ligo/gitlab-pages/docs/language-basics/sets-lists-tuples.md

746 lines
20 KiB
Markdown
Raw Normal View History

---
2020-01-21 15:13:57 +04:00
id: sets-lists-tuples
2020-02-05 19:28:40 +04:00
title: Tuples, Lists, Sets
---
2020-02-10 22:07:20 +04:00
Apart from complex data types such as `maps` and `records`, LIGO also
features `tuples`, `lists` and `sets`.
2020-02-05 19:28:40 +04:00
## Tuples
2020-02-05 19:28:40 +04:00
Tuples gather a given number of values in a specific order and those
values, called *components*, can be retrieved by their index
(position). Probably the most common tuple is the *pair*. For
example, if we were storing coordinates on a two dimensional grid we
2020-02-10 22:07:20 +04:00
might use a pair `(x,y)` to store the coordinates `x` and `y`. There
2020-02-12 01:29:12 +04:00
is a *specific order*, so `(y,x)` is not equal to `(x,y)` in
general. The number of components is part of the type of a tuple, so,
for example, we cannot add an extra component to a pair and obtain a
triple of the same type: `(x,y)` has always a different type from
2020-02-10 22:07:20 +04:00
`(x,y,z)`, whereas `(y,x)` might have the same type as `(x,y)`.
2020-02-05 19:28:40 +04:00
Like records, tuple components can be of arbitrary types.
2020-02-10 22:07:20 +04:00
### Defining Tuples
2020-02-05 19:28:40 +04:00
Unlike [a record](language-basics/maps-records.md), tuple types do not
have to be defined before they can be used. However below we will give
them names by *type aliasing*.
<!--DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
<!--Pascaligo-->
2020-02-10 22:07:20 +04:00
```pascaligo group=tuple
2020-02-05 19:28:40 +04:00
type full_name is string * string // Alias
const full_name : full_name = ("Alice", "Johnson")
```
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
```cameligo group=tuple
2020-02-05 19:28:40 +04:00
type full_name = string * string // Alias
2020-02-10 22:07:20 +04:00
let full_name : full_name = ("Alice", "Johnson") // Optional parentheses
```
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
```reasonligo group=tuple
2020-02-05 19:28:40 +04:00
type full_name = (string, string); // Alias
let full_name : full_name = ("Alice", "Johnson");
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
### Accessing Components
2020-02-05 19:28:40 +04:00
Accessing the components of a tuple in OCaml is achieved by
[pattern matching](language-basics/unit-option-pattern-matching.md). LIGO
currently supports tuple patterns only in the parameters of functions,
2020-02-10 22:07:20 +04:00
not in pattern matching. However, we can access components by their
position in their tuple, which cannot be done in OCaml.
<!--DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-05 19:28:40 +04:00
2020-02-12 01:29:12 +04:00
Tuple components are one-indexed and accessed like so:
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
```pascaligo group=tuple
2020-02-12 01:29:12 +04:00
const first_name : string = full_name.1
```
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
<!--CameLIGO-->
2020-02-05 19:28:40 +04:00
Tuple elements are zero-indexed and accessed like so:
2020-02-10 22:07:20 +04:00
```cameligo group=tuple
2020-02-05 19:28:40 +04:00
let first_name : string = full_name.0
```
2020-02-05 19:28:40 +04:00
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-05 19:28:40 +04:00
2020-02-12 01:29:12 +04:00
Tuple components are one-indexed and accessed like so:
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
```reasonligo group=tuple
2020-02-05 19:28:40 +04:00
let first_name : string = full_name[1];
2019-12-10 17:47:31 +04:00
```
2020-02-10 22:07:20 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
## Lists
Lists are linear collections of elements of the same type. Linear
means that, in order to reach an element in a list, we must visit all
the elements before (sequential access). Elements can be repeated, as
only their order in the collection matters. The first element is
called the *head*, and the sub-list after the head is called the
*tail*. For those familiar with algorithmic data structure, you can
think of a list a *stack*, where the top is written on the left.
2020-02-12 01:29:12 +04:00
> 💡 Lists are needed when returning operations from a smart
> contract's access function.
