ligo/Typecheck2.ml

338 lines
8.3 KiB
OCaml
Raw Normal View History

2019-03-05 23:37:32 +04:00
module SMap = Map.Make(String)
open AST
type i = parse_phase
type typecheck_phase = <
annot: typecheck_phase type_expr;
type_expr_typecheck: tfalse;
>
2019-03-05 23:37:32 +04:00
type o = typecheck_phase
type te = o type_expr list SMap.t (* Type environment *)
type ve = o type_expr list SMap.t (* Value environment *)
type tve = te * ve
let id (ast : i ast) : o ast = {ast with eof = ast.eof}
(* Utilities *)
let fold_map f a l =
let f (acc, l) elem =
let acc', elem' = f acc elem
in acc', (elem' :: l) in
let last_acc, last_l = List.fold_left f (a, []) l
in last_acc, List.rev last_l
let reg ({value;region} : 'a reg) (f : 'a -> 'b) : 'b reg = {value = f value; region}
let unreg ({value;_} : 'a reg) : 'a = value
(* Typecheck *)
let tc_type_decl (te, ve : tve) (td : i type_decl reg) : tve * o type_decl reg =
(te, ve), (unreg td)
let tc_types (tve : tve) (types : i type_decl reg list) =
fold_map tc_type_decl tve types
let tc_ast (tve : tve) (ast : i ast) =
let {types;constants;parameter;storage;operations;lambdas;block;eof} = ast in
let tve, types = tc_types tve types in
let ast = {types;constants;parameter;storage;operations;lambdas;block;eof} in
tve, ast
let tc_ast ast =
let tve, ast = tc_ast (SMap.empty, SMap.empty) ast in
let _ = tve in (* Drop the final type and value environment *)
ast
(*
open Region
open Utils
type new_t = < ty: int > ast
and 'a ast = {
types : 'a type_decl reg list;
constants : 'a const_decl reg list;
parameter : 'a parameter_decl reg;
storage : 'a storage_decl reg;
operations : 'a operations_decl reg;
lambdas : 'a lambda_decl list;
block : 'a block reg;
eof : eof
}
and 'a parameter_decl = {
kwd_parameter : kwd_parameter;
name : 'a variable;
colon : colon;
param_type : 'a type_expr;
terminator : semi option
}
and 'a storage_decl = {
kwd_storage : kwd_storage;
store_type : 'a type_expr;
terminator : semi option
}
and 'a operations_decl = {
kwd_operations : kwd_operations;
op_type : 'a type_expr;
terminator : semi option
}
(* Type declarations *)
and 'a type_decl = {
kwd_type : kwd_type;
name : 'a type_name;
kwd_is : kwd_is;
type_expr : 'a type_expr;
terminator : semi option
}
and 'a type_expr =
Prod of 'a cartesian
| Sum of ('a variant, vbar) nsepseq reg
| Record of 'a record_type
| TypeApp of ('a type_name * 'a type_tuple) reg
| ParType of 'a type_expr par
| TAlias of 'a variable
and 'a cartesian = ('a type_expr, times) nsepseq reg
and 'a variant = ('a constr * kwd_of * 'a cartesian) reg
and 'a record_type = (kwd_record * 'a field_decls * kwd_end) reg
and 'a field_decls = ('a field_decl, semi) nsepseq
and 'a field_decl = ('a variable * colon * 'a type_expr) reg
and 'a type_tuple = ('a type_name, comma) nsepseq par
(* Function and procedure declarations *)
and 'a lambda_decl =
FunDecl of 'a fun_decl reg
| ProcDecl of 'a proc_decl reg
and 'a fun_decl = {
kwd_function : kwd_function;
name : 'a variable;
param : 'a parameters;
colon : colon;
ret_type : 'a type_expr;
kwd_is : kwd_is;
local_decls : 'a local_decl list;
block : 'a block reg;
kwd_with : kwd_with;
return : 'a expr;
terminator : semi option
}
and 'a proc_decl = {
kwd_procedure : kwd_procedure;
name : 'a variable;
param : 'a parameters;
kwd_is : kwd_is;
local_decls : 'a local_decl list;
block : 'a block reg;
terminator : semi option
}
and 'a parameters = ('a param_decl, semi) nsepseq par
and 'a param_decl =
ParamConst of 'a param_const
| ParamVar of 'a param_var
and 'a param_const = (kwd_const * 'a variable * colon * 'a type_expr) reg
and 'a param_var = (kwd_var * 'a variable * colon * 'a type_expr) reg
and 'a block = {
opening : kwd_begin;
instr : 'a instructions;
terminator : semi option;
close : kwd_end
}
and 'a local_decl =
LocalLam of 'a lambda_decl
| LocalConst of 'a const_decl reg
| LocalVar of 'a var_decl reg
