ cases } as x) ->
Cases { x with
cases = List.map
(fun (i, name, fields) ->
(i, name, List.map field fields)) cases }
| (Int_enum _ as ie) -> ie
let z_reference_name = "Z.t"
let z_reference_description =
"A variable length sequence of bytes, encoding a Zarith number. \
Each byte has a running unary size bit: the most significant bit of \
each byte tells is this is the last byte in the sequence (0) or if \
there is more to read (1). The second most significant bit of the \
first byte is reserved for the sign (positive if zero). Size and \
sign bits ignored, data is then the binary representation of the \
absolute value of the number in little endian order."
let z_encoding =
Binary_schema.Obj { fields = [ Named_field ("Z.t", `Dynamic, Bytes) ] }
let add_z_reference uf { descriptions } =
UF.add uf { name = z_reference_name ;
description = Some z_reference_description } ;
{ descriptions = (z_reference_name, z_encoding) :: descriptions }
let n_reference_name = "N.t"
let n_reference_description =
"A variable length sequence of bytes, encoding a Zarith number. \
Each byte has a running unary size bit: the most significant bit of \
each byte tells is this is the last byte in the sequence (0) or if \
there is more to read (1). Size bits ignored, data is then the binary \
representation of the absolute value of the number in little endian order."
let n_encoding =
Binary_schema.Obj { fields = [ Named_field ("N.t", `Dynamic, Bytes) ] }
let add_n_reference uf { descriptions } =
UF.add uf { name = n_reference_name ;
description = Some n_reference_description } ;
{ descriptions = (n_reference_name, n_encoding) :: descriptions }
let describe (type x) ?toplevel_name (encoding : x Encoding.t) =
let open Encoding in
let uf = UF.empty () in
let uf_add_name name =
UF.add uf { name ; description = None } in
let add_reference name description { descriptions } =
{ descriptions = (name, description) :: descriptions } in
let new_reference =
let x = ref ~-1 in
fun () ->
x := !x + 1 ;
let name = "X_" ^ string_of_int !x in
uf_add_name name ;
name in
let extract_dynamic :
type x. x Encoding.desc -> Binary_schema.field_descr list * x Encoding.desc =
function
| Dynamic_size { encoding } -> ([ Dynamic_field 1 ], encoding.encoding)
| enc -> ([], enc) in
let rec field_descr :
type a. recursives -> references ->
a Encoding.field -> Binary_schema.field_descr list * references =
fun recursives references -> function
| Req { name ; encoding = ({ encoding } as enc) }
| Dft { name ; encoding = ({ encoding } as enc) } ->
let (dynamics, field) = extract_dynamic encoding in
let (layout, references) = layout recursives references field in
(dynamics @ [ Named_field (name, classify enc, layout) ], references)
| Opt { kind = `Variable ; name ; encoding = { encoding } } ->
let (layout, references) = layout recursives references encoding in
([ Named_field (name, `Variable, layout) ], references)
| Opt { kind = `Dynamic ; name ; encoding = { encoding } } ->
let (dynamics, field) = extract_dynamic encoding in
let (layout, references) = layout recursives references field in
(Binary_schema.Option_indicator_field name :: dynamics @ [ Named_field (name, `Dynamic, layout) ], references)
and obj fields =
Binary_schema.Obj { fields }
and union :
type a. recursives -> references -> Kind.t -> Binary_size.tag_size -> a case list -> string * references=
fun recursives references kind size cases ->
let cases =
List.sort (fun (t1, _) (t2, _) -> Compare.Int.compare t1 t2) @@
TzList.filter_map
(function
| Case { tag = Json_only } -> None
| (Case { tag = Tag tag } as case) -> Some (tag, case))
cases in
let tag_field =
Binary_schema.Named_field ("Tag", `Fixed (Binary_size.tag_size size), Int (size :> Binary_schema.integer_extended)) in
let (cases, references) =
List.fold_right
(fun (tag, Case case) (cases, references) ->
let fields, references = fields recursives references case.encoding.encoding in
((tag, case.name, tag_field :: fields) :: cases, references))
cases
([], references) in
let name = new_reference () in
let references =
add_reference
name
(Cases { kind ;
tag_size = size ;
cases }) references in
(name, references)
and describe : type b. ?description:string -> name:string ->
recursives -> references -> b desc -> string * references =
