ligo/vendors/ligo-utils/simple-utils/trace.ml

846 lines
25 KiB
OCaml
Raw Normal View History

(* Trace tutorial
This module guides the reader through the writing of a simplified
version of the trace monad [result], and the definition of a few
operations that make it easier to work with [result].
*)
module Trace_tutorial = struct
(* The trace monad is fairly similar to the predefined [option]
type. It is an instance of the predefined [result] type. *)
type annotation = string
type error = string
(* The type ['a result] is used by the trace monad to both model an
expected value of type ['a] or the failure to obtain it, instead
of working directly with ['a] values and handling separately
errors, for example by means of exceptions. (See the type [('a,'b)
result] in the module [Pervasives] of the OCaml system for a
comparable approach to error handling.)
The type ['a result] carries either a value of type ['a], with a
list of annotations (information about past successful
computations), or it is a list of errors accumulated so far.
The former case is denoted by the data constructor [Ok], and the
second by [Error]. *)
type nonrec 'a result = ('a * annotation list, error list) result
(*
= Ok of 'a * annotation list
| Error of error list
*)
(* The function [divide_trace] shows the basic use of the trace
monad. *)
let divide_trace a b =
if b = 0
then Error [Printf.sprintf "division by zero: %d/%d" a b]
else Ok (a/b, [])
(* The function [divide_three] shows that when composing two
functions, if the first call fails, the error is passed along
and the second call is not evaluated. (A pattern called
"error-passing style"). *)
let divide_three a b c =
match divide_trace a b with
Ok (a_div_b , _) -> divide_trace a_div_b c
| errors -> errors
(* The function [divide_three_annot] shows that when composing two
functions, if both calls are successful, the lists of
annotations are joined. *)
let divide_three_annot a b c =
match divide_trace a b with
Ok (a_div_b, annot1) -> (
match divide_trace a_div_b c with
Ok (a_div_b_div_c, annot2) ->
Ok (a_div_b_div_c, annot2 @ annot1)
| errors -> errors)
| errors -> errors
(* The systematic matching of the result of each call in a function
composition is bulky, so we define a [bind] function which takes
a function [f: 'a -> 'b result] and applies it to a current ['a
result] (not ['a]).
* If the current result is an error, then [bind]
returns that same error without calling [f];
* otherwise [bind] unwraps the [Ok] of the current result
and calls [f] on it:
* That call itself may return an error;}
* if not, [bind] combines the annotations and returns the
last result. *)
let bind (f: 'a -> 'b result) : 'a result -> 'b result =
function
Ok (x, annot) -> (
match f x with
Ok (x', annot') -> Ok (x', annot' @ annot)
| errors -> ignore annot; errors)
| Error _ as e -> e
(* The function [divide_three_bind] is equivalent to the verbose
[divide_three] above, but makes use of [bind]. *)
let divide_three_bind a b c =
let maybe_a_div_b = divide_trace a b in
let continuation a_div_b = divide_trace a_div_b c
in bind continuation maybe_a_div_b
(* The operator [(>>?)] is a redefinition of [bind] that makes the
program shorter, at the cost of a slightly
awkward reading because the two parameters are swapped. *)
let (>>?) x f = bind f x
(* The function [divide_three_bind_symbol] is equivalent to
[divide_three_bind], but makes use of the operator [(>>?)]. *)
let divide_three_bind_symbol a b c =
let maybe_a_div_b = divide_trace a b in
let continuation a_div_b = divide_trace a_div_b c in
maybe_a_div_b >>? continuation
(* The function [divide_three_bind_symbol'] is equivalent to
[divide_three_bind_symbol], where the two temporary [let]
definitions are inlined for a more compact reading. *)
let divide_three_bind_symbol' a b c =
divide_trace a b >>? (fun a_div_b -> divide_trace a_div_b c)
(* This is now fairly legible, but chaining many such functions is
not the usual way of writing code. We use the PPX extension to
the OCaml compiler [ppx_let] to add some syntactic sugar.
