ligo/AST.ml

917 lines
25 KiB
OCaml
Raw Normal View History

2019-02-26 01:29:29 +04:00
(* Abstract Syntax Tree (AST) for Ligo *)
open Utils
(* Regions
The AST carries all the regions where tokens have been found by the
lexer, plus additional regions corresponding to whole subtrees
(like entire expressions, patterns etc.). These regions are needed
for error reporting and source-to-source transformations. To make
these pervasive regions more legible, we define singleton types for
the symbols, keywords etc. with suggestive names like "kwd_and"
denoting the _region_ of the occurrence of the keyword "and".
*)
type 'a reg = 'a Region.reg
let rec last to_region = function
[] -> Region.ghost
| [x] -> to_region x
| _::t -> last to_region t
let nseq_to_region to_region (hd,tl) =
Region.cover (to_region hd) (last to_region tl)
let nsepseq_to_region to_region (hd,tl) =
let reg (_,item) = to_region item in
Region.cover (to_region hd) (last reg tl)
let sepseq_to_region to_region = function
None -> Region.ghost
| Some seq -> nsepseq_to_region to_region seq
(* Keywords of Ligo *)
type kwd_begin = Region.t
type kwd_const = Region.t
type kwd_down = Region.t
type kwd_if = Region.t
type kwd_in = Region.t
type kwd_is = Region.t
type kwd_for = Region.t
type kwd_function = Region.t
type kwd_parameter = Region.t
type kwd_storage = Region.t
type kwd_type = Region.t
type kwd_of = Region.t
type kwd_operations = Region.t
type kwd_var = Region.t
type kwd_end = Region.t
type kwd_then = Region.t
type kwd_else = Region.t
type kwd_match = Region.t
type kwd_procedure = Region.t
type kwd_null = Region.t
type kwd_record = Region.t
type kwd_step = Region.t
type kwd_to = Region.t
type kwd_mod = Region.t
type kwd_not = Region.t
type kwd_while = Region.t
type kwd_with = Region.t
(* Data constructors *)
type c_False = Region.t
type c_None = Region.t
type c_Some = Region.t
type c_True = Region.t
type c_Unit = Region.t
(* Symbols *)
type semi = Region.t
type comma = Region.t
type lpar = Region.t
type rpar = Region.t
type lbrace = Region.t
type rbrace = Region.t
type lbracket = Region.t
type rbracket = Region.t
type cons = Region.t
type vbar = Region.t
type arrow = Region.t
type asgnmnt = Region.t
type equal = Region.t
type colon = Region.t
type bool_or = Region.t
type bool_and = Region.t
type lt = Region.t
type leq = Region.t
type gt = Region.t
type geq = Region.t
type neq = Region.t
type plus = Region.t
type minus = Region.t
type slash = Region.t
type times = Region.t
type dot = Region.t
type wild = Region.t
type cat = Region.t
(* Virtual tokens *)
type eof = Region.t
(* Literals *)
type variable = string reg
type fun_name = string reg
type type_name = string reg
type field_name = string reg
type map_name = string reg
type constr = string reg
(* Comma-separated non-empty lists *)
type 'a csv = ('a, comma) nsepseq
(* Bar-separated non-empty lists *)
type 'a bsv = ('a, vbar) nsepseq
(* Parentheses *)
type 'a par = (lpar * 'a * rpar) reg
(* Brackets compounds *)
type 'a brackets = (lbracket * 'a * rbracket) reg
(* Braced compounds *)
type 'a braces = (lbrace * 'a * rbrace) reg
(* The Abstract Syntax Tree *)
type t = <
types : type_decl list;
parameter : parameter_decl;
storage : storage_decl;
operations : operations_decl;
lambdas : lambda_decl list;
block : block reg;
eof : eof
>
and ast = t
and parameter_decl = (kwd_parameter * variable * colon * type_expr) reg
and storage_decl = (kwd_storage * type_expr) reg
and operations_decl = (kwd_operations * type_expr) reg
(* Type declarations *)
and type_decl = (kwd_type * type_name * kwd_is * type_expr) reg
and type_expr =
Prod of cartesian
| Sum of (variant, vbar) nsepseq reg
| Record of record_type
| TypeApp of (type_name * type_tuple) reg
| ParType of type_expr par
| TAlias of variable
and cartesian = (type_expr, times) nsepseq reg