fun ?description ~name recursives references encoding ->
let new_cannonical = { Binary_schema.name ; description } in
UF.add uf new_cannonical ;
let layout, references = layout recursives references encoding in
begin
match layout with
| Ref ref_name ->
UF.union uf ~existing:ref_name ~new_cannonical ;
(ref_name, references)
| layout ->
UF.add uf new_cannonical ;
(name,
add_reference name
(obj [ Anonymous_field (classify { encoding ; json_encoding = None }, layout) ])
references)
end
and enum : type a. (a, _) Hashtbl.t -> a array -> _ = fun tbl encoding_array ->
(Binary_size.range_to_size ~minimum:0 ~maximum:(Array.length encoding_array),
List.map
(fun i -> (i, fst @@ Hashtbl.find tbl encoding_array.(i)))
Utils.Infix.(0 -- ((Array.length encoding_array) - 1)))
and fields :
type b. recursives -> references ->
b Encoding.desc -> Binary_schema.fields * references =
fun recursives references -> function
| Obj field ->
field_descr recursives references field
| Objs { left ; right } ->
let (left_fields, references) =
fields recursives references left.encoding in
let (right_fields, references) = fields recursives references right.encoding in
(left_fields @ right_fields, references)
| Null -> ([ Anonymous_field (`Fixed 0, Zero_width) ], references)
| Empty -> ([ Anonymous_field (`Fixed 0, Zero_width) ], references)
| Ignore -> ([ Anonymous_field (`Fixed 0, Zero_width) ], references)
| Constant _ -> ([ Anonymous_field (`Fixed 0, Zero_width) ], references)
| Dynamic_size { encoding } ->
let (fields, refs) = fields recursives references encoding.encoding in
(Dynamic_field (List.length fields) :: fields, refs)
| Conv { encoding } ->
fields recursives references encoding.encoding
| Describe { id = name ; description ; encoding } ->
let (name, references) = describe ~name ?description recursives references encoding.encoding in
([ Anonymous_field (classify encoding, Ref name) ], references)
| Splitted { encoding } ->
fields recursives references encoding.encoding
| Delayed func ->
fields recursives references (func ()).encoding
| List { encoding } ->
let (layout, references) = layout recursives references encoding in
([ Anonymous_field (`Variable, Seq layout) ],
references)
| Array { encoding } ->
let (layout, references) = layout recursives references encoding in
([ Anonymous_field (`Variable, Seq layout) ],
references)
| Bytes kind ->
([ Anonymous_field ((kind :> Kind.t), Bytes) ], references)
| String kind ->
([ Anonymous_field ((kind :> Kind.t), String) ], references)
| (String_enum (tbl, encoding_array) as encoding) ->
let size, cases = enum tbl encoding_array in
let name = new_reference () in
([ Anonymous_field (classify { encoding ; json_encoding = None }, Ref name) ],
add_reference name (Int_enum { size ; cases }) references)
| Tup ({ encoding } as enc) ->
let (layout, references) = layout recursives references encoding in
([ Anonymous_field (classify enc, layout) ], references)
| Tups { left ; right } ->
let (fields1, references) = fields recursives references left.encoding in
let (fields2, references) = fields recursives references right.encoding in
(fields1 @ fields2, references)
| Union { kind ; tag_size ; cases } ->
let name, references = union recursives references kind tag_size cases in
([ Anonymous_field (kind, Ref name) ], references)
| (Mu { kind ; name ; description ; fix } as encoding) ->
let kind = (kind :> Kind.t) in
if List.mem name recursives
then ([ Anonymous_field (kind, Ref name) ], references)
else
let { encoding } = fix { encoding ; json_encoding = None } in
let (name, references) = describe ~name ?description (name :: recursives) references encoding in
([ Anonymous_field (kind, Ref name) ], references)
| encoding ->
let layout, references = layout recursives references encoding in
([ Anonymous_field (classify (make encoding), layout) ], references)
and layout :
type c. recursives -> references ->
c Encoding.desc -> Binary_schema.layout * references =
fun recursives references -> function
| Null -> (Zero_width, references)
| Empty -> (Zero_width, references)
| Ignore -> (Zero_width, references)
| Constant _ -> (Zero_width, references)
| Bool -> (Bool, references)
| Int8 -> (Int `Int8, references)
| Uint8 -> (Int `Uint8, references)