The extension framework PPX is enabled by adding the following
lines inside the section [(library ...)] or [(executable ...)]
of the [dune] file for the project that uses [ppx_let], like so:
[(preprocess
(pps simple-utils.ppx_let_generalized))]
The extension [ppx_let] requires the module [Let_syntax] to be
defined. *)
module Let_syntax = struct
let bind m ~f = m >>? f
module Open_on_rhs_bind = struct end
end
(* The function [divide_three_bind_ppx_let] is equivalent to the
function [divide_three_bind_symbol']. The only difference is
that the module [Open_on_rhs_bind] is implicitly opened around
the expression on the righ-hand side of the [=] sign, namely
[divide_trace a b]. *)
let divide_three_bind_ppx_let a b c =
let%bind a_div_b = divide_trace a b
in divide_trace a_div_b c
(** The function [divide_many_bind_ppx_let] shows how well this
notation composes. *)
let divide_many_bind_ppx_let a b c d e f =
let x = a in
let%bind x = divide_trace x b in
let%bind x = divide_trace x c in
let%bind x = divide_trace x d in
let%bind x = divide_trace x e in
let%bind x = divide_trace x f
in Ok (x, [])
(** The function [ok] is a shorthand for an [Ok] without
annotations. *)
let ok x = Ok (x, [])
(* The function [map] lifts a regular ['a -> 'b] function on values to
a function on results, of type ['a result -> 'b result]. *)
let map f = function
Ok (x, annotations) -> Ok (f x, annotations)
| e -> e
(* The function [bind_list] turns a list of results of type [('a
result) list] into a result of list, of type [('a list) result],
as follows.
* If the list only contains [Ok] values, it strips the [Ok]
of each element and returns that list wrapped with [Ok].}
* Otherwise, one or more of the elements of the input list
is [Error], then [bind_list] returns the first error in the
list.
*)
let rec bind_list = function
[] -> ok []
| hd::tl ->
hd >>? fun hd ->
bind_list tl >>? fun tl ->
ok @@ hd::tl
(* A major feature of [Trace] is that it enables having a stack of
errors (that should act as a simplified stack frame), rather
than a unique error. It is done by using the function
[trace]. For instance, let's say that you have a function that
can trigger two errors, and you want to pass their data along
with an other error, what you would usually do is:
[let foobarer ... = ... in
let value =
try get key map with
Bad_key _ -> raise (Error ("bad key", key, map))
| Missing_value _ -> raise (Error ("missing index", key, map))
in ...]
With [Trace], you would instead:
[let foobarer ... = ... in
let%bind value =
trace (simple_error "error getting key") @@
get key map
in ...]
And this will pass along the error triggered by [get key map]. *)
let trace err = function
Error e -> Error (err::e)
| ok -> ok
(* The real trace monad is very similar to the one that we have
defined above. The main difference is that the errors and
annotations are structured data (instead of plain strings) and
are generated lazily. *)
let the_end = "End of the tutorial."
