ligo/src/parser/ligodity/Parser.mly

569 lines
18 KiB
OCaml
Raw Normal View History

%{
(* START HEADER *)
open AST
(* END HEADER *)
%}
(* Entry points *)
%start program
%type <AST.t> program
%%
(* RULES *)
(* This parser leverages Menhir-specific features, in particular
parametric rules, rule inlining and primitives to get the source
locations of tokens from the lexer engine generated by ocamllex.
We define below two rules, [reg] and [oreg]. The former parses
its argument and returns its synthesised value together with its
region in the source code (that is, start and end positions --- see
module [Region]). The latter discards the value and only returns
the region: this is mostly useful for parsing keywords, because
those can be easily deduced from the AST node and only their source
region has to be recorded there.
*)
%inline reg(X):
X { let start = Pos.from_byte $symbolstartpos
and stop = Pos.from_byte $endpos in
let region = Region.make ~start ~stop
in Region.{region; value=$1} }
%inline oreg(X):
reg(X) { $1.Region.region }
(* Keywords, symbols, literals and virtual tokens *)
kwd(X) : oreg(X) { $1 }
sym(X) : oreg(X) { $1 }
ident : reg(Ident) { $1 }
constr : reg(Constr) { $1 }
string : reg(Str) { $1 }
eof : oreg(EOF) { $1 }
vbar : sym(VBAR) { $1 }
lpar : sym(LPAR) { $1 }
rpar : sym(RPAR) { $1 }
lbracket : sym(LBRACKET) { $1 }
rbracket : sym(RBRACKET) { $1 }
lbrace : sym(LBRACE) { $1 }
rbrace : sym(RBRACE) { $1 }
comma : sym(COMMA) { $1 }
semi : sym(SEMI) { $1 }
colon : sym(COLON) { $1 }
eq : sym(EQ) { $1 }
dot : sym(DOT) { $1 }
arrow : sym(ARROW) { $1 }
wild : sym(WILD) { $1 }
cons : sym(CONS) { $1 }
(* The rule [sep_or_term(item,sep)] ("separated or terminated list")
parses a non-empty list of items separated by [sep], and optionally
terminated by [sep]. *)
sep_or_term_list(item,sep):
nsepseq(item,sep) {
$1, None
}
| nseq(item sep {$1,$2}) {
let (first,sep), tail = $1 in
let rec trans (seq, prev_sep as acc) = function
[] -> acc
| (item,next_sep)::others ->
trans ((prev_sep,item)::seq, next_sep) others in
let list, term = trans ([],sep) tail
in (first, List.rev list), Some term }
(* Compound constructs *)
par(X): reg(lpar X rpar { {lpar=$1; inside=$2; rpar=$3} }) { $1 }
(* Sequences
Series of instances of the same syntactical category have often to
be parsed, like lists of expressions, patterns etc. The simplest of
all is the possibly empty sequence (series), parsed below by
[seq]. The non-empty sequence is parsed by [nseq]. Note that the
latter returns a pair made of the first parsed item (the parameter
[X]) and the rest of the sequence (possibly empty). This way, the
OCaml typechecker can keep track of this information along the
static control-flow graph. The rule [sepseq] parses possibly empty
sequences of items separated by some token (e.g., a comma), and
rule [nsepseq] is for non-empty such sequences. See module [Utils]
for the types corresponding to the semantic actions of those
rules.