| Int16 -> (Int `Int16, references)
| Uint16 -> (Int `Uint16, references)
| Int31 -> (RangedInt (~-1073741824, 1073741823), references)
| Int32 -> (Int `Int32, references)
| Int64 -> (Int `Int64, references)
| N ->
(Ref n_reference_name,
add_n_reference uf references)
| Z ->
(Ref z_reference_name,
add_z_reference uf references)
| RangedInt { minimum ; maximum } ->
(RangedInt (minimum, maximum), references)
| RangedFloat { minimum ; maximum } ->
(RangedFloat (minimum, maximum), references)
| Float ->
(Float, references)
| Bytes _kind ->
(Bytes, references)
| String _kind ->
(String, references)
| String_enum (tbl, encoding_array) ->
let name = new_reference () in
let size, cases = enum tbl encoding_array in
let references = add_reference name (Int_enum { size ; cases }) references in
(Enum (size, name), references)
| Array data ->
let (descr, references) = layout recursives references data.encoding in
(Seq descr, references)
| List data ->
let layout, references =
layout recursives references data.encoding in
(Seq layout, references)
| (Obj _) as enc ->
let name = new_reference () in
let fields, references = fields recursives references enc in
let references = add_reference name (obj fields) references in
(Ref name, references)
| Objs { left ; right } ->
let name = new_reference () in
let fields1, references = fields recursives references left.encoding in
let fields2, references = fields recursives references right.encoding in
let references = add_reference name (obj (fields1 @ fields2)) references in
(Ref name, references)
| Tup { encoding } ->
layout recursives references encoding
| (Tups _ as descr) ->
let fields, references = fields recursives references descr in
let name = new_reference () in
let references = add_reference name (obj fields) references in
(Ref name, references)
| Union { kind ; tag_size ; cases } ->
let name, references = union recursives references kind tag_size cases in
(Ref name, references)
| Mu { name ; description ; fix } as encoding ->
if List.mem name recursives
then (Ref name, references)
else
let { encoding } = fix { encoding ; json_encoding = None } in
let (name, references) = describe ~name ?description (name :: recursives) references encoding in
(Ref name, references)
| Conv { encoding } ->
layout recursives references encoding.encoding
| Describe { id = name ; description ; encoding } ->
let name, references =
describe ~name ?description recursives references encoding.encoding in
(Ref name, references)
| Splitted { encoding } ->
layout recursives references encoding.encoding
| (Dynamic_size _) as encoding ->
let fields, references = fields recursives references encoding in
let name = new_reference () in
UF.add uf { name ; description = None } ;
(Ref name, add_reference name (obj fields) references)
| Check_size { encoding } ->
layout recursives references encoding.encoding
| Delayed func ->
layout recursives references (func ()).encoding in
let toplevel_name = Option.unopt ~default:"Toplevel encoding" toplevel_name in
uf_add_name toplevel_name ;
let fields, references = fields [] { descriptions = [] } encoding.encoding in
let rev_references = (toplevel_name, obj fields) :: references.descriptions in
let dedup_canonicalize =
let tbl : (Binary_schema.toplevel_encoding, Binary_schema.description) Hashtbl.t = Hashtbl.create 100 in
let rec help prev_len acc = function
| [] ->
let fixedup =
List.map
(fun (desc, layout) -> (desc, fixup_references uf layout))
acc in
if List.length fixedup = prev_len
then
List.map
(fun (name, layout) ->
(UF.find uf name, layout))
fixedup
else
begin
Hashtbl.clear tbl ;
help (List.length fixedup) [] fixedup
end
| (name, layout) :: tl ->
match Hashtbl.find_opt tbl layout with
| None ->
let desc = UF.find uf name in
begin
Hashtbl.add tbl layout desc ;
help prev_len ((desc.name, layout) :: acc) tl
end
| Some original_desc ->
begin
UF.union uf
~new_cannonical:original_desc
~existing:name ;
help prev_len acc tl
end
in help 0 [] in
let filtered =
List.filter
(fun (name, encoding) ->
match encoding with
| Binary_schema.Obj { fields = [ Anonymous_field (_, Ref reference) ] } ->
UF.union uf ~new_cannonical:(UF.find uf name) ~existing:reference ;
false
| _ -> true)
rev_references in
dedup_canonicalize filtered