end (* end Trace_tutorial. *)
2019-05-13 00:46:25 +04:00
module J = Yojson.Basic
module JSON_string_utils = struct
let member n x =
match x with
`Null -> `Null
| x -> J.Util.member n x
2019-05-13 00:46:25 +04:00
let string = J.Util.to_string_option
2019-06-03 14:33:13 +04:00
let to_list_option = fun x ->
try Some (J.Util.to_list x) with _ -> None
2019-06-03 14:33:13 +04:00
let to_assoc_option = fun x ->
try Some (J.Util.to_assoc x) with _ -> None
2019-06-03 14:33:13 +04:00
let list = to_list_option
2019-06-03 14:33:13 +04:00
let assoc = to_assoc_option
2019-05-13 00:46:25 +04:00
let int = J.Util.to_int_option
2019-06-03 14:33:13 +04:00
let patch j k v =
match assoc j with
None -> j
2019-06-03 14:33:13 +04:00
| Some assoc -> `Assoc (
List.map (fun (k', v') -> (k', if k = k' then v else v')) assoc)
2019-05-13 00:46:25 +04:00
let swap f l r = f r l
let unit x = Some x
2019-05-13 00:46:25 +04:00
let bind f = function None -> None | Some x -> Some (f x)
let bind2 f l r =
match l, r with
2019-05-13 00:46:25 +04:00
None, None -> None
| None, Some _ -> None
| Some _, None -> None
| Some l, Some r -> Some (f l r)
let default d = function
Some x -> x
| None -> d
2019-05-13 00:46:25 +04:00
let string_of_int = bind string_of_int
let (||) l r = l |> default r
2019-05-13 00:46:25 +04:00
let (|^) = bind2 (^)
end
2019-05-28 14:46:22 +04:00
type 'a thunk = unit -> 'a
(* Errors are encoded in JSON. This is because different libraries
will implement their own helpers, and we do not want to hardcode
in their type how they are supposed to interact. *)
2019-05-28 14:46:22 +04:00
type error = J.t
(* Thunks are used because computing some errors can be costly, and
we do not want to spend most of our time building errors. Instead,
their computation is deferred.*)
2019-05-28 14:46:22 +04:00
type error_thunk = error thunk
(* Annotations should be used in debug mode to aggregate information
about some value history. Where it was produced, when it was
modified, etc. It is currently not being used. *)
2019-05-28 14:46:22 +04:00
type annotation = J.t
(* Even in debug mode, building annotations can be quite
resource-intensive. Instead, a thunk is passed, that is computed
only when debug information is queried (typically before a print).*)
2019-05-28 14:46:22 +04:00
type annotation_thunk = annotation thunk
(* Types of traced elements. It might be good to rename it [trace] at
some point. *)
type nonrec 'a result = ('a * annotation_thunk list, error_thunk) result
(*
= Ok of 'a * annotation_thunk list
| Error of error_thunk
*)
2019-05-13 00:46:25 +04:00
2019-05-28 14:46:22 +04:00
(** {1 Constructors} *)
2019-05-13 00:46:25 +04:00
let ok x = Ok (x, [])
2019-06-03 14:33:13 +04:00
let fail err = Error err
2019-05-13 00:46:25 +04:00
(* Monadic operators *)
2019-05-28 14:46:22 +04:00
let bind f = function
Error _ as e -> e
| Ok (x, ann) ->
match f x with
Ok (x', ann') -> Ok (x', ann' @ ann)
| Error _ as e' -> ignore ann; e'
2019-05-13 00:46:25 +04:00
2019-05-28 14:46:22 +04:00
let map f = function
Ok (x, annotations) -> Ok (f x, annotations)
| Error _ as e -> e
(* The lexical convention usually adopted for the bind function is
[>>=], but ours comes from the Tezos code base, where the [result]
bind is [>>?], and [Lwt]'s (threading library) is [>>=], and the
combination of both is [>>=?]. *)
let (>>?) x f = bind f x
2019-05-28 14:46:22 +04:00
let (>>|?) x f = map f x
(* Used by PPX_let, an OCaml preprocessor.