*)
(* Possibly empty sequence of items *)
seq(item):
(**) { [] }
| item seq(item) { $1::$2 }
(* Non-empty sequence of items *)
nseq(item):
item seq(item) { $1,$2 }
(* Non-empty separated sequence of items *)
nsepseq(item,sep):
item { $1, [] }
| item sep nsepseq(item,sep) { let h,t = $3 in $1, ($2,h)::t }
(* Possibly empy separated sequence of items *)
sepseq(item,sep):
(**) { None }
| nsepseq(item,sep) { Some $1 }
(* Helpers *)
type_name : ident { $1 }
field_name : ident { $1 }
module_name : constr { $1 }
struct_name : Ident { $1 }
(* Non-empty comma-separated values (at least two values) *)
tuple(item):
item comma nsepseq(item,comma) { let h,t = $3 in $1,($2,h)::t }
(* Possibly empty semicolon-separated values between brackets *)
list_of(item):
lbracket sepseq(item,semi) rbracket {
{opening = LBracket $1;
elements = $2;
terminator = None;
closing = RBracket $3} }
(* Main *)
program:
nseq(declaration) eof { {decl=$1; eof=$2} }
declaration:
reg(kwd(Let) let_bindings {$1,$2}) { Let $1 }
| reg(kwd(LetEntry) let_binding {$1,$2}) { LetEntry $1 }
| reg(type_decl) { TypeDecl $1 }
(* Type declarations *)
type_decl:
kwd(Type) type_name eq type_expr {
{kwd_type=$1; name=$2; eq=$3; type_expr=$4} }
type_expr:
cartesian { TProd $1 }
| reg(sum_type) { TSum $1 }
| reg(record_type) { TRecord $1 }
cartesian:
reg(nsepseq(fun_type, sym(TIMES))) { $1 }
fun_type:
core_type { $1 }
| reg(arrow_type) { TFun $1 }
arrow_type:
core_type arrow fun_type { $1,$2,$3 }
core_type:
type_projection {
TAlias $1
}
| reg(reg(core_type) type_constr {$1,$2}) {
let arg, constr = $1.value in
let Region.{value=arg_val; _} = arg in
let lpar, rpar = Region.ghost, Region.ghost in
let arg_val = {lpar; inside=arg_val,[]; rpar} in
let arg = {arg with value=arg_val} in
TApp Region.{$1 with value = constr, arg}
}
| reg(type_tuple type_constr {$1,$2}) {
let arg, constr = $1.value in
TApp Region.{$1 with value = constr, arg}
}
| par(cartesian) {
let Region.{region; value={lpar; inside=prod; rpar}} = $1 in
TPar Region.{region; value={lpar; inside = TProd prod; rpar}} }
type_projection:
type_name {
$1
}
| reg(module_name dot type_name {$1,$2,$3}) {
let open Region in
let module_name,_ , type_name = $1.value in
let value = module_name.value ^ "." ^ type_name.value
in {$1 with value} }
type_constr:
type_name { $1 }
| kwd(Set) { Region.{value="set"; region=$1} }
| kwd(Map) { Region.{value="map"; region=$1} }
| kwd(List) { Region.{value="list"; region=$1} }
type_tuple:
par(tuple(type_expr)) { $1 }
sum_type:
ioption(vbar) nsepseq(reg(variant),vbar) { $2 }
variant:
constr kwd(Of) cartesian { {constr=$1; args = Some ($2,$3)} }
| constr { {constr=$1; args = None} }
record_type:
lbrace sep_or_term_list(reg(field_decl),semi) rbrace {
let elements, terminator = $2 in {
opening = LBrace $1;
elements = Some elements;
terminator;
closing = RBrace $3} }
field_decl:
field_name colon type_expr {
{field_name=$1; colon=$2; field_type=$3} }
(* Non-recursive definitions *)
let_bindings:
nsepseq(let_binding, kwd(And)) { $1 }
let_binding:
ident nseq(sub_irrefutable) type_annotation? eq expr {
let let_rhs = EFun (norm $2 $4 $5) in
{pattern = PVar $1; lhs_type=$3; eq = Region.ghost; let_rhs}
}
| irrefutable type_annotation? eq expr {
{pattern=$1; lhs_type=$2; eq=$3; let_rhs=$4} }
type_annotation:
colon type_expr { $1,$2 }
(* Patterns *)
irrefutable:
reg(tuple(sub_irrefutable)) { PTuple $1 }
| sub_irrefutable { $1 }
sub_irrefutable:
ident { PVar $1 }
| wild { PWild $1 }
| unit { PUnit $1 }
| par(closed_irrefutable) { PPar $1 }
closed_irrefutable:
reg(tuple(sub_irrefutable)) { PTuple $1 }
| sub_irrefutable { $1 }
| reg(constr_pattern) { PConstr $1 }
| reg(typed_pattern) { PTyped $1 }
typed_pattern:
irrefutable colon type_expr { {pattern=$1; colon=$2; type_expr=$3} }
pattern:
reg(sub_pattern cons tail {$1,$2,$3}) { PList (PCons $1) }
| reg(tuple(sub_pattern)) { PTuple $1 }
| core_pattern { $1 }
sub_pattern:
par(tail) { PPar $1 }
| core_pattern { $1 }
core_pattern:
ident { PVar $1 }
| wild { PWild $1 }
| unit { PUnit $1 }
| reg(Int) { PInt $1 }
| kwd(True) { PTrue $1 }
| kwd(False) { PFalse $1 }
| string { PString $1 }
| par(ptuple) { PPar $1 }
| reg(list_of(tail)) { PList (Sugar $1) }
| reg(constr_pattern) { PConstr $1 }
| reg(record_pattern) { PRecord $1 }
record_pattern:
lbrace sep_or_term_list(reg(field_pattern),semi) rbrace {
let elements, terminator = $2 in
{opening = LBrace $1;
elements = Some elements;
terminator;
closing = RBrace $3} }
field_pattern:
field_name eq sub_pattern {
{field_name=$1; eq=$2; pattern=$3} }
constr_pattern:
constr sub_pattern { $1, Some $2 }
| constr { $1, None }
ptuple:
reg(tuple(tail)) { PTuple $1 }
unit:
reg(lpar rpar {$1,$2}) { $1 }
tail:
reg(sub_pattern cons tail {$1,$2,$3}) { PList (PCons $1) }
| sub_pattern { $1 }
(* Expressions *)
expr:
base_cond__open(expr) { $1 }
| reg(match_expr(base_cond)) { ECase $1 }
base_cond__open(x):
base_expr(x)
| conditional(x) { $1 }
base_cond:
base_cond__open(base_cond) { $1 }
base_expr(right_expr):
let_expr(right_expr)
| fun_expr(right_expr)
| disj_expr_level { $1 }
| reg(tuple(disj_expr_level)) { ETuple $1 }
conditional(right_expr):
reg(if_then_else(right_expr))
| reg(if_then(right_expr)) { ECond $1 }
if_then(right_expr):
kwd(If) expr kwd(Then) right_expr {
let open Region in
let the_unit = ghost, ghost in
let ifnot = EUnit {region=ghost; value=the_unit} in
{kwd_if=$1; test=$2; kwd_then=$3; ifso=$4;
kwd_else=Region.ghost; ifnot} }
if_then_else(right_expr):
kwd(If) expr kwd(Then) closed_if kwd(Else) right_expr {
{kwd_if=$1; test=$2; kwd_then=$3; ifso=$4;
kwd_else=$5; ifnot = $6} }
base_if_then_else__open(x):
base_expr(x) { $1 }
| reg(if_then_else(x)) { ECond $1 }
base_if_then_else:
base_if_then_else__open(base_if_then_else) { $1 }
closed_if:
base_if_then_else__open(closed_if) { $1 }
| reg(match_expr(base_if_then_else)) { ECase $1 }
match_expr(right_expr):
kwd(Match) expr kwd(With) vbar? reg(cases(right_expr)) {
let cases = Utils.nsepseq_rev $5.value in
{kwd_match = $1; expr = $2; opening = With $3;
lead_vbar = $4; cases = {$5 with value=cases};
closing = End Region.ghost}
}
| kwd(MatchNat) expr kwd(With) vbar? reg(cases(right_expr)) {
let open Region in
let cases = Utils.nsepseq_rev $5.value in
let cast = EVar {region=ghost; value="assert_pos"} in
let cast = ECall {region=ghost; value=cast,[$2]} in
{kwd_match = $1; expr = cast; opening = With $3;
lead_vbar = $4; cases = {$5 with value=cases};
closing = End Region.ghost} }
cases(right_expr):
reg(case_clause(right_expr)) { $1, [] }
| cases(base_cond) vbar reg(case_clause(right_expr)) {
let h,t = $1 in $3, ($2,h)::t }
case_clause(right_expr):
pattern arrow right_expr { {pattern=$1; arrow=$2; rhs=$3} }
let_expr(right_expr):
reg(kwd(Let) let_bindings kwd(In) right_expr {$1,$2,$3,$4}) {
ELetIn $1 }
fun_expr(right_expr):
reg(kwd(Fun) nseq(irrefutable) arrow right_expr {$1,$2,$3,$4}) {
let Region.{region; value = kwd_fun, patterns, arrow, expr} = $1
in EFun (norm ~reg:(region, kwd_fun) patterns arrow expr) }
disj_expr_level:
reg(disj_expr) { ELogic (BoolExpr (Or $1)) }
| conj_expr_level { $1 }
bin_op(arg1,op,arg2):
arg1 op arg2 { {arg1=$1; op=$2; arg2=$3} }
un_op(op,arg):
op arg { {op=$1; arg=$2} }
disj_expr:
bin_op(disj_expr_level, sym(BOOL_OR), conj_expr_level)
| bin_op(disj_expr_level, kwd(Or), conj_expr_level) { $1 }
conj_expr_level:
reg(conj_expr) { ELogic (BoolExpr (And $1)) }
| comp_expr_level { $1 }
conj_expr:
bin_op(conj_expr_level, sym(BOOL_AND), comp_expr_level) { $1 }
comp_expr_level:
reg(lt_expr) { ELogic (CompExpr (Lt $1)) }
| reg(le_expr) { ELogic (CompExpr (Leq $1)) }
| reg(gt_expr) { ELogic (CompExpr (Gt $1)) }
| reg(ge_expr) { ELogic (CompExpr (Geq $1)) }
| reg(eq_expr) { ELogic (CompExpr (Equal $1)) }
| reg(ne_expr) { ELogic (CompExpr (Neq $1)) }
| cat_expr_level { $1 }
lt_expr:
bin_op(comp_expr_level, sym(LT), cat_expr_level) { $1 }
le_expr:
bin_op(comp_expr_level, sym(LE), cat_expr_level) { $1 }
gt_expr:
bin_op(comp_expr_level, sym(GT), cat_expr_level) { $1 }
ge_expr:
bin_op(comp_expr_level, sym(GE), cat_expr_level) { $1 }
eq_expr:
bin_op(comp_expr_level, eq, cat_expr_level) { $1 }
ne_expr:
bin_op(comp_expr_level, sym(NE), cat_expr_level) { $1 }
cat_expr_level:
reg(cat_expr) { EString (Cat $1) }
| reg(append_expr) { EList (Append $1) }
| cons_expr_level { $1 }
cat_expr:
bin_op(cons_expr_level, sym(CAT), cat_expr_level) { $1 }
append_expr:
cons_expr_level sym(APPEND) cat_expr_level { $1,$2,$3 }
cons_expr_level:
reg(cons_expr) { EList (Cons $1) }
| add_expr_level { $1 }
cons_expr:
bin_op(add_expr_level, cons, cons_expr_level) { $1 }
add_expr_level:
reg(plus_expr) { EArith (Add $1) }
| reg(minus_expr) { EArith (Sub $1) }
| mult_expr_level { $1 }
plus_expr:
bin_op(add_expr_level, sym(PLUS), mult_expr_level) { $1 }
minus_expr:
bin_op(add_expr_level, sym(MINUS), mult_expr_level) { $1 }
mult_expr_level:
reg(times_expr) { EArith (Mult $1) }
| reg(div_expr) { EArith (Div $1) }
| reg(mod_expr) { EArith (Mod $1) }
| unary_expr_level { $1 }
times_expr:
bin_op(mult_expr_level, sym(TIMES), unary_expr_level) { $1 }
div_expr:
bin_op(mult_expr_level, sym(SLASH), unary_expr_level) { $1 }
mod_expr:
bin_op(mult_expr_level, kwd(Mod), unary_expr_level) { $1 }
unary_expr_level:
reg(uminus_expr) { EArith (Neg $1) }
| reg(not_expr) { ELogic (BoolExpr (Not $1)) }
| call_expr_level { $1 }
uminus_expr:
un_op(sym(MINUS), call_expr_level) { $1 }
not_expr:
un_op(kwd(Not), call_expr_level) { $1 }
call_expr_level:
reg(call_expr) { ECall $1 }
| reg(constr_expr) { EConstr $1 }
| core_expr { $1 }
constr_expr:
constr core_expr? { $1,$2 }
call_expr:
core_expr core_expr+ { $1,$2 }
core_expr:
reg(Int) { EArith (Int $1) }
| reg(Mtz) { EArith (Mtz $1) }
| reg(Nat) { EArith (Nat $1) }
| ident | reg(module_field) { EVar $1 }
| reg(projection) { EProj $1 }
| string { EString (String $1) }
| unit { EUnit $1 }
| kwd(False) { ELogic (BoolExpr (False $1)) }
| kwd(True) { ELogic (BoolExpr (True $1)) }
| reg(list_of(expr)) { EList (List $1) }
| par(expr) { EPar $1 }
| reg(sequence) { ESeq $1 }
| reg(record_expr) { ERecord $1 }
| par(expr colon type_expr {$1,$3}) {
EAnnot {$1 with value=$1.value.inside} }
module_field:
module_name dot field_name { $1.value ^ "." ^ $3.value }
projection:
reg(struct_name) dot nsepseq(selection,dot) {
{struct_name = $1; selector = $2; field_path = $3}
}
| reg(module_name dot field_name {$1,$3})
dot nsepseq(selection,dot) {
let open Region in
let module_name, field_name = $1.value in
let value = module_name.value ^ "." ^ field_name.value in
let struct_name = {$1 with value} in
{struct_name; selector = $2; field_path = $3} }
selection:
field_name { FieldName $1 }
| par(reg(Int)) { Component $1 }
record_expr:
lbrace sep_or_term_list(reg(field_assignment),semi) rbrace {
let elements, terminator = $2 in
{opening = LBrace $1;
elements = Some elements;
terminator;
closing = RBrace $3} }
field_assignment:
field_name eq expr {
{field_name=$1; assignment=$2; field_expr=$3} }
sequence:
kwd(Begin) sep_or_term_list(expr,semi) kwd(End) {
let elements, terminator = $2 in
{opening = Begin $1;
elements = Some elements;
terminator;
closing = End $3} }