View File

@ -0,0 +1,10 @@
(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2018. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
val describe : ?toplevel_name:string -> 'a Encoding.t -> Binary_schema.t

View File

@ -0,0 +1,481 @@
(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2018. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
open Encoding
type integer_extended = [ Binary_size.integer | `Int32 | `Int64 ]
type field_descr =
| Named_field of string * Kind.t * layout
| Anonymous_field of Kind.t * layout
| Dynamic_field of int
| Option_indicator_field of string
and layout =
| Zero_width
| Int of integer_extended
| Bool
| RangedInt of int * int
| RangedFloat of float * float
| Float
| Bytes
| String
| Enum of Binary_size.integer * string
| Seq of layout (* For arrays and lists *)
| Ref of string
and fields = field_descr list
and toplevel_encoding =
| Obj of { fields : fields }
| Cases of { kind : Kind.t ;
tag_size : Binary_size.tag_size ;
cases : (int * string option * fields) list }
| Int_enum of { size : Binary_size.integer ;
cases : (int * string) list }
and description =
{ name : string ;
description : string option }
type t = (description * toplevel_encoding) list
module Printer = struct
type table =
{ title : string ;
description : string option ;
headers : string list ;
body : string list list }
type print_structure =
| Table of table
| Union of string * string option * Binary_size.tag_size * table list
let pp_kind ppf = function
| `Fixed size -> Format.fprintf ppf "%d byte%s" size (if size = 1 then "" else "s")
| `Variable -> Format.fprintf ppf "Variable size"
| `Dynamic -> Format.fprintf ppf "Determined from data"
let pp_int ppf (int : integer_extended) =
Format.fprintf ppf "%s"
begin
match int with
| `Int16 -> "16 bit Signed Integer"
| `Int31 -> "32 bit Signed Integer in the range [2^30, 2^30-1]"
| `Uint30 -> "32 bit Signed Integer in the range [0, 2^30-1]"
| `Int32 -> "32 bit Signed Integer"
| `Int64 -> "64 bit Signed Integer"
| `Int8 -> "8 bit Signed Integer"
| `Uint16 -> "16 bit Unsigned Integer"
| `Uint8 -> "8 bit Unsigned Integer"
end
let rec pp_layout ppf = function
| Zero_width ->
Format.fprintf ppf "Zero width data, not actually present in the encoding"
| Int integer ->
Format.fprintf ppf "%a" pp_int integer
| Bool ->
Format.fprintf ppf "8 bit Signed Integer, with 0 for false and 255 for true"
| RangedInt (minimum, maximum) ->
Format.fprintf ppf "%a in the range %d to %d"
pp_int ((Binary_size.range_to_size ~minimum ~maximum) :> integer_extended) minimum maximum
| RangedFloat (minimum, maximum) ->
Format.fprintf ppf
"Double precision (8 byte) floating point number in the range %f to %f"
minimum maximum
| Float ->
Format.fprintf ppf "Double precision (8 byte) floating point number"
| Bytes ->
Format.fprintf ppf "Bytes"
| String ->
Format.fprintf ppf "String"
| Ref reference ->
Format.fprintf ppf "%s" reference
| Enum (size, reference) ->
Format.fprintf ppf "%a encoding an enumeration (see %s)"