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
### Defining Lists
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
```pascaligo group=lists
2020-02-12 01:29:12 +04:00
const empty_list : list (int) = nil // Or list []
2020-02-05 19:28:40 +04:00
const my_list : list (int) = list [1; 2; 2] // The head is 1
```
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
```cameligo group=lists
2020-02-12 01:29:12 +04:00
let empty_list : int list = []
2020-02-05 19:28:40 +04:00
let my_list : int list = [1; 2; 2] // The head is 1
```
2020-02-05 19:28:40 +04:00
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
```reasonligo group=lists
2020-02-12 01:29:12 +04:00
let empty_list : list (int) = [];
2020-02-05 19:28:40 +04:00
let my_list : list (int) = [1, 2, 2]; // The head is 1
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
### Adding to Lists
2020-02-05 19:28:40 +04:00
Lists can be augmented by adding an element before the head (or, in
terms of stack, by *pushing an element on top*). This operation is
usually called *consing* in functional languages.
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
2020-02-05 19:28:40 +04:00
In PascaLIGO, the *cons operator* is infix and noted `#`. It is not
symmetric: on the left lies the element to cons, and, on the right, a
list on which to cons. (The symbol is helpfully asymmetric to remind
you of that.)
2020-02-10 22:07:20 +04:00
```pascaligo group=lists
const larger_list : list (int) = 5 # my_list // [5;1;2;2]
```
<!--CameLIGO-->
In CameLIGO, the *cons operator* is infix and noted `::`. It is not
symmetric: on the left lies the element to cons, and, on the right, a
list on which to cons.
2020-02-10 22:07:20 +04:00
```cameligo group=lists
let larger_list : int list = 5 :: my_list // [5;1;2;2]
```
<!--ReasonLIGO-->
In ReasonLIGO, the *cons operator* is infix and noted `, ...`. It is
not symmetric: on the left lies the element to cons, and, on the
right, a list on which to cons.
2020-02-10 22:07:20 +04:00
```reasonligo group=lists
let larger_list : list (int) = [5, ...my_list]; // [5,1,2,2]
```
<!--END_DOCUSAURUS_CODE_TABS-->
### Functional Iteration over Lists
A *functional iterator* is a function that traverses a data structure
and calls in turn a given function over the elements of that structure
to compute some value. Another approach is possible in PascaLIGO:
*loops* (see the relevant section).
2020-02-12 01:29:12 +04:00
There are three kinds of functional iterations over LIGO lists: the
2020-02-10 22:07:20 +04:00
*iterated operation*, the *map operation* (not to be confused with the
*map data structure*) and the *fold operation*.
2020-02-12 01:29:12 +04:00
> 💡 Lists can be iterated, folded or mapped to different values. You
> can find additional examples
> [here](https://gitlab.com/ligolang/ligo/tree/dev/src/test/contracts)
> and other built-in operators
> [here](https://gitlab.com/ligolang/ligo/blob/dev/src/passes/operators/operators.ml#L59)
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
#### Iterated Operation over Lists
The first, the *iterated operation*, is an iteration over the list
with a unit return value. It is useful to enforce certain invariants
on the element of a list, or fail. For example you might want to check
that each value inside of a list is within a certain range, and fail
otherwise.
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `list_iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```pascaligo group=lists
function iter_op (const l : list (int)) : unit is
block {
function iterated (const i : int) : unit is
if i > 2 then Unit else (failwith ("Below range.") : unit)
} with list_iter (iterated, l)
```
2020-02-10 22:07:20 +04:00
> The iterated function must be pure, that is, it cannot mutate
> variables.
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
In CameLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `List.iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```cameligo group=lists
let iter_op (l : int list) : unit =
let predicate = fun (i : int) -> assert (i > 3)
in List.iter predicate l
```
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
In ReasonLIGO, the predefined functional iterator implementing the
iterated operation over lists is called `List.iter`.
