ligo/src/node/shell/distributed_db_functors.ml

312 lines
10 KiB
OCaml
Raw Normal View History

(**************************************************************************)
(* *)
(* Copyright (c) 2014 - 2016. *)
(* Dynamic Ledger Solutions, Inc. <contact@tezos.com> *)
(* *)
(* All rights reserved. No warranty, explicit or implicit, provided. *)
(* *)
(**************************************************************************)
module type DISTRIBUTED_DB = sig
type t
type key
type value
val known: t -> key -> bool Lwt.t
val read: t -> key -> value option Lwt.t
val read_exn: t -> key -> value Lwt.t
val prefetch: t -> ?peer:P2p.Peer_id.t -> key -> unit
val fetch: t -> ?peer:P2p.Peer_id.t -> key -> value Lwt.t
val commit: t -> key -> unit Lwt.t
(* val commit_invalid: t -> key -> unit Lwt.t *) (* TODO *)
val inject: t -> key -> value -> bool Lwt.t
val watch: t -> (key * value) Lwt_stream.t * Watcher.stopper
end
module type SCHEDULER_EVENTS = sig
type t
type key
val request: t -> P2p.Peer_id.t option -> key -> unit
val notify: t -> P2p.Peer_id.t -> key -> unit
val notify_unrequested: t -> P2p.Peer_id.t -> key -> unit
val notify_duplicate: t -> P2p.Peer_id.t -> key -> unit
end
module Make_table
(Hash : HASH)
(Disk_table : State.DATA_STORE with type key := Hash.t)
(Memory_table : Hashtbl.S with type key := Hash.t)
(Scheduler : SCHEDULER_EVENTS with type key := Hash.t) : sig
include DISTRIBUTED_DB with type key = Hash.t
and type value = Disk_table.value
val create:
?global_input:(key * value) Watcher.input ->
Scheduler.t -> Disk_table.store -> t
val notify: t -> P2p.Peer_id.t -> key -> value -> unit Lwt.t
end = struct
type key = Hash.t
type value = Disk_table.value
type t = {
scheduler: Scheduler.t ;
disk: Disk_table.store ;
memory: status Memory_table.t ;
global_input: (key * value) Watcher.input option ;
input: (key * value) Watcher.input ;
}
and status =
| Pending of value Lwt.u
| Found of value
let known s k =
match Memory_table.find s.memory k with
| exception Not_found -> Disk_table.known s.disk k
| Pending _ -> Lwt.return_false
| Found _ -> Lwt.return_true
let read s k =
match Memory_table.find s.memory k with
| exception Not_found -> Disk_table.read_opt s.disk k
| Found v -> Lwt.return (Some v)
| Pending _ -> Lwt.return_none
let read_exn s k =
match Memory_table.find s.memory k with
| exception Not_found -> Disk_table.read_exn s.disk k
| Found v -> Lwt.return v
| Pending _ -> Lwt.fail Not_found
let fetch s ?peer k =
match Memory_table.find s.memory k with
| exception Not_found -> begin
Disk_table.read_opt s.disk k >>= function
| None ->
let waiter, wakener = Lwt.wait () in
Memory_table.add s.memory k (Pending wakener) ;
Scheduler.request s.scheduler peer k ;
waiter
| Some v -> Lwt.return v
end
| Pending w -> Lwt.waiter_of_wakener w
| Found v -> Lwt.return v
let prefetch s ?peer k = Lwt.ignore_result (fetch s ?peer k)
let notify s p k v =
Scheduler.notify s.scheduler p k ;
match Memory_table.find s.memory k with
| exception Not_found -> begin
Disk_table.known s.disk k >>= function
| true ->
Scheduler.notify_duplicate s.scheduler p k ;
Lwt.return_unit
| false ->
Scheduler.notify_unrequested s.scheduler p k ;
Lwt.return_unit
end
| Pending w ->
Memory_table.replace s.memory k (Found v) ;
Lwt.wakeup w v ;
iter_option s.global_input
~f:(fun input -> Watcher.notify input (k, v)) ;
Watcher.notify s.input (k, v) ;
Lwt.return_unit
| Found _ ->
Scheduler.notify_duplicate s.scheduler p k ;
Lwt.return_unit
let inject s k v =
match Memory_table.find s.memory k with
| exception Not_found -> begin
Disk_table.known s.disk k >>= function
| true ->
Lwt.return_false
| false ->
Memory_table.add s.memory k (Found v) ;
Lwt.return_true
end
| Pending _
| Found _ ->
Lwt.return_false
let commit s k =
match Memory_table.find s.memory k with
| exception Not_found -> Lwt.return_unit (* TODO error ?? *)
| Pending _ -> Lwt.return_unit (* TODO error ?? *)
| Found v ->
Disk_table.store s.disk v >>= fun _ ->
Memory_table.remove s.memory k ;
Lwt.return_unit
let watch s = Watcher.create_stream s.input
let create ?global_input scheduler disk =