pp_int (size :> integer_extended)
reference
| Seq (Ref reference) -> Format.fprintf ppf "Sequence of %s" reference
| Seq data -> Format.fprintf ppf "Sequence of %a" pp_layout data
let binary_table_headers = [ "Name" ; "Kind" ; "Data" ]
let enum_headers = [ "Case number" ; "Encoded string" ]
let pp_tag_size ppf tag =
Format.fprintf ppf "%s" @@
match tag with
| `Uint8 -> "8 bit"
| `Uint16 -> "16 bit"
let field_descr () =
let reference = ref 0 in
let string_of_layout = Format.asprintf "%a" pp_layout in
let anon_num () =
let value = !reference in
reference := value + 1;
string_of_int value in
function
| Named_field (name, kind, desc) ->
[ name ; Format.asprintf "%a" pp_kind kind ; string_of_layout desc ]
| Dynamic_field i ->
[ Format.asprintf "Size of next %d fields" i ;
Format.asprintf "%a" pp_kind (`Fixed 4) ; string_of_layout (Int `Int32) ]
| Anonymous_field (kind, desc) ->
[ "Unnamed field " ^ anon_num () ;
Format.asprintf "%a" pp_kind kind ;
string_of_layout desc ]
| Option_indicator_field name ->
[ "Presence of " ^ name ;
Format.asprintf "%a" pp_kind (`Fixed 1) ;
"0 if not present and 1 if present" ]
let toplevel ({ name ; description }, encoding) =
match encoding with
| Obj { fields } ->
Table { title = Format.asprintf "%s" name ;
description ;
headers = binary_table_headers ;
body = List.map (field_descr ()) fields }
| Cases { kind ; tag_size ; cases } ->
Union (Format.asprintf "%s (%a, %a tag)" name pp_kind kind pp_tag_size tag_size,
description, tag_size,
List.map
(fun (tag, name, fields) ->
{ title =
begin
match name with
| Some name -> Format.asprintf "%s (tag %d)" name tag
| None -> Format.asprintf "Tag %d" tag
end;
description = None ;
headers = binary_table_headers ;
body = List.map (field_descr ()) fields })
cases)
| Int_enum { size ; cases } ->
Table
{ title = Format.asprintf "Enum %s (%a):" name pp_int (size :> integer_extended) ;
description = None;
headers = enum_headers ;
body = List.map (fun (num, str) -> [ string_of_int num ; str ]) cases }
let to_print_ast encodings =
List.map toplevel encodings
let rec pad char ppf = function
| 0 -> ()
| n ->
Format.pp_print_char ppf char ;
pad char ppf (n - 1)
let pp_table ppf (level, { title ; description ; headers ; body }) =
let max_widths =
List.fold_left (List.map2 (fun len str -> max (String.length str) len))
(List.map String.length headers)
body in
let pp_row pad_char ppf =
Format.fprintf ppf "|%a"
(fun ppf ->
List.iter2
(fun width str -> Format.fprintf ppf " %s%a |" str (pad pad_char) (width - (String.length str)))
max_widths) in
let pp_option_nl ppf =
Option.iter ~f:(Format.fprintf ppf "@,%s") in
Format.fprintf ppf "@[<v 0>%a %s%a@,@,%a@,%a@,%a@,@]"
(pad '#') level
title
pp_option_nl description
(pp_row ' ') headers
(pp_row '-') (List.map (fun _ -> "-") headers)
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf "@,")
(pp_row ' '))
body
let pp_print_structure ?(initial_level=0) ppf = function
| Table table -> pp_table ppf (1 + initial_level, table)