2019-05-28 14:46:22 +04:00
What it does is that, when you only care about the case where a result isn't
an error, instead of writing:
[
2019-05-28 14:46:22 +04:00
(* Stuff that might return an error *) >>? fun ok_value ->
(* Stuff being done on the result *)
]
2019-05-28 14:46:22 +04:00
You can write:
[
2019-05-28 14:46:22 +04:00
let%bind ok_value = (* Stuff that might return an error *) in
(* Stuff being done on the result *)
]
This is much more typical of OCaml. This makes the code more
readable, easy to write and refactor. It is used pervasively in
LIGO. *)
2019-05-13 00:46:25 +04:00
module Let_syntax = struct
let bind m ~f = m >>? f
module Open_on_rhs_bind = struct end
end
(* Build a thunk from a constant. *)
2019-05-13 00:46:25 +04:00
2019-05-28 14:46:22 +04:00
let thunk x () = x
(* Build a standard error, with a title, a message, an error code and
some data. *)
2019-05-28 14:46:22 +04:00
let mk_error
?(error_code : int thunk option) ?(message : string thunk option)
?(data : (string * string thunk) list option)
2019-06-03 14:33:13 +04:00
?(children = []) ?(infos = [])
2019-05-28 14:46:22 +04:00
~(title : string thunk) () : error =
let error_code' = X_option.map (fun x -> ("error_code" , `Int (x ()))) error_code in
let title' = X_option.some ("title" , `String (title ())) in
let data' =
let aux (key , value) = (key , `String (value ())) in
X_option.map (fun x -> ("data" , `Assoc (List.map aux x))) data in
let message' = X_option.map (fun x -> ("message" , `String (x ()))) message in
2019-06-03 14:33:13 +04:00
let type' = Some ("type" , `String "error") in
let children' = Some ("children" , `List children) in
let infos' = Some ("infos" , `List infos) in
`Assoc (X_option.collapse_list
[error_code'; title'; message'; data'; type'; children'; infos'])
2019-06-03 14:33:13 +04:00
let error ?data ?error_code ?children ?infos title message () =
mk_error ?data ?error_code ?children ?infos ~title ~message ()
2019-06-03 14:33:13 +04:00
let prepend_child = fun child err ->
let open JSON_string_utils in
let children_opt = err |> member "children" |> list in
let children = match children_opt with
| Some children -> (child ()) :: children
| None -> [ child () ] in
patch err "children" (`List children)
let patch_children = fun children err ->
let open JSON_string_utils in
patch err "children" (`List (List.map (fun f -> f ()) children))
(* Build a standard info, with a title, a message, an info code and some data. *)
2019-06-03 14:33:13 +04:00
let mk_info
?(info_code : int thunk option) ?(message : string thunk option)
?(data : (string * string thunk) list option)
~(title : string thunk) () : error =
let error_code' = X_option.map (fun x -> ("error_code" , `Int (x ()))) info_code in
let title' = X_option.some ("title" , `String (title ())) in
let data' =
let aux (key , value) = (key , `String (value ())) in
X_option.map (fun x -> ("data" , `Assoc (List.map aux x))) data in
let message' = X_option.map (fun x -> ("message" , `String (x ()))) message in
let type' = Some ("type" , `String "info") in
`Assoc (X_option.collapse_list [ error_code' ; title' ; message' ; data' ; type' ])
let info ?data ?info_code title message () =
mk_info ?data ?info_code ~title ~message ()
2019-06-03 14:33:13 +04:00
let prepend_info = fun info err ->
let open JSON_string_utils in
let infos_opt = err |> member "infos" |> list in
let infos = match infos_opt with
| Some infos -> info :: infos
| None -> [ info ] in
patch err "infos" (`List infos)
2019-05-28 14:46:22 +04:00
(* Helpers that ideally should not be used in production. *)
2019-05-28 14:46:22 +04:00
let simple_error str () = mk_error ~title:(thunk str) ()
2019-06-03 14:33:13 +04:00
let simple_info str () = mk_info ~title:(thunk str) ()
2019-05-28 14:46:22 +04:00
let simple_fail str = fail @@ simple_error str
2019-06-05 16:26:01 +04:00
let internal_assertion_failure str = simple_error ("assertion failed: " ^ str)
2019-05-28 14:46:22 +04:00
(* To be used when you only want to signal an error. It can be useful
when followed by [trace_strong]. *)
2019-05-28 14:46:22 +04:00
let dummy_fail = simple_fail "dummy"
2019-06-03 14:33:13 +04:00
let trace info = function
Ok _ as o -> o
| Error err -> Error (fun () -> prepend_info (info ()) (err ()))
2019-05-13 00:46:25 +04:00
(* Erase the current error stack, and replace it by the given
error. It's useful when using [Assert] and you want to discard its
autogenerated message. *)
2019-05-28 14:46:22 +04:00
let trace_strong err = function
Ok _ as o -> o
| Error _ -> Error err
2019-06-03 14:33:13 +04:00
(* Sometimes, when you have a list of potentially erroneous elements, you need
2019-06-03 14:33:13 +04:00
to retrieve all the errors, instead of just the first one. In that case, do:
[let type_list lst =
2019-06-03 14:33:13 +04:00
let%bind lst' =
trace_list (simple_error "Error while typing a list") @@
List.map type_element lst in
...]