let memory = Memory_table.create 17 in
let input = Watcher.create_input () in
{ scheduler ; disk ; memory ; input ; global_input }
end
module type REQUEST = sig
type key
type param
val active : param -> P2p.Peer_id.Set.t
val send : param -> P2p.Peer_id.t -> key list -> unit
end
module Make_request_scheduler
(Hash : HASH)
(Table : Hashtbl.S with type key := Hash.t)
(Request : REQUEST with type key := Hash.t) : sig
type t
val create: Request.param -> t
val shutdown: t -> unit Lwt.t
include SCHEDULER_EVENTS with type t := t and type key := Hash.t
end = struct
type key = Hash.t
type param = Request.param
type t = {
push_to_worker: event -> unit ;
cancel_worker: unit -> unit Lwt.t ;
worker: unit Lwt.t ;
}
and event =
| Request of P2p.Peer_id.t option * key
| Notify of P2p.Peer_id.t * key
| Notify_duplicate of P2p.Peer_id.t * key
| Notify_unrequested of P2p.Peer_id.t * key
let request t p k =
t.push_to_worker (Request (p, k))
let notify t p k =
t.push_to_worker (Notify (p, k))
let notify_duplicate t p k =
t.push_to_worker (Notify_duplicate (p, k))
let notify_unrequested t p k =
t.push_to_worker (Notify_unrequested (p, k))
type worker_state = {
param: Request.param ;
pending: status Table.t ;
cancelation: unit -> unit Lwt.t ;
wait_events: unit -> event list Lwt.t ;
}
and status = {
peers: P2p.Peer_id.Set.t ;
next_request: float ;
delay: float ;
}
let compute_timeout state =
let next =
Table.fold
(fun _ { next_request } acc -> min next_request acc)
state.pending infinity in
let now = Unix.gettimeofday () in
let delay = next -. now in
if delay <= 0. then Lwt.return_unit else Lwt_unix.sleep delay
let process_event state = function
| Request (peer, key) -> begin
try
let data = Table.find state.pending key in
let peers =
match peer with
| None -> data.peers
| Some peer -> P2p.Peer_id.Set.add peer data.peers in
Table.replace state.pending key { data with peers } ;
Lwt.return_unit
with Not_found ->
let peers =
match peer with
| None -> P2p.Peer_id.Set.empty
| Some peer -> P2p.Peer_id.Set.singleton peer in
Table.add state.pending key {
peers ;
next_request = Unix.gettimeofday () ;
delay = 1.0 ;
} ;
Lwt.return_unit
end
| Notify (_gid, key) ->
Table.remove state.pending key ;
Lwt.return_unit
| Notify_unrequested _
| Notify_duplicate _ ->
(* TODO *)
Lwt.return_unit
let worker_loop state =
let process = process_event state in
let rec loop () =
let shutdown = state.cancelation () >|= fun () -> `Shutdown
and timeout = compute_timeout state >|= fun () -> `Timeout
and events = state.wait_events () >|= fun events -> `Events events in
Lwt.pick [ timeout ; events ; shutdown ] >>= function
| `Shutdown -> Lwt.return_unit
| `Events events ->
Lwt_list.iter_s process events >>= fun () ->
loop ()
| `Timeout ->
let now = Unix.gettimeofday () in
let active_peers = Request.active state.param in
let requests =
Table.fold
(fun key { peers ; next_request ; delay } acc ->
if next_request > now +. 0.2 then
acc
else
let still_peers = P2p.Peer_id.Set.inter peers active_peers in
if P2p.Peer_id.Set.is_empty still_peers &&
not (P2p.Peer_id.Set.is_empty peers) then
( Table.remove state.pending key ; acc )
else
let requested_peers =
if P2p.Peer_id.Set.is_empty peers
then active_peers
else peers in
let next = { peers = still_peers ;
next_request = now +. delay ;
delay = delay *. 1.2 } in
Table.replace state.pending key next ;
P2p.Peer_id.Set.fold
(fun gid acc ->
let requests =
try key :: P2p_types.Peer_id.Map.find gid acc
with Not_found -> [key] in
P2p_types.Peer_id.Map.add gid requests acc)
requested_peers
acc)
state.pending P2p_types.Peer_id.Map.empty in
P2p_types.Peer_id.Map.iter (Request.send state.param) requests ;
loop ()
in
loop
let create param =
let cancelation, cancel_worker, _ = Lwt_utils.canceler () in
let push_to_worker, wait_events = Lwt_utils.queue () in
let pending = Table.create 17 in
let worker_state =
{ cancelation ; wait_events ; pending ; param } in
let worker =
Lwt_utils.worker "db_request_scheduler"
~run:(worker_loop worker_state)
~cancel:cancel_worker in
{ cancel_worker ; push_to_worker ; worker }
let shutdown s =
s.cancel_worker () >>= fun () ->
s.worker
end