and variant = (constr * kwd_of * cartesian) reg
and record_type = (kwd_record * field_decls * kwd_end) reg
and field_decls = (field_decl, semi) nsepseq
and field_decl = (variable * colon * type_expr) reg
and type_tuple = (type_name, comma) nsepseq par
(* Function and procedure declarations *)
and lambda_decl =
FunDecl of fun_decl reg
| ProcDecl of proc_decl reg
and fun_decl = <
kwd_function : kwd_function;
var : variable;
param : parameters;
colon : colon;
ret_type : type_expr;
kwd_is : kwd_is;
body : block reg;
kwd_with : kwd_with;
return : expr
>
and proc_decl = <
kwd_procedure : kwd_procedure;
var : variable;
param : parameters;
kwd_is : kwd_is;
body : block reg
>
and parameters = (param_decl, semi) nsepseq par
and param_decl = (var_kind * variable * colon * type_expr) reg
and var_kind =
Mutable of kwd_var
| Const of kwd_const
and block = <
decls : value_decls;
opening : kwd_begin;
instr : instructions;
close : kwd_end
>
and value_decls = (var_decl reg, semi) sepseq reg
and var_decl = <
kind : var_kind;
var : variable;
colon : colon;
vtype : type_expr;
setter : Region.t; (* "=" or ":=" *)
init : expr
>
and instructions = (instruction, semi) nsepseq reg
and instruction =
Single of single_instr
| Block of block reg
and single_instr =
Cond of conditional reg
| Match of match_instr reg
| Asgnmnt of asgnmnt_instr
| Loop of loop
| ProcCall of fun_call
| Null of kwd_null
and conditional = <
kwd_if : kwd_if;
test : expr;
kwd_then : kwd_then;
ifso : instruction;
kwd_else : kwd_else;
ifnot : instruction
>
and match_instr = <
kwd_match : kwd_match;
expr : expr;
kwd_with : kwd_with;
cases : cases;
kwd_end : kwd_end
>
and cases = (case, vbar) nsepseq reg
and case = (pattern * arrow * instruction) reg
and asgnmnt_instr = (variable * asgnmnt * expr) reg
and loop =
While of while_loop
| For of for_loop
and while_loop = (kwd_while * expr * block reg) reg
and for_loop =
ForInt of for_int reg
| ForCollect of for_collect reg
and for_int = <
kwd_for : kwd_for;
asgnmnt : asgnmnt_instr;
down : kwd_down option;
kwd_to : kwd_to;
bound : expr;
step : (kwd_step * expr) option;
block : block reg
>
and for_collect = <
kwd_for : kwd_for;
var : variable;
bind_to : (arrow * variable) option;
kwd_in : kwd_in;
expr : expr;
block : block reg
>
(* Expressions *)
and expr =
Or of (expr * bool_or * expr) reg
| And of (expr * bool_and * expr) reg
| Lt of (expr * lt * expr) reg
| Leq of (expr * leq * expr) reg
| Gt of (expr * gt * expr) reg
| Geq of (expr * geq * expr) reg
| Equal of (expr * equal * expr) reg
| Neq of (expr * neq * expr) reg
| Cat of (expr * cat * expr) reg
| Cons of (expr * cons * expr) reg
| Add of (expr * plus * expr) reg
| Sub of (expr * minus * expr) reg
| Mult of (expr * times * expr) reg
| Div of (expr * slash * expr) reg
| Mod of (expr * kwd_mod * expr) reg
| Neg of (minus * expr) reg
| Not of (kwd_not * expr) reg
| Int of (Lexer.lexeme * Z.t) reg
| Var of Lexer.lexeme reg
| String of Lexer.lexeme reg
| Bytes of (Lexer.lexeme * MBytes.t) reg
| False of c_False
| True of c_True
| Unit of c_Unit
| Tuple of tuple
| List of (expr, comma) nsepseq brackets
| EmptyList of empty_list
| Set of (expr, comma) nsepseq braces
| EmptySet of empty_set
| NoneExpr of none_expr
| FunCall of fun_call
| ConstrApp of constr_app
| SomeApp of (c_Some * arguments) reg
| MapLookUp of map_lookup reg
| ParExpr of expr par
and tuple = (expr, comma) nsepseq par
and empty_list =
(lbracket * rbracket * colon * type_expr) par
and empty_set =
(lbrace * rbrace * colon * type_expr) par
and none_expr =
(c_None * colon * type_expr) par
and fun_call = (fun_name * arguments) reg
and arguments = tuple
and constr_app = (constr * arguments) reg
and map_lookup = <
map_name : variable;
selector : dot;
index : expr brackets
>
(* Patterns *)