In the following example, a list is iterated to check that all its
elements (integers) are greater than `3`:
```reasonligo group=lists
let iter_op = (l : list (int)) : unit => {
let predicate = (i : int) => assert (i > 3);
List.iter (predicate, l);
};
2019-12-10 17:47:31 +04:00
```
2020-02-10 22:07:20 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
2020-02-12 01:29:12 +04:00
#### Mapped Operation over Lists
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
We may want to change all the elements of a given list by applying to
them a function. This is called a *map operation*, not to be confused
with the map data structure.
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-05 19:28:40 +04:00
2020-02-12 01:29:12 +04:00
In PascaLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `list_map` and is used as
follows:
2020-02-10 22:07:20 +04:00
```pascaligo group=lists
2020-02-05 19:28:40 +04:00
function increment (const i : int): int is i + 1
// Creates a new list with all elements incremented by 1
const plus_one : list (int) = list_map (increment, larger_list)
```
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
> The mapped function must be pure, that is, it cannot mutate
> variables.
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
In CameLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `List.map` and is used as
follows:
2020-02-10 22:07:20 +04:00
```cameligo group=lists
2020-02-05 19:28:40 +04:00
let increment (i : int) : int = i + 1
// Creates a new list with all elements incremented by 1
let plus_one : int list = List.map increment larger_list
```
2020-02-10 22:07:20 +04:00
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
In ReasonLIGO, the predefined functional iterator implementing the
mapped operation over lists is called `List.map` and is used as
follows:
2020-02-10 22:07:20 +04:00
```reasonligo group=lists
2020-02-05 19:28:40 +04:00
let increment = (i : int) : int => i + 1;
// Creates a new list with all elements incremented by 1
let plus_one : list (int) = List.map (increment, larger_list);
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-12 01:29:12 +04:00
#### Folded Operation over Lists
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
A *folded operation* is the most general of iterations. The folded
2020-02-10 22:07:20 +04:00
function takes two arguments: an *accumulator* and the structure
*element* at hand, with which it then produces a new accumulator. This
enables having a partial result that becomes complete when the
traversal of the data structure is over.
2020-02-05 19:28:40 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-12 01:29:12 +04:00
In PascaLIGO, the predefined functional iterator implementing the
folded operation over lists is called `list_fold` and is used as
follows:
2020-02-10 22:07:20 +04:00
```pascaligo group=lists
2020-02-05 19:28:40 +04:00
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = list_fold (sum, my_list, 0)
```
2020-02-10 22:07:20 +04:00
> The folded function must be pure, that is, it cannot mutate
> variables.
<!--CameLIGO-->
2020-02-05 19:28:40 +04:00
2020-02-12 01:29:12 +04:00
In CameLIGO, the predefined functional iterator implementing the folded
2020-02-10 22:07:20 +04:00
operation over lists is called `List.fold` and is used as follows:
```cameligo group=lists
2020-02-05 19:28:40 +04:00
let sum (acc, i: int * int) : int = acc + i
let sum_of_elements : int = List.fold sum my_list 0
```
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
In ReasonLIGO, the predefined functional iterator implementing the
2020-02-12 01:29:12 +04:00
folded operation over lists is called `List.fold` and is used as
follows:
2020-02-10 22:07:20 +04:00
```reasonligo group=lists
2020-02-05 19:28:40 +04:00
let sum = ((result, i): (int, int)): int => result + i;
let sum_of_elements : int = List.fold (sum, my_list, 0);
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
## Sets
2020-02-05 19:28:40 +04:00
Sets are unordered collections of values of the same type, like lists
are ordered collections. Like the mathematical sets and lists, sets
can be empty and, if not, elements of sets in LIGO are *unique*,
whereas they can be repeated in a list.
2020-02-05 19:28:40 +04:00
### Empty Sets
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
In PascaLIGO, the notation for sets is similar to that for lists,
except the keyword `set` is used before:
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
const my_set : set (int) = set []
```
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
In CameLIGO, the empty set is denoted by the predefined value
`Set.empty`.
```cameligo group=sets
let my_set : int set = Set.empty
```
2020-02-10 22:07:20 +04:00
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
In ReasonLIGO, the empty set is denoted by the predefined value
2020-02-10 22:07:20 +04:00
`Set.empty`.