2019-06-03 14:33:13 +04:00
Where before you would have written:
[let type_list lst =
2019-06-03 14:33:13 +04:00
let%bind lst' = bind_map_list type_element lst in
...] *)
2019-06-03 14:33:13 +04:00
let trace_list err lst =
let oks =
let aux = function
| Ok (x , _) -> Some x
| _ -> None in
X_list.filter_map aux lst in
let errs =
let aux = function
| Error x -> Some x
| _ -> None in
X_list.filter_map aux lst in
match errs with
| [] -> ok oks
| errs -> fail (fun () -> patch_children errs err)
2019-05-28 14:46:22 +04:00
(* Trace, but with an error which generation may itself fail. *)
2019-05-13 00:46:25 +04:00
let trace_r err_thunk_may_fail = function
Ok _ as o -> o
| Error _ ->
match err_thunk_may_fail () with
Ok (err, annotations) -> ignore annotations; Error (err)
| Error errors_while_generating_error ->
(* TODO: the complexity could be O(n*n) in the worst case,
this should use some catenable lists. *)
Error (errors_while_generating_error)
2019-05-13 00:46:25 +04:00
(* [trace_f f error] yields a function that acts the same as `f`, but with an
error frame that has one more error. *)
let trace_f f error x = trace error @@ f x
(* Same, but for functions with 2 parameters. *)
2019-05-13 00:46:25 +04:00
let trace_f_2 f error x y =
trace error @@ f x y
2019-05-28 14:46:22 +04:00
(**
Same, but with a prototypical error.
*)
2019-05-13 00:46:25 +04:00
let trace_f_ez f name =
trace_f f (error (thunk "in function") name)
let trace_f_2_ez f name =
trace_f_2 f (error (thunk "in function") name)
2019-05-28 14:46:22 +04:00
(**
Check if there is no error. Useful for tests.
*)
2019-05-13 00:46:25 +04:00
let to_bool = function
| Ok _ -> true
2019-06-03 14:33:13 +04:00
| Error _ -> false
2019-05-13 00:46:25 +04:00
let to_option = function
| Ok (o, annotations) -> ignore annotations; Some o
2019-06-03 14:33:13 +04:00
| Error _ -> None
2019-05-13 00:46:25 +04:00
2019-05-28 14:46:22 +04:00
(**
Convert an option to a result, with a given error if the parameter is None.
*)
2019-05-13 00:46:25 +04:00
let trace_option error = function
None -> fail error
| Some s -> ok s
2019-05-13 00:46:25 +04:00
(** Utilities to interact with other data-structure. [bind_t] takes
an ['a result t] and makes a ['a t result] out of it. It "lifts" the
error out of the type. The most common context is when mapping a
given type. For instance, if you use a function that can fail in
[List.map], you need to manage a whole list of results. Instead,
you do [let%bind lst' = bind_list @@ List.map f lst], which will
yield an ['a list]. [bind_map_t] is roughly syntactic sugar for
[bind_t @@ T.map]. So that you can rewrite the previous example as
[let%bind lst' = bind_map_list f lst]. Same thing with folds.