| Union (name, description, _tag_size, tables) ->
Format.fprintf ppf "@[<v 0>%a %s:%a@,%a@]"
(pad '#') (initial_level + 1)
name
(fun ppf -> function
| None -> ()
| Some description ->
Format.fprintf ppf "@,%s" description)
description
(fun ppf -> Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf "@,")
pp_table
ppf)
(List.map (fun x -> (initial_level + 2, x)) tables)
let pp ppf descrs =
Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf "@,")
(pp_print_structure ~initial_level:0)
ppf
(to_print_ast descrs)
end
module Encoding = struct
let description_encoding =
conv
(fun { name ; description } -> (name, description))
(fun (name, description) -> { name ; description })
(obj2
(req "name" string)
(opt "description" string))
let integer_cases =
[ ("Int16", `Int16) ;
("Int8", `Int8) ;
("Uint16", `Uint16) ;
("Uint8", `Uint8) ]
let integer_encoding : Binary_size.integer encoding =
string_enum integer_cases
let integer_extended_encoding =
string_enum
(("Int64", `Int64) ::
("Int32", `Int32) ::
integer_cases)
let layout_encoding =
mu "layout"
(fun layout ->
union [
case
~name:"Zero_width"
(Tag 0)
(obj1
(req "kind" (constant "Zero_width")))
(function
| Zero_width -> Some ()
| _ -> None)
(fun () -> Zero_width) ;
case ~name:"Int"
(Tag 1)
(obj2
(req "size" integer_extended_encoding)
(req "kind" (constant "Int")))
(function
| Int integer -> Some (integer, ())
| _ -> None)
(fun (integer, _)-> Int integer) ;
case ~name:"Bool"
(Tag 2)
(obj1 (req "kind" (constant "Bool")))
(function
| Bool -> Some ()
| _ -> None)
(fun () -> Bool) ;
case ~name:"RangedInt"
(Tag 3)
(obj3
(req "min" int31)
(req "max" int31)
(req "kind" (constant "RangedInt")))
(function
| RangedInt (min, max) -> Some (min, max, ())
| _ -> None)
(fun (min, max, _) -> RangedInt (min, max)) ;
case ~name:"RangedFloat"
(Tag 4)
(obj3
(req "min" float)
(req "max" float)
(req "kind" (constant "RangedFloat")))
(function
| RangedFloat (min, max) -> Some (min, max, ())
| _ -> None)
(fun (min, max, ()) -> RangedFloat (min, max)) ;
case ~name:"Float"
(Tag 5)
(obj1 (req "kind" (constant "Float")))
(function
| Float -> Some ()
| _ -> None)
(fun () -> Float) ;
case ~name:"Bytes"
(Tag 6)
(obj1 (req "kind" (constant "Bytes")))
(function
| Bytes -> Some ()
| _ -> None)
(fun () -> Bytes) ;
case ~name:"String"
(Tag 7)
(obj1 (req "kind" (constant "String")))
(function
| String -> Some ()
| _ -> None)
(fun () -> String) ;
case ~name:"Enum"
(Tag 8)
(obj3
(req "size" integer_encoding)
(req "reference" string)
(req "kind" (constant "Enum")))
(function
| Enum (size, cases) -> Some (size, cases, ())
| _ -> None)
(fun (size, cases, _) -> Enum (size, cases)) ;
case ~name:"Seq"
(Tag 9)
(obj2
(req "layout" layout)
(req "kind" (constant "Seq")))
(function
| Seq layout -> Some (layout, ())
| _ -> None)
(fun (layout, ()) -> Seq layout) ;
case ~name:"Ref"
(Tag 10)
(obj2
(req "name" string)
(req "kind" (constant "Float")))
(function
| Ref layout -> Some (layout, ())
| _ -> None)
(fun (name, ()) -> Ref name)
])