and pattern = (core_pattern, cons) nsepseq reg
and core_pattern =
PVar of Lexer.lexeme reg
| PWild of wild
| PInt of (Lexer.lexeme * Z.t) reg
| PBytes of (Lexer.lexeme * MBytes.t) reg
| PString of Lexer.lexeme reg
| PUnit of c_Unit
| PFalse of c_False
| PTrue of c_True
| PNone of c_None
| PSome of (c_Some * core_pattern par) reg
| PList of list_pattern
| PTuple of (core_pattern, comma) nsepseq par
and list_pattern =
Sugar of (core_pattern, comma) sepseq brackets
| Raw of (core_pattern * cons * pattern) par
(* Projecting regions *)
open Region
let type_expr_to_region = function
Prod node -> node.region
| Sum node -> node.region
| Record node -> node.region
| TypeApp node -> node.region
| ParType node -> node.region
| TAlias node -> node.region
let expr_to_region = function
Or {region; _}
| And {region; _}
| Lt {region; _}
| Leq {region; _}
| Gt {region; _}
| Geq {region; _}
| Equal {region; _}
| Neq {region; _}
| Cat {region; _}
| Cons {region; _}
| Add {region; _}
| Sub {region; _}
| Mult {region; _}
| Div {region; _}
| Mod {region; _}
| Neg {region; _}
| Not {region; _}
| Int {region; _}
| Var {region; _}
| String {region; _}
| Bytes {region; _}
| False region
| True region
| Unit region
| Tuple {region; _}
| List {region; _}
| EmptyList {region; _}
| Set {region; _}
| EmptySet {region; _}
| NoneExpr {region; _}
| FunCall {region; _}
| ConstrApp {region; _}
| SomeApp {region; _}
| MapLookUp {region; _}
| ParExpr {region; _} -> region
let var_kind_to_region = function
Mutable region
| Const region -> region
let instr_to_region = function
Single Cond {region;_}
| Single Match {region; _}
| Single Asgnmnt {region; _}
| Single Loop While {region; _}
| Single Loop For ForInt {region; _}
| Single Loop For ForCollect {region; _}
| Single ProcCall {region; _}
| Single Null region
| Block {region; _} -> region
let core_pattern_to_region = function
PVar {region; _}
| PWild region
| PInt {region; _}
| PBytes {region; _}
| PString {region; _}
| PUnit region
| PFalse region
| PTrue region
| PNone region
| PSome {region; _}
| PList Sugar {region; _}
| PList Raw {region; _}
| PTuple {region; _} -> region
(* Printing the tokens with their source regions *)
let printf = Printf.printf
let compact (region: Region.t) =
region#compact ~offsets:EvalOpt.offsets EvalOpt.mode
let print_nsepseq sep print (head,tail) =
let print_aux (sep_reg, item) =
printf "%s: %s\n" (compact sep_reg) sep;
print item
in print head; List.iter print_aux tail
let print_sepseq sep print = function
None -> ()
| Some seq -> print_nsepseq sep print seq
let print_token region lexeme =
printf "%s: %s\n"(compact region) lexeme
let print_var {region; value=lexeme} =
printf "%s: Ident \"%s\"\n" (compact region) lexeme
let print_constr {region; value=lexeme} =
printf "%s: Constr \"%s\"\n"
(compact region) lexeme
let print_string {region; value=lexeme} =
printf "%s: String \"%s\"\n"
(compact region) lexeme
let print_bytes {region; value = lexeme, abstract} =
printf "%s: Bytes (\"%s\", \"0x%s\")\n"
(compact region) lexeme
(MBytes.to_hex abstract |> Hex.to_string)
let print_int {region; value = lexeme, abstract} =
printf "%s: Int (\"%s\", %s)\n"
(compact region) lexeme
(Z.to_string abstract)
let rec print_tokens ast =
List.iter print_type_decl ast#types;
print_parameter_decl ast#parameter;
print_storage_decl ast#storage;
print_operations_decl ast#operations;
List.iter print_lambda_decl ast#lambdas;
print_block ast#block;
print_token ast#eof "EOF"
and print_parameter_decl {value=node; _} =
let kwd_parameter, variable, colon, type_expr = node in
print_token kwd_parameter "parameter";
print_var variable;
print_token colon ":";
print_type_expr type_expr
and print_storage_decl {value=node; _} =
let kwd_storage, type_expr = node in
print_token kwd_storage "storage";
print_type_expr type_expr