*)
2019-05-28 14:46:22 +04:00
2019-05-13 00:46:25 +04:00
let bind_map_option f = function
None -> ok None
| Some s -> f s >>? fun x -> ok (Some x)
2019-05-13 00:46:25 +04:00
let rec bind_list = function
[] -> ok []
| hd::tl -> hd >>? fun hd -> bind_list tl >>? fun tl -> ok @@ hd :: tl
let bind_ne_list (hd, tl) =
hd >>? fun hd -> bind_list tl >>? fun tl -> ok @@ (hd, tl)
2019-05-13 00:46:25 +04:00
let bind_smap (s:_ X_map.String.t) =
let open X_map.String in
let aux k v prev =
prev >>? fun prev' ->
v >>? fun v' ->
ok @@ add k v' prev' in
fold aux s (ok empty)
let bind_fold_smap f init (smap : _ X_map.String.t) =
let aux k v prev =
prev >>? fun prev' -> f prev' k v
in X_map.String.fold aux smap init
2019-05-13 00:46:25 +04:00
let bind_map_smap f smap = bind_smap (X_map.String.map f smap)
let bind_concat (l1:'a list result) (l2: 'a list result) =
let%bind l1' = l1 in
let%bind l2' = l2 in
ok @@ (l1' @ l2')
2019-05-13 00:46:25 +04:00
let bind_map_list f lst = bind_list (List.map f lst)
2019-08-21 12:28:27 +04:00
let rec bind_map_list_seq f lst = match lst with
| [] -> ok []
| hd :: tl -> (
let%bind hd' = f hd in
let%bind tl' = bind_map_list_seq f tl in
ok (hd' :: tl')
)
let bind_map_ne_list : _ -> 'a X_list.Ne.t -> 'b X_list.Ne.t result =
fun f lst -> bind_ne_list (X_list.Ne.map f lst)
let bind_iter_list : (_ -> unit result) -> _ list -> unit result =
fun f lst -> bind_map_list f lst >>? fun _ -> ok ()
2019-05-13 00:46:25 +04:00
let bind_location (x:_ Location.wrap) =
x.wrap_content >>? fun wrap_content ->
ok { x with wrap_content }
let bind_map_location f x = bind_location (Location.map f x)
let bind_fold_list f init lst =
let aux x y =
x >>? fun x ->
f x y
in
List.fold_left aux (ok init) lst
2019-10-28 09:10:26 +04:00
module TMap(X : Map.OrderedType) = struct
module MX = Map.Make(X)
let bind_fold_Map f init map =
let aux k v x =
x >>? fun x ->
f ~x ~k ~v
in
MX.fold aux map (ok init)
2019-10-29 09:55:53 +04:00
let bind_map_Map f map =
let aux k v map' =
map' >>? fun map' ->
f ~k ~v >>? fun v' ->
ok @@ MX.update k (function
| None -> Some v'
| Some _ -> failwith "key collision, shouldn't happen in bind_map_Map")
map'
in
MX.fold aux map (ok MX.empty)
2019-10-28 09:10:26 +04:00
end
2019-10-29 09:55:53 +04:00
let bind_fold_pair f init (a,b) =
let aux x y =
x >>? fun x ->
f x y
in
List.fold_left aux (ok init) [a;b]
let bind_fold_triple f init (a,b,c) =
let aux x y =
x >>? fun x ->
f x y
in
List.fold_left aux (ok init) [a;b;c]
2019-05-13 00:46:25 +04:00
let bind_fold_map_list = fun f acc lst ->
let rec aux (acc , prev) f = function
| [] -> ok (acc , prev)
| hd :: tl ->
f acc hd >>? fun (acc' , hd') ->
aux (acc' , hd' :: prev) f tl
in
aux (acc , []) f lst >>? fun (acc' , lst') ->
ok @@ (acc' , List.rev lst')
2019-05-13 00:46:25 +04:00
let bind_fold_map_right_list = fun f acc lst ->
