ligo/vendors/UnionFind/Poly2.ml

141 lines
5.3 KiB
OCaml
Raw Normal View History

(** Persistent implementation of the Union/Find algorithm with
height-balanced forests and no path compression. *)
(* type item = Item.t *)
let equal compare i j = compare i j = 0
type height = int
(** Each equivalence class is implemented by a Catalan tree linked
upwardly and otherwise is a link to another node. Those trees
are height-balanced. The type [node] implements nodes in those
trees. *)
type 'item node =
Root of height
(** The value of [Root h] denotes the root of a tree, that is,
the representative of the associated class. The height [h]
is that of the tree, so a tree reduced to its root alone has
heigh 0. *)
| Link of 'item * height
(** If not a root, a node is a link to another node. Because the
links are upward, that is, bottom-up, and we seek a purely
functional implementation, we need to uncouple the nodes and
the items here, so the first component of [Link] is an item,
not a node. That is why the type [node] is not recursive,
and called [node], not [tree]: to become a traversable tree,
it needs to be complemented by the type [partition] below to
associate items back to nodes. In order to follow a path
upward in the tree until the root, we start from a link node
giving us the next item, then find the node corresponding to
the item thanks to [partition], and again until we arrive at
the root.
The height component is that of the source of the link, that
is, [h] is the height of the node linking to the node [Link
(j,h)], _not_ of [j], except when [equal i j]. *)
(* module ItemMap = Map.Make (Item) *)
type ('item, 'value) map = ('item, 'value) RedBlackTrees.PolyMap.t
let map_empty (compare : 'item -> 'item -> int) : ('item, 'value) map = RedBlackTrees.PolyMap.create ~cmp:compare
let map_find : 'item 'value . 'item -> ('item, 'value) map -> 'value = RedBlackTrees.PolyMap.find
let map_iter : 'item 'value . ('item -> 'value -> unit) -> ('item, 'value) map -> unit = RedBlackTrees.PolyMap.iter
let map_add : 'item 'value . 'item -> 'value -> ('item, 'value) map -> ('item, 'value) map = RedBlackTrees.PolyMap.add
let map_sorted_keys : 'item 'value . ('item, 'value) map -> 'item list = fun m -> List.map fst @@ RedBlackTrees.PolyMap.bindings m
(** The type [partition] implements a partition of classes of
equivalent items by means of a map from items to nodes of type
[node] in trees. *)
type 'item partition = {
to_string : 'item -> string ;
compare : 'item -> 'item -> int ;
map : ('item, 'item node) map ;
}
type 'item t = 'item partition
let empty to_string compare = { to_string ; compare ; map = map_empty compare }
let root : 'item * height -> 'item t -> 'item t =
fun (item, height) { to_string ; compare ; map } ->
{ to_string ; compare ; map = map_add item (Root height) map }
let link : 'item * height -> 'item -> 'item t -> 'item t
= fun (src, height) dst { to_string ; compare ; map } ->
{ to_string ; compare ; map = map_add src (Link (dst, height)) map }
let rec seek (i: 'item) (p: 'item partition) : 'item * height =
match map_find i p.map with
Root hi -> i,hi
| Link (j,_) -> seek j p
let repr i p = fst (seek i p)
let is_equiv (i: 'item) (j: 'item) (p: 'item partition) : bool =
try equal p.compare (repr i p) (repr j p) with
Not_found -> false
let get_or_set_h (i: 'item) (p: 'item partition) =
try seek i p, p with
Not_found -> let n = i,0 in (n, root n p)
let get_or_set (i: 'item) (p: 'item partition) =
let (i, _h), p = get_or_set_h i p in (i, p)
let mem i p = try Some (repr i p) with Not_found -> None
let repr i p = try repr i p with Not_found -> i
let equiv (i: 'item) (j: 'item) (p: 'item partition) : 'item partition =
let (ri,hi as ni), p = get_or_set_h i p in
let (rj,hj as nj), p = get_or_set_h j p in
if equal p.compare ri rj
then p
else if hi > hj
then link nj ri p
else link ni rj (if hi < hj then p else root (rj, hj+1) p)
(** The call [alias i j p] results in the same partition as [equiv
i j p], except that [i] is not the representative of its class
in [alias i j p] (whilst it may be in [equiv i j p]).
This property is irrespective of the heights of the
representatives of [i] and [j], that is, of the trees
implementing their classes. If [i] is not a representative of
its class before calling [alias], then the height criteria is
applied (which, without the constraint above, would yield a
height-balanced new tree). *)
let alias (i: 'item) (j: 'item) (p: 'item partition) : 'item partition =
let (ri,hi as ni), p = get_or_set_h i p in
let (rj,hj as nj), p = get_or_set_h j p in
if equal p.compare ri rj
then p
else if hi = hj || equal p.compare ri i
then link ni rj @@ root (rj, max hj (hi+1)) p
else if hi < hj then link ni rj p
else link nj ri p
(** {1 iteration over the elements} *)
let elements : 'item . 'item partition -> 'item list =
fun { to_string=_; compare=_; map } ->
map_sorted_keys map
(** {1 Printing} *)
let print ppf (p: 'item partition) =
let print i node =
let hi, hj, j =
match node with
Root hi -> hi,hi,i
| Link (j,hi) ->
match map_find j p.map with
Root hj | Link (_,hj) -> hi,hj,j in
let () =
Format.fprintf ppf "%s,%d -> %s,%d\n"
(p.to_string i) hi (p.to_string j) hj
in ()
in map_iter print p.map