and print_operations_decl {value=node; _} =
let kwd_operations, type_expr = node in
print_token kwd_operations "operations";
print_type_expr type_expr
and print_type_decl {value=node; _} =
let kwd_type, type_name, kwd_is, type_expr = node in
print_token kwd_type "type";
print_var type_name;
print_token kwd_is "is";
print_type_expr type_expr
and print_type_expr = function
Prod cartesian -> print_cartesian cartesian
| Sum sum_type -> print_sum_type sum_type
| Record record_type -> print_record_type record_type
| TypeApp type_app -> print_type_app type_app
| ParType par_type -> print_par_type par_type
| TAlias type_alias -> print_var type_alias
and print_cartesian {value=sequence; _} =
print_nsepseq "*" print_type_expr sequence
and print_variant {value=node; _} =
let constr, kwd_of, cartesian = node in
print_constr constr;
print_token kwd_of "of";
print_cartesian cartesian
and print_sum_type {value=sequence; _} =
print_nsepseq "|" print_variant sequence
and print_record_type {value=node; _} =
let kwd_record, field_decls, kwd_end = node in
print_token kwd_record "record";
print_field_decls field_decls;
print_token kwd_end "end"
and print_type_app {value=node; _} =
let type_name, type_tuple = node in
print_var type_name;
print_type_tuple type_tuple
and print_par_type {value=node; _} =
let lpar, type_expr, rpar = node in
print_token lpar "(";
print_type_expr type_expr;
print_token rpar ")"
and print_field_decls sequence =
print_nsepseq ";" print_field_decl sequence
and print_field_decl {value=node; _} =
let var, colon, type_expr = node in
print_var var;
print_token colon ":";
print_type_expr type_expr
and print_type_tuple {value=node; _} =
let lpar, sequence, rpar = node in
print_token lpar "(";
print_nsepseq "," print_var sequence;
print_token rpar ")"
and print_lambda_decl = function
FunDecl fun_decl -> print_fun_decl fun_decl
| ProcDecl proc_decl -> print_proc_decl proc_decl
and print_fun_decl {value=node; _} =
print_token node#kwd_function "function";
print_var node#var;
print_parameters node#param;
print_token node#colon ":";
print_type_expr node#ret_type;
print_token node#kwd_is "is";
print_block node#body;
print_token node#kwd_with "with";
print_expr node#return
and print_proc_decl {value=node; _} =
print_token node#kwd_procedure "procedure";
print_var node#var;
print_parameters node#param;
print_token node#kwd_is "is";
print_block node#body
and print_parameters {value=node; _} =
let lpar, sequence, rpar = node in
print_token lpar "(";
print_nsepseq ";" print_param_decl sequence;
print_token rpar ")"
and print_param_decl {value=node; _} =
let var_kind, variable, colon, type_expr = node in
print_var_kind var_kind;
print_var variable;
print_token colon ":";
print_type_expr type_expr
and print_var_kind = function
Mutable kwd_var -> print_token kwd_var "var"
| Const kwd_const -> print_token kwd_const "const"
and print_block {value=node; _} =
print_value_decls node#decls;
print_token node#opening "begin";
print_instructions node#instr;
print_token node#close "end"
and print_value_decls {value=sequence; _} =
print_sepseq ";" print_var_decl sequence
and print_var_decl {value=node; _} =
let setter =
match node#kind with
Mutable _ -> ":="
| Const _ -> "=" in
print_var_kind node#kind;
print_var node#var;
print_token node#colon ":";
print_type_expr node#vtype;
print_token node#setter setter;
print_expr node#init
and print_instructions {value=sequence; _} =
print_nsepseq ";" print_instruction sequence
and print_instruction = function
Single instr -> print_single_instr instr
| Block block -> print_block block
and print_single_instr = function
Cond {value; _} -> print_conditional value
| Match {value; _} -> print_match_instr value
| Asgnmnt instr -> print_asgnmnt_instr instr
| Loop loop -> print_loop loop