let rec aux (acc , prev) f = function
| [] -> ok (acc , prev)
| hd :: tl ->
f acc hd >>? fun (acc' , hd') ->
aux (acc' , hd' :: prev) f tl
in
aux (acc , []) f (List.rev lst) >>? fun (_acc' , lst') ->
ok lst'
let bind_fold_right_list f init lst =
let aux x y =
x >>? fun x ->
f x y
in
X_list.fold_right' aux (ok init) lst
let bind_find_map_list error f lst =
let rec aux lst =
match lst with
| [] -> fail error
| hd :: tl -> (
match f hd with
2019-06-03 14:33:13 +04:00
| Error _ -> aux tl
2019-05-13 00:46:25 +04:00
| o -> o
)
in
aux lst
let bind_list_iter f lst =
let aux () y = f y in
bind_fold_list aux () lst
let bind_or (a, b) =
match a with
| Ok _ as o -> o
| _ -> b
2019-09-03 20:33:30 +04:00
let bind_map_or (fa , fb) c =
bind_or (fa c , fb c)
2019-05-13 00:46:25 +04:00
let bind_lr (type a b) ((a : a result), (b:b result)) : [`Left of a | `Right of b] result =
match (a, b) with
2019-05-28 14:46:22 +04:00
| (Ok _ as o), _ -> map (fun x -> `Left x) o
| _, (Ok _ as o) -> map (fun x -> `Right x) o
2019-06-03 14:33:13 +04:00
| _, Error b -> Error b
2019-05-13 00:46:25 +04:00
let bind_lr_lazy (type a b) ((a : a result), (b:unit -> b result)) : [`Left of a | `Right of b] result =
match a with
2019-05-28 14:46:22 +04:00
| Ok _ as o -> map (fun x -> `Left x) o
2019-05-13 00:46:25 +04:00
| _ -> (
match b() with
2019-05-28 14:46:22 +04:00
| Ok _ as o -> map (fun x -> `Right x) o
2019-06-03 14:33:13 +04:00
| Error b -> Error b
2019-05-13 00:46:25 +04:00
)
let bind_and (a, b) =
a >>? fun a ->
b >>? fun b ->
ok (a, b)
let bind_and3 (a, b, c) =
a >>? fun a ->
b >>? fun b ->
c >>? fun c ->
ok (a, b, c)
2019-05-13 00:46:25 +04:00
let bind_pair = bind_and
2019-05-13 00:46:25 +04:00
let bind_map_pair f (a, b) =
bind_pair (f a, f b)
let bind_fold_map_pair f acc (a, b) =
f acc a >>? fun (acc' , a') ->
f acc' b >>? fun (acc'' , b') ->
ok (acc'' , (a' , b'))
2019-05-28 14:46:22 +04:00
let bind_map_triple f (a, b, c) = bind_and3 (f a, f b, f c)
let bind_list_cons v lst = lst >>? fun lst -> ok (v::lst)
let rec bind_chain : ('a -> 'a result) list -> 'a -> 'a result = fun fs x ->
match fs with
| [] -> ok x
| hd :: tl -> (
let aux : 'a -> 'a result = fun x -> bind (bind_chain tl) (hd x) in
bind aux (ok x)
)
2019-05-28 14:46:22 +04:00
(**
Wraps a call that might trigger an exception in a result.
*)
2019-05-13 00:46:25 +04:00
let generic_try err f =
try (
ok @@ f ()
) with _ -> fail err
2019-05-28 14:46:22 +04:00
(**
Same, but with a handler that generates an error based on the exception,
rather than a fixed error.
*)
2019-05-13 00:46:25 +04:00
let specific_try handler f =
try (
ok @@ f ()
2019-05-28 14:46:22 +04:00
) with exn -> fail (handler exn)
2019-05-13 00:46:25 +04:00
2019-05-28 14:46:22 +04:00
(**
Same, but tailored to `Sys_error`s, found in `Sys` from `Pervasives`.