```reasonligo group=sets
let my_set : set (int) = Set.empty;
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
### Non-empty Sets
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-05 19:28:40 +04:00
In PascaLIGO, the notation for sets is similar to that for lists,
except the keyword `set` is used before:
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
const my_set : set (int) = set [3; 2; 2; 1]
```
You can check that `2` is not repeated in `my_set` by using the LIGO
compiler like this (the output will sort the elements of the set, but
that order is not significant for the compiler):
```shell
ligo evaluate-value
gitlab-pages/docs/language-basics/src/sets-lists-tuples/sets.ligo my_set
# Outputs: { 3 ; 2 ; 1 }
```
2020-02-10 22:07:20 +04:00
<!--CameLIGO-->
2020-02-05 19:28:40 +04:00
In CameLIGO, there is no predefined syntactic construct for sets: you
must build your set by adding to the empty set. (This is the way in
OCaml.)
2020-02-10 22:07:20 +04:00
```cameligo group=sets
2020-02-05 19:28:40 +04:00
let my_set : int set =
Set.add 3 (Set.add 2 (Set.add 2 (Set.add 1 (Set.empty : int set))))
```
You can check that `2` is not repeated in `my_set` by using the LIGO
compiler like this (the output will sort the elements of the set, but
that order is not significant for the compiler):
```shell
ligo evaluate-value
gitlab-pages/docs/language-basics/src/sets-lists-tuples/sets.mligo my_set
# Outputs: { 3 ; 2 ; 1 }
```
2020-02-10 22:07:20 +04:00
<!--ReasonLIGO-->
2020-02-05 19:28:40 +04:00
In ReasonLIGO, there is no predefined syntactic construct for sets:
you must build your set by adding to the empty set. (This is the way
in OCaml.)
2020-02-10 22:07:20 +04:00
```reasonligo group=sets
2020-02-05 19:28:40 +04:00
let my_set : set (int) =
Set.add (3, Set.add (2, Set.add (2, Set.add (1, Set.empty : set (int)))));
2019-12-10 17:47:31 +04:00
```
2020-02-05 19:28:40 +04:00
You can check that `2` is not repeated in `my_set` by using the LIGO
compiler like this (the output will sort the elements of the set, but
that order is not significant for the compiler):
2020-02-05 19:28:40 +04:00
```shell
ligo evaluate-value
gitlab-pages/docs/language-basics/src/sets-lists-tuples/sets.religo my_set
# Outputs: { 3 ; 2 ; 1 }
```
2020-02-10 22:07:20 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
### Set Membership
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-10 22:07:20 +04:00
PascaLIGO features a special keyword `contains` that operates like an
2020-02-05 19:28:40 +04:00
infix operator checking membership in a set.
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
const contains_3 : bool = my_set contains 3
```
2020-02-10 22:07:20 +04:00
2020-02-05 19:28:40 +04:00
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
In CameLIGO, the predefined predicate `Set.mem` tests for membership
in a set as follows:
```cameligo group=sets
2020-02-05 19:28:40 +04:00
let contains_3 : bool = Set.mem 3 my_set
```
2020-02-10 22:07:20 +04:00
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
In ReasonLIGO, the predefined predicate `Set.mem` tests for membership
in a set as follows:
```reasonligo group=sets
2020-02-05 19:28:40 +04:00
let contains_3 : bool = Set.mem (3, my_set);
2019-12-10 17:47:31 +04:00
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-12 01:29:12 +04:00
### Cardinal of Sets
2020-02-05 19:28:40 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
In PascaLIGO, the predefined function `size` returns the number of
elements in a given set as follows:
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
const set_size : nat = size (my_set)
```
<!--CameLIGO-->
2020-02-10 22:07:20 +04:00
In CameLIGO, the predefined function `Set.size` returns the number of
elements in a given set as follows:
```cameligo group=sets
2020-02-05 19:28:40 +04:00
let set_size : nat = Set.size my_set
```
2019-12-11 13:34:08 +04:00
<!--ReasonLIGO-->
2020-02-10 22:07:20 +04:00
In ReasonLIGO, the predefined function `Set.size` returns the number
of elements in a given set as follows:
```reasonligo group=sets
2020-02-05 19:28:40 +04:00
let set_size : nat = Set.size (my_set);
2019-12-10 17:47:31 +04:00
```
2020-02-10 22:07:20 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
### Updating Sets
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
2020-02-10 22:07:20 +04:00
In PascaLIGO, there are two ways to update a set, that is to add or
remove from it. Either we create a new set from the given one, or we
2020-02-12 01:29:12 +04:00
modify it in-place. First, let us consider the former way:
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
const larger_set : set (int) = set_add (4, my_set)
2020-02-05 19:28:40 +04:00
const smaller_set : set (int) = set_remove (3, my_set)
```
2020-02-05 19:28:40 +04:00
If we are in a block, we can use an instruction to modify the set
bound to a given variable. This is called a *patch*. It is only
possible to add elements by means of a patch, not remove any: it is
the union of two sets.