| ProcCall fun_call -> print_fun_call fun_call
| Null kwd_null -> print_token kwd_null "null"
and print_conditional node =
print_token node#kwd_if "if";
print_expr node#test;
print_token node#kwd_then "then";
print_instruction node#ifso;
print_token node#kwd_else "else";
print_instruction node#ifnot
and print_match_instr node =
print_token node#kwd_match "match";
print_expr node#expr;
print_token node#kwd_with "with";
print_cases node#cases;
print_token node#kwd_end "end"
and print_cases {value=sequence; _} =
print_nsepseq "|" print_case sequence
and print_case {value=node; _} =
let pattern, arrow, instruction = node in
print_pattern pattern;
print_token arrow "->";
print_instruction instruction
and print_asgnmnt_instr {value=node; _} =
let variable, asgnmnt, expr = node in
print_var variable;
print_token asgnmnt ":=";
print_expr expr
and print_loop = function
While while_loop -> print_while_loop while_loop
| For for_loop -> print_for_loop for_loop
and print_while_loop {value=node; _} =
let kwd_while, expr, block = node in
print_token kwd_while "while";
print_expr expr;
print_block block
and print_for_loop = function
ForInt for_int -> print_for_int for_int
| ForCollect for_collect -> print_for_collect for_collect
and print_for_int {value=node; _} =
print_token node#kwd_for "for";
print_asgnmnt_instr node#asgnmnt;
print_down node#down;
print_token node#kwd_to "to";
print_expr node#bound;
print_step node#step;
print_block node#block
and print_down = function
Some kwd_down -> print_token kwd_down "down"
| None -> ()
and print_step = function
Some (kwd_step, expr) ->
print_token kwd_step "step";
print_expr expr
| None -> ()
and print_for_collect {value=node; _} =
print_token node#kwd_for "for";
print_var node#var;
print_bind_to node#bind_to;
print_token node#kwd_in "in";
print_expr node#expr;
print_block node#block
and print_bind_to = function
Some (arrow, variable) ->
print_token arrow "->";
print_var variable
| None -> ()
and print_expr = function
Or {value = expr1, bool_or, expr2; _} ->
print_expr expr1; print_token bool_or "||"; print_expr expr2
| And {value = expr1, bool_and, expr2; _} ->
print_expr expr1; print_token bool_and "&&"; print_expr expr2
| Lt {value = expr1, lt, expr2; _} ->
print_expr expr1; print_token lt "<"; print_expr expr2
| Leq {value = expr1, leq, expr2; _} ->
print_expr expr1; print_token leq "<="; print_expr expr2
| Gt {value = expr1, gt, expr2; _} ->
print_expr expr1; print_token gt ">"; print_expr expr2
| Geq {value = expr1, geq, expr2; _} ->
print_expr expr1; print_token geq ">="; print_expr expr2
| Equal {value = expr1, equal, expr2; _} ->
print_expr expr1; print_token equal "="; print_expr expr2
| Neq {value = expr1, neq, expr2; _} ->
print_expr expr1; print_token neq "=/="; print_expr expr2
| Cat {value = expr1, cat, expr2; _} ->
print_expr expr1; print_token cat "^"; print_expr expr2
| Cons {value = expr1, cons, expr2; _} ->
print_expr expr1; print_token cons "<:"; print_expr expr2
| Add {value = expr1, add, expr2; _} ->
print_expr expr1; print_token add "+"; print_expr expr2
| Sub {value = expr1, sub, expr2; _} ->
print_expr expr1; print_token sub "-"; print_expr expr2
| Mult {value = expr1, mult, expr2; _} ->
print_expr expr1; print_token mult "*"; print_expr expr2
| Div {value = expr1, div, expr2; _} ->
print_expr expr1; print_token div "/"; print_expr expr2
| Mod {value = expr1, kwd_mod, expr2; _} ->
print_expr expr1; print_token kwd_mod "mod"; print_expr expr2
| Neg {value = minus, expr; _} ->
print_token minus "-"; print_expr expr
| Not {value = kwd_not, expr; _} ->
print_token kwd_not "not"; print_expr expr
| Int i -> print_int i
| Var v -> print_var v
| String s -> print_string s
| Bytes b -> print_bytes b
| False region -> print_token region "False"
| True region -> print_token region "True"