and 'a const_decl = {
kwd_const : kwd_const;
name : 'a variable;
colon : colon;
vtype : 'a type_expr;
equal : equal;
init : 'a expr;
terminator : semi option
}
and 'a var_decl = {
kwd_var : kwd_var;
name : 'a variable;
colon : colon;
vtype : 'a type_expr;
ass : ass;
init : 'a expr;
terminator : semi option
}
and 'a instructions = ('a instruction, semi) nsepseq reg
and 'a instruction =
Single of 'a single_instr
| Block of 'a block reg
and 'a single_instr =
Cond of 'a conditional reg
| Match of 'a match_instr reg
| Ass of 'a ass_instr
| Loop of 'a loop
| ProcCall of 'a fun_call
| Null of kwd_null
| Fail of (kwd_fail * 'a expr) reg
and 'a conditional = {
kwd_if : kwd_if;
test : 'a expr;
kwd_then : kwd_then;
ifso : 'a instruction;
kwd_else : kwd_else;
ifnot : 'a instruction
}
and 'a match_instr = {
kwd_match : kwd_match;
expr : 'a expr;
kwd_with : kwd_with;
lead_vbar : vbar option;
cases : 'a cases;
kwd_end : kwd_end
}
and 'a cases = ('a case, vbar) nsepseq reg
and 'a case = ('a pattern * arrow * 'a instruction) reg
and 'a ass_instr = ('a variable * ass * 'a expr) reg
and 'a loop =
While of 'a while_loop
| For of 'a for_loop
and 'a while_loop = (kwd_while * 'a expr * 'a block reg) reg
and 'a for_loop =
ForInt of 'a for_int reg
| ForCollect of 'a for_collect reg
and 'a for_int = {
kwd_for : kwd_for;
ass : 'a ass_instr;
down : kwd_down option;
kwd_to : kwd_to;
bound : 'a expr;
step : (kwd_step * 'a expr) option;
block : 'a block reg
}
and 'a for_collect = {
kwd_for : kwd_for;
var : 'a variable;
bind_to : (arrow * 'a variable) option;
kwd_in : kwd_in;
expr : 'a expr;
block : 'a block reg
}
(* Expressions *)
and 'a expr =
Or of ('a expr * bool_or * 'a expr) reg
| And of ('a expr * bool_and * 'a expr) reg
| Lt of ('a expr * lt * 'a expr) reg
| Leq of ('a expr * leq * 'a expr) reg
| Gt of ('a expr * gt * 'a expr) reg
| Geq of ('a expr * geq * 'a expr) reg
| Equal of ('a expr * equal * 'a expr) reg
| Neq of ('a expr * neq * 'a expr) reg
| Cat of ('a expr * cat * 'a expr) reg
| Cons of ('a expr * cons * 'a expr) reg
| Add of ('a expr * plus * 'a expr) reg
| Sub of ('a expr * minus * 'a expr) reg
| Mult of ('a expr * times * 'a expr) reg
| Div of ('a expr * slash * 'a expr) reg
| Mod of ('a expr * kwd_mod * 'a expr) reg
| Neg of (minus * 'a expr) reg
| Not of (kwd_not * 'a expr) reg
| Int of (Lexer.lexeme * Z.t) reg
| Var of Lexer.lexeme reg
| String of Lexer.lexeme reg
| Bytes of (Lexer.lexeme * MBytes.t) reg
| False of c_False
| True of c_True
| Unit of c_Unit
| Tuple of 'a tuple
| List of ('a expr, comma) nsepseq brackets
| EmptyList of 'a empty_list
| Set of ('a expr, comma) nsepseq braces
| EmptySet of 'a empty_set
| NoneExpr of 'a none_expr
| FunCall of 'a fun_call
| ConstrApp of 'a constr_app
| SomeApp of (c_Some * 'a arguments) reg
| MapLookUp of 'a map_lookup reg
| ParExpr of 'a expr par
and 'a tuple = ('a expr, comma) nsepseq par
and 'a empty_list =
(lbracket * rbracket * colon * 'a type_expr) par
and 'a empty_set =
(lbrace * rbrace * colon * 'a type_expr) par
and 'a none_expr =
(c_None * colon * 'a type_expr) par
and 'a fun_call = ('a fun_name * 'a arguments) reg
and 'a arguments = 'a tuple
and 'a constr_app = ('a constr * 'a arguments) reg
and 'a map_lookup = {
map_name : 'a variable;
selector : dot;
index : 'a expr brackets
}
(* Patterns *)
and 'a pattern = ('a core_pattern, cons) nsepseq reg
and 'a core_pattern =
PVar of Lexer.lexeme reg
| PWild of wild
| PInt of (Lexer.lexeme * Z.t) reg
| PBytes of (Lexer.lexeme * MBytes.t) reg
| PString of Lexer.lexeme reg
| PUnit of c_Unit
| PFalse of c_False
| PTrue of c_True
| PNone of c_None
| PSome of (c_Some * 'a core_pattern par) reg
| PList of 'a list_pattern
| PTuple of ('a core_pattern, comma) nsepseq par
and 'a list_pattern =
Sugar of ('a core_pattern, comma) sepseq brackets
| Raw of ('a core_pattern * cons * 'a pattern) par
*)