In the following example, the parameter set `s` of function `update`
is augmented (as the `with s` shows) to include `4` and `7`, that is,
this instruction is equivalent to perform the union of two sets, one
that is modified in-place, and the other given as a literal
(extensional definition).
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
function update (var s : set (int)) : set (int) is block {
patch s with set [4; 7]
} with s
const new_set : set (int) = update (my_set)
```
2020-02-10 22:07:20 +04:00
<!--CameLIGO-->
2020-02-05 19:28:40 +04:00
In CameLIGO, we update a given set by creating another one, with or
without some elements.
2020-02-10 22:07:20 +04:00
```cameligo group=sets
2020-02-05 19:28:40 +04:00
let larger_set : int set = Set.add 4 my_set
let smaller_set : int set = Set.remove 3 my_set
```
2020-02-10 22:07:20 +04:00
<!--ReasonLIGO-->
2019-12-10 17:47:31 +04:00
2020-02-05 19:28:40 +04:00
In ReasonLIGO, we update a given set by creating another one, with or
without some elements.
2020-02-10 22:07:20 +04:00
```reasonligo group=sets
2020-02-05 19:28:40 +04:00
let larger_set : set (int) = Set.add (4, my_set);
2020-02-05 19:28:40 +04:00
let smaller_set : set (int) = Set.remove (3, my_set);
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
### Functional Iteration over Sets
2020-02-10 22:07:20 +04:00
A *functional iterator* is a function that traverses a data structure
and calls in turn a given function over the elements of that structure
to compute some value. Another approach is possible in PascaLIGO:
*loops* (see the relevant section).
2020-02-10 22:07:20 +04:00
There are three kinds of functional iterations over LIGO maps: the
2020-02-12 01:29:12 +04:00
*iterated operation*, the *mapped operation* (not to be confused with
the *map data structure*) and the *folded operation*.
2020-02-05 19:28:40 +04:00
2020-02-10 22:07:20 +04:00
#### Iterated Operation
2020-02-10 22:07:20 +04:00
The first, the *iterated operation*, is an iteration over the map with
no return value: its only use is to produce side-effects. This can be
useful if for example you would like to check that each value inside
of a map is within a certain range, and fail with an error otherwise.
<!--DOCUSAURUS_CODE_TABS-->
2020-02-10 22:07:20 +04:00
<!--PascaLIGO-->
In PascaLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `set_iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```pascaligo group=sets
function iter_op (const s : set (int)) : unit is
block {
function iterated (const i : int) : unit is
if i > 2 then Unit else (failwith ("Below range.") : unit)
} with set_iter (iterated, s)
```
> The iterated function must be pure, that is, it cannot mutate
> variables.
<!--CameLIGO-->
In CameLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `Set.iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```cameligo group=sets
let iter_op (s : int set) : unit =
let predicate = fun (i : int) -> assert (i > 3)
in Set.iter predicate s
```
<!--ReasonLIGO-->
In ReasonLIGO, the predefined functional iterator implementing the
iterated operation over sets is called `Set.iter`.