| Unit region -> print_token region "Unit"
| Tuple tuple -> print_tuple tuple
| List list -> print_list list
| EmptyList elist -> print_empty_list elist
| Set set -> print_set set
| EmptySet eset -> print_empty_set eset
| NoneExpr nexpr -> print_none_expr nexpr
| FunCall fun_call -> print_fun_call fun_call
| ConstrApp capp -> print_constr_app capp
| SomeApp sapp -> print_some_app sapp
| MapLookUp lookup -> print_map_lookup lookup
| ParExpr pexpr -> print_par_expr pexpr
and print_tuple {value=node; _} =
let lpar, sequence, rpar = node in
print_token lpar "(";
print_nsepseq "," print_expr sequence;
print_token rpar ")"
and print_list {value=node; _} =
let lbra, sequence, rbra = node in
print_token lbra "[";
print_nsepseq "," print_expr sequence;
print_token rbra "]"
and print_empty_list {value=node; _} =
let lpar, (lbracket, rbracket, colon, type_expr), rpar = node in
print_token lpar "(";
print_token lbracket "[";
print_token rbracket "]";
print_token colon ":";
print_type_expr type_expr;
print_token rpar ")"
and print_set {value=node; _} =
let lbrace, sequence, rbrace = node in
print_token lbrace "{";
print_nsepseq "," print_expr sequence;
print_token rbrace "}"
and print_empty_set {value=node; _} =
let lpar, (lbrace, rbrace, colon, type_expr), rpar = node in
print_token lpar "(";
print_token lbrace "{";
print_token rbrace "}";
print_token colon ":";
print_type_expr type_expr;
print_token rpar ")"
and print_none_expr {value=node; _} =
let lpar, (c_None, colon, type_expr), rpar = node in
print_token lpar "(";
print_token c_None "None";
print_token colon ":";
print_type_expr type_expr;
print_token rpar ")"
and print_fun_call {value=node; _} =
let fun_name, arguments = node in
print_var fun_name;
print_tuple arguments
and print_constr_app {value=node; _} =
let constr, arguments = node in
print_constr constr;
print_tuple arguments
and print_some_app {value=node; _} =
let c_Some, arguments = node in
print_token c_Some "Some";
print_tuple arguments
and print_map_lookup {value=node; _} =
let {value = lbracket, expr, rbracket; _} = node#index in
print_var node#map_name;
print_token node#selector ".";
print_token lbracket "[";
print_expr expr;
print_token rbracket "]"
and print_par_expr {value=node; _} =
let lpar, expr, rpar = node in
print_token lpar "(";
print_expr expr;
print_token rpar ")"
and print_pattern {value=sequence; _} =
print_nsepseq "<:" print_core_pattern sequence
and print_core_pattern = function
PVar var -> print_var var
| PWild wild -> print_token wild "_"
| PInt i -> print_int i
| PBytes b -> print_bytes b
| PString s -> print_string s
| PUnit region -> print_token region "Unit"
| PFalse region -> print_token region "False"
| PTrue region -> print_token region "True"
| PNone region -> print_token region "None"
| PSome psome -> print_psome psome
| PList pattern -> print_list_pattern pattern
| PTuple ptuple -> print_ptuple ptuple
and print_psome {value=node; _} =
let c_Some, patterns = node in
print_token c_Some "Some";
print_patterns patterns
and print_patterns {value=node; _} =
let lpar, core_pattern, rpar = node in
print_token lpar "(";
print_core_pattern core_pattern;
print_token rpar ")"
and print_list_pattern = function
Sugar sugar -> print_sugar sugar
| Raw raw -> print_raw raw
and print_sugar {value=node; _} =
let lbracket, sequence, rbracket = node in
print_token lbracket "[";
print_sepseq "," print_core_pattern sequence;
print_token rbracket "]"
and print_raw {value=node; _} =
let lpar, (core_pattern, cons, pattern), rpar = node in
print_token lpar "(";
print_core_pattern core_pattern;
print_token cons "<:";
print_pattern pattern;
print_token rpar ")"
and print_ptuple {value=node; _} =
let lpar, sequence, rpar = node in
print_token lpar "(";
print_nsepseq "," print_core_pattern sequence;
print_token rpar ")"