*)
2019-05-13 00:46:25 +04:00
let sys_try f =
2019-05-28 14:46:22 +04:00
let handler = function
2019-05-13 00:46:25 +04:00
| Sys_error str -> error (thunk "Sys_error") (fun () -> str)
| exn -> raise exn
in
specific_try handler f
2019-05-28 14:46:22 +04:00
(**
Same, but for a given command.
*)
2019-05-13 00:46:25 +04:00
let sys_command command =
sys_try (fun () -> Sys.command command) >>? function
| 0 -> ok ()
| n -> fail (fun () -> error (thunk "Nonzero return code") (fun () -> (string_of_int n)) ())
2019-05-28 14:46:22 +04:00
(**
Assertion module.
Would make sense to move it outside Trace.
*)
2019-05-13 00:46:25 +04:00
module Assert = struct
let assert_fail ?(msg="didn't fail") = function
| Ok _ -> simple_fail msg
| _ -> ok ()
let assert_true ?(msg="not true") = function
| true -> ok ()
| false -> simple_fail msg
let assert_equal ?msg expected actual =
assert_true ?msg (expected = actual)
2019-11-19 18:31:36 +04:00
let assert_equal_string ?msg expected actual =
let msg =
let default = Format.asprintf "Not equal string : expected \"%s\", got \"%s\"" expected actual in
X_option.unopt ~default msg in
assert_equal ~msg expected actual
2019-05-13 00:46:25 +04:00
let assert_equal_int ?msg expected actual =
let msg =
let default = Format.asprintf "Not equal int : expected %d, got %d" expected actual in
X_option.unopt ~default msg in
assert_equal ~msg expected actual
let assert_equal_bool ?msg expected actual =
let msg =
let default = Format.asprintf "Not equal bool : expected %b, got %b" expected actual in
X_option.unopt ~default msg in
assert_equal ~msg expected actual
let assert_none ?(msg="not a none") opt = match opt with
| None -> ok ()
| _ -> simple_fail msg
let assert_list_size ?(msg="lst doesn't have the right size") lst n =
assert_true ~msg List.(length lst = n)
let assert_list_empty ?(msg="lst isn't empty") lst =
assert_true ~msg List.(length lst = 0)
let assert_list_same_size ?(msg="lists don't have same size") a b =
assert_true ~msg List.(length a = length b)
let assert_list_size_2 ~msg = function
| [a;b] -> ok (a, b)
| _ -> simple_fail msg
let assert_list_size_1 ~msg = function
| [a] -> ok a
| _ -> simple_fail msg
end
2019-05-28 14:46:22 +04:00
let json_of_error = J.to_string
2019-05-28 14:46:22 +04:00
let error_pp out (e : error) =
let open JSON_string_utils in
let message =
let opt = e |> member "message" |> string in
X_option.unopt ~default:"" opt in
let error_code =
let error_code = e |> member "error_code" in
match error_code with
| `Null -> ""
| _ -> " (" ^ (J.to_string error_code) ^ ")" in
let title =
let opt = e |> member "title" |> string in
X_option.unopt ~default:"" opt in
let data =
let data = e |> member "data" in
match data with
| `Null -> ""
| _ -> J.to_string data in
Format.fprintf out "%s (%s): %s. %s" title error_code message data
2019-05-28 14:46:22 +04:00
let error_pp_short out (e : error) =
let open JSON_string_utils in
let title = e |> member "title" |> string || "(no title)" in
let error_code = e |> member "error_code" |> int |> string_of_int || "no error code" in
Format.fprintf out "%s (%s)" title error_code
let errors_pp =
Format.pp_print_list
~pp_sep:Format.pp_print_newline
error_pp
let errors_pp_short =
Format.pp_print_list
~pp_sep:Format.pp_print_newline
error_pp_short