let kind_enum_cases =
(fun () ->
[ case ~name:"Dynamic"
(Tag 0)
(obj1 (req "kind" (constant "Dynamic")))
(function `Dynamic -> Some ()
| _ -> None)
(fun () -> `Dynamic) ;
case ~name:"Variable"
(Tag 1)
(obj1 (req "kind" (constant "Variable")))
(function `Variable -> Some ()
| _ -> None)
(fun () -> `Variable) ])
let kind_enum_encoding =
def "schema.kind.enum" @@ union (kind_enum_cases ())
let kind_t_encoding =
def "schema.kind" @@
union
((case ~name:"Fixed"
(Tag 2)
(obj2
(req "size" int31)
(req "kind" (constant "Float")))
(function `Fixed n -> Some (n, ())
| _ -> None)
(fun (n, _) -> `Fixed n)) :: (kind_enum_cases ()))
let field_descr_encoding =
let dynamic_layout_encoding = dynamic_size layout_encoding in
def "schema.field" @@
union [
case ~name:"Named_field"
(Tag 0)
(obj4
(req "name" string)
(req "layout" dynamic_layout_encoding)
(req "data_kind" kind_t_encoding)
(req "kind" (constant "named")))
(function Named_field (name, kind, layout) -> Some (name, layout, kind, ())
| _ -> None)
(fun (name, kind, layout, _) -> Named_field (name, layout, kind)) ;
case ~name:"Anonymous_field"
(Tag 1)
(obj3
(req "layout" dynamic_layout_encoding)
(req "kind" (constant "anon"))
(req "data_kind" kind_t_encoding))
(function Anonymous_field (kind, layout) -> Some (layout, (), kind)
| _ -> None)
(fun (kind, _, layout) -> Anonymous_field (layout, kind)) ;
case ~name:"Dynamic_field"
(Tag 2)
(obj2
(req "kind" (constant "dyn"))
(req "num_fields" int31))
(function Dynamic_field i -> Some ((), i)
| _ -> None)
(fun ((), i) -> Dynamic_field i) ;
case ~name:"Option_indicator_field"
(Tag 3)
(obj2
(req "kind" (constant "option_indicator"))
(req "name" string))
(function Option_indicator_field s -> Some ((), s)
| _ -> None)
(fun ((), s) -> Option_indicator_field s)
]
let tag_size_encoding =
string_enum
[("Uint16", `Uint16) ;
("Uint8", `Uint8) ]
let binary_description_encoding =
union [
case ~name:"Obj"
(Tag 0)
(obj1
(req "fields" (list (dynamic_size field_descr_encoding))))
(function
| Obj { fields } -> Some (fields)
| _ -> None)
(fun (fields) -> Obj { fields }) ;
case ~name:"Cases"
(Tag 1)
(obj3
(req "tag_size" tag_size_encoding)
(req "kind" (dynamic_size kind_t_encoding))
(req "cases"
(list
(def "union case" @@
conv
(fun (tag, name, fields) -> (tag, fields, name))
(fun (tag, fields, name) -> (tag, name, fields)) @@
obj3
(req "tag" int31)
(req "fields" (list (dynamic_size field_descr_encoding)))
(opt "name" string)))))
(function
| Cases { kind ; tag_size ; cases } ->
Some (tag_size, kind, cases)
| _ -> None)
(fun (tag_size, kind, cases) ->
Cases { kind ; tag_size ; cases }) ;
case ~name:"Int_enum"
(Tag 2)
(obj2
(req "size" integer_encoding)
(req "cases" (list (tup2 int31 string))))
(function Int_enum { size ; cases } -> Some (size, cases)
| _ -> None)
(fun (size, cases) -> Int_enum { size ; cases })
]
let encoding =
list
(obj2
(req "description" description_encoding)
(req "encoding" binary_description_encoding))
end
let encoding = Encoding.encoding
let pp = Printer.pp