In the following example, a set is iterated to check that all its
elements (integers) are greater than `3`:
```reasonligo group=sets
let iter_op = (s : set (int)) : unit => {
let predicate = (i : int) => assert (i > 3);
Set.iter (predicate, s);
};
```
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-12 01:29:12 +04:00
#### Mapped Operation (NOT IMPLEMENTED YET)
2020-02-10 22:07:20 +04:00
We may want to change all the elements of a given set by applying to
2020-02-12 01:29:12 +04:00
them a function. This is called a *mapped operation*, not to be
confused with the map data structure.
2020-02-10 22:07:20 +04:00
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
2020-02-12 01:29:12 +04:00
In PascaLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `set_map` and is used as follows:
2020-02-10 22:07:20 +04:00
```pascaligo skip
2020-02-10 22:07:20 +04:00
function increment (const i : int): int is i + 1
// Creates a new set with all elements incremented by 1
const plus_one : set (int) = set_map (increment, larger_set)
```
<!--CameLIGO-->
2020-02-12 01:29:12 +04:00
In CameLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `Set.map` and is used as follows:
2020-02-10 22:07:20 +04:00
```cameligo skip
2020-02-10 22:07:20 +04:00
let increment (i : int) : int = i + 1
// Creates a new set with all elements incremented by 1
let plus_one : int set = Set.map increment larger_set
```
<!--ReasonLIGO-->
2020-02-12 01:29:12 +04:00
In ReasonLIGO, the predefined functional iterator implementing the
mapped operation over sets is called `Set.map` and is used as follows:
2020-02-10 22:07:20 +04:00
```reasonligo skip
2020-02-10 22:07:20 +04:00
let increment = (i : int) : int => i + 1;
// Creates a new set with all elements incremented by 1
let plus_one : set (int) = Set.map (increment, larger_set);
```
2019-12-10 17:47:31 +04:00
2020-02-10 22:07:20 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->
2020-02-12 01:29:12 +04:00
#### Folded Operation
2020-02-10 22:07:20 +04:00
2020-02-12 01:29:12 +04:00
A *folded operation* is the most general of iterations. The folded
2020-02-10 22:07:20 +04:00
function takes two arguments: an *accumulator* and the structure
*element* at hand, with which it then produces a new accumulator. This
enables having a partial result that becomes complete when the
traversal of the data structure is over.
<!--DOCUSAURUS_CODE_TABS-->
<!--PascaLIGO-->
2020-02-12 01:29:12 +04:00
In PascaLIGO, the predefined functional iterator implementing the
folded operation over sets is called `set_fold` and is used as
follows:
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
function sum (const acc : int; const i : int): int is acc + i
const sum_of_elements : int = set_fold (sum, my_set, 0)
```
2020-02-10 22:07:20 +04:00
> The folded function must be pure, that is, it cannot mutate
> variables.
2020-02-05 19:28:40 +04:00
It is possible to use a *loop* over a set as well.
2020-02-10 22:07:20 +04:00
```pascaligo group=sets
2020-02-05 19:28:40 +04:00
function loop (const s : set (int)) : int is block {
var sum : int := 0;
for element in set s block {
sum := sum + element
}
} with sum
```
2020-02-10 22:07:20 +04:00
<!--CameLIGO-->
2020-02-05 19:28:40 +04:00
In CameLIGO, the predefined fold over sets is called `Set.fold`.
2020-02-10 22:07:20 +04:00
```cameligo group=sets
2020-02-05 19:28:40 +04:00
let sum (acc, i : int * int) : int = acc + i
let sum_of_elements : int = Set.fold sum my_set 0
```
2020-02-10 22:07:20 +04:00
<!--ReasonLIGO-->
2020-02-05 19:28:40 +04:00
In ReasonLIGO, the predefined fold over sets is called `Set.fold`.
2020-02-10 22:07:20 +04:00
```reasonligo group=sets
2020-02-05 19:28:40 +04:00
let sum = ((acc, i) : (int, int)) : int => acc + i;
let sum_of_elements : int = Set.fold (sum, my_set, 0);
2019-12-10 17:47:31 +04:00
```
2020-02-05 19:28:40 +04:00
<!--END_DOCUSAURUS_CODE_TABS-->