View File

@ -0,0 +1,54 @@
(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2018. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
(** This is for use *within* the data encoding library only. *)
type integer_extended = [ Binary_size.integer | `Int32 | `Int64 ]
type field_descr =
| Named_field of string * Encoding.Kind.t * layout
| Anonymous_field of Encoding.Kind.t * layout
| Dynamic_field of int
| Option_indicator_field of string
and layout =
| Zero_width
| Int of integer_extended
| Bool
| RangedInt of int * int
| RangedFloat of float * float
| Float
| Bytes
| String
| Enum of Binary_size.integer * string
| Seq of layout (* For arrays and lists *)
| Ref of string
and fields = field_descr list
and toplevel_encoding =
| Obj of { fields : fields }
| Cases of { kind : Encoding.Kind.t ;
tag_size : Binary_size.tag_size ;
cases : (int * string option * fields) list }
| Int_enum of { size : Binary_size.integer ;
cases : (int * string) list }
and description =
{ name : string ;
description : string option }
type t = (description * toplevel_encoding) list
module Printer : sig
val pp_layout : Format.formatter -> layout -> unit
end
val pp: Format.formatter -> t -> unit
val encoding: t Encoding.t

View File

@ -109,12 +109,14 @@ include Encoding
module Json = Json
module Bson = Bson
module Binary_schema = Binary_schema
module Binary = struct
include Binary_error
include Binary_length
include Binary_writer
include Binary_reader
include Binary_stream_reader
let describe = Binary_description.describe
end
type json = Json.t

View File

@ -591,6 +591,12 @@ module Bson: sig
end
module Binary_schema : sig
type t
val pp: Format.formatter -> t -> unit
val encoding: t Encoding.t
end
module Binary: sig
(** All the errors that might be returned while reading a binary value *)
@ -672,6 +678,8 @@ module Binary: sig
it raises [Write_error] instead of return [None] in case of error. *)
val to_bytes_exn : 'a Encoding.t -> 'a -> MBytes.t
val describe : ?toplevel_name:string -> 'a Encoding.t -> Binary_schema.t
end
type json = Json.t

View File

@ -15,5 +15,5 @@ val describe:
#RPC_context.simple ->
?recurse:bool ->
string list ->
Json_schema.schema directory tzresult Lwt.t
RPC_encoding.schema directory tzresult Lwt.t

View File

@ -8,11 +8,19 @@
(**************************************************************************)
type 'a t = 'a Data_encoding.t
type schema = Data_encoding.json_schema
type schema = Data_encoding.json_schema * Data_encoding.Binary_schema.t
let unit = Data_encoding.empty
let untyped = Data_encoding.(obj1 (req "untyped" string))
let conv f g t = Data_encoding.conv ~schema:(Data_encoding.Json.schema t) f g t
let schema = Data_encoding.Json.schema
let schema t =
(Data_encoding.Json.schema t,
Data_encoding.Binary.describe t)
let schema_encoding =
let open Data_encoding in
obj2
(req "json_schema" json_schema)
(req "binary_schema" Data_encoding.Binary_schema.encoding)
module StringMap = Resto.StringMap
@ -97,9 +105,9 @@ let service_descr_encoding =
(req "path" (list path_item_encoding))
(opt "description" string)
(req "query" (list query_item_encoding))
(opt "input" json_schema)
(req "output" json_schema)
(req "erro" json_schema))
(opt "input" schema_encoding)
(req "output" schema_encoding)
(req "error" schema_encoding))
let directory_descr_encoding =
let open Data_encoding in

View File

@ -7,6 +7,8 @@
(* *)
(**************************************************************************)
include Resto.ENCODING with type 'a t = 'a Data_encoding.t
and type schema = Data_encoding.json_schema
type schema = Data_encoding.json_schema * Data_encoding.Binary_schema.t
include Resto.ENCODING with type 'a t = 'a Data_encoding.t
and type schema := schema

View File

@ -76,7 +76,7 @@ val put_service:
val description_service:
([ `GET ], unit, unit * string list, Resto.Description.request,
unit, Json_schema.schema Resto.Description.directory) service
unit, RPC_encoding.schema Resto.Description.directory) service
val error_service:
([ `GET ], unit, unit, unit, unit, Json_schema.schema) service