ligo/src/environment/v1/bytes.mli

363 lines
14 KiB
OCaml
Raw Normal View History

2016-09-08 21:13:10 +04:00
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
2017-03-17 17:39:31 +04:00
(* TEZOS CHANGES
* Import version 4.04.0
* Remove unsafe functions
* Remove deprecated functions
* Add binary data insertion / extraction functions
*)
2016-09-08 21:13:10 +04:00
(** Byte sequence operations.
A byte sequence is a mutable data structure that contains a
fixed-length sequence of bytes. Each byte can be indexed in
constant time for reading or writing.
Given a byte sequence [s] of length [l], we can access each of the
[l] bytes of [s] via its index in the sequence. Indexes start at
[0], and we will call an index valid in [s] if it falls within the
range [[0...l-1]] (inclusive). A position is the point between two
bytes or at the beginning or end of the sequence. We call a
position valid in [s] if it falls within the range [[0...l]]
(inclusive). Note that the byte at index [n] is between positions
[n] and [n+1].
Two parameters [start] and [len] are said to designate a valid
range of [s] if [len >= 0] and [start] and [start+len] are valid
positions in [s].
Byte sequences can be modified in place, for instance via the [set]
and [blit] functions described below. See also strings (module
{!String}), which are almost the same data structure, but cannot be
modified in place.
Bytes are represented by the OCaml type [char].
@since 4.02.0
*)
2017-03-17 17:39:31 +04:00
external length : bytes -> int = "%bytes_length"
2016-09-08 21:13:10 +04:00
(** Return the length (number of bytes) of the argument. *)
2017-03-17 17:39:31 +04:00
external get : bytes -> int -> char = "%bytes_safe_get"
2016-09-08 21:13:10 +04:00
(** [get s n] returns the byte at index [n] in argument [s].
Raise [Invalid_argument] if [n] not a valid index in [s]. *)
2017-03-17 17:39:31 +04:00
external set : bytes -> int -> char -> unit = "%bytes_safe_set"
2016-09-08 21:13:10 +04:00
(** [set s n c] modifies [s] in place, replacing the byte at index [n]
with [c].
Raise [Invalid_argument] if [n] is not a valid index in [s]. *)
2017-03-17 17:39:31 +04:00
external create : int -> bytes = "caml_create_bytes"
2016-09-08 21:13:10 +04:00
(** [create n] returns a new byte sequence of length [n]. The
sequence is uninitialized and contains arbitrary bytes.
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val make : int -> char -> bytes
(** [make n c] returns a new byte sequence of length [n], filled with
the byte [c].
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val init : int -> (int -> char) -> bytes
(** [Bytes.init n f] returns a fresh byte sequence of length [n], with
character [i] initialized to the result of [f i] (in increasing
index order).
Raise [Invalid_argument] if [n < 0] or [n > ]{!Sys.max_string_length}. *)
val empty : bytes
(** A byte sequence of size 0. *)
val copy : bytes -> bytes
(** Return a new byte sequence that contains the same bytes as the
argument. *)
val of_string : string -> bytes
(** Return a new byte sequence that contains the same bytes as the
given string. *)
val to_string : bytes -> string
(** Return a new string that contains the same bytes as the given byte
sequence. *)
val sub : bytes -> int -> int -> bytes
(** [sub s start len] returns a new byte sequence of length [len],
containing the subsequence of [s] that starts at position [start]
and has length [len].
Raise [Invalid_argument] if [start] and [len] do not designate a
valid range of [s]. *)
val sub_string : bytes -> int -> int -> string
(** Same as [sub] but return a string instead of a byte sequence. *)
val extend : bytes -> int -> int -> bytes
(** [extend s left right] returns a new byte sequence that contains
the bytes of [s], with [left] uninitialized bytes prepended and
[right] uninitialized bytes appended to it. If [left] or [right]
is negative, then bytes are removed (instead of appended) from
the corresponding side of [s].
Raise [Invalid_argument] if the result length is negative or
longer than {!Sys.max_string_length} bytes. *)
val fill : bytes -> int -> int -> char -> unit
(** [fill s start len c] modifies [s] in place, replacing [len]
characters with [c], starting at [start].
Raise [Invalid_argument] if [start] and [len] do not designate a
valid range of [s]. *)
val blit : bytes -> int -> bytes -> int -> int -> unit
(** [blit src srcoff dst dstoff len] copies [len] bytes from sequence
[src], starting at index [srcoff], to sequence [dst], starting at
index [dstoff]. It works correctly even if [src] and [dst] are the
same byte sequence, and the source and destination intervals
overlap.
Raise [Invalid_argument] if [srcoff] and [len] do not
designate a valid range of [src], or if [dstoff] and [len]
do not designate a valid range of [dst]. *)
val blit_string : string -> int -> bytes -> int -> int -> unit
(** [blit src srcoff dst dstoff len] copies [len] bytes from string
[src], starting at index [srcoff], to byte sequence [dst],
starting at index [dstoff].
Raise [Invalid_argument] if [srcoff] and [len] do not
designate a valid range of [src], or if [dstoff] and [len]
do not designate a valid range of [dst]. *)
val concat : bytes -> bytes list -> bytes
(** [concat sep sl] concatenates the list of byte sequences [sl],
inserting the separator byte sequence [sep] between each, and
returns the result as a new byte sequence.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val cat : bytes -> bytes -> bytes
(** [cat s1 s2] concatenates [s1] and [s2] and returns the result
as new byte sequence.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val iter : (char -> unit) -> bytes -> unit
(** [iter f s] applies function [f] in turn to all the bytes of [s].
It is equivalent to [f (get s 0); f (get s 1); ...; f (get s
(length s - 1)); ()]. *)
val iteri : (int -> char -> unit) -> bytes -> unit
(** Same as {!Bytes.iter}, but the function is applied to the index of
the byte as first argument and the byte itself as second
argument. *)
val map : (char -> char) -> bytes -> bytes
(** [map f s] applies function [f] in turn to all the bytes of [s]
(in increasing index order) and stores the resulting bytes in
a new sequence that is returned as the result. *)
val mapi : (int -> char -> char) -> bytes -> bytes
(** [mapi f s] calls [f] with each character of [s] and its
index (in increasing index order) and stores the resulting bytes
in a new sequence that is returned as the result. *)
val trim : bytes -> bytes
(** Return a copy of the argument, without leading and trailing
whitespace. The bytes regarded as whitespace are the ASCII
characters [' '], ['\012'], ['\n'], ['\r'], and ['\t']. *)
val escaped : bytes -> bytes
(** Return a copy of the argument, with special characters represented
by escape sequences, following the lexical conventions of OCaml.
All characters outside the ASCII printable range (32..126) are
escaped, as well as backslash and double-quote.
Raise [Invalid_argument] if the result is longer than
{!Sys.max_string_length} bytes. *)
val index : bytes -> char -> int
(** [index s c] returns the index of the first occurrence of byte [c]
in [s].
Raise [Not_found] if [c] does not occur in [s]. *)
val rindex : bytes -> char -> int
(** [rindex s c] returns the index of the last occurrence of byte [c]
in [s].
Raise [Not_found] if [c] does not occur in [s]. *)
val index_from : bytes -> int -> char -> int
(** [index_from s i c] returns the index of the first occurrence of
byte [c] in [s] after position [i]. [Bytes.index s c] is
equivalent to [Bytes.index_from s 0 c].
Raise [Invalid_argument] if [i] is not a valid position in [s].
Raise [Not_found] if [c] does not occur in [s] after position [i]. *)
val rindex_from : bytes -> int -> char -> int
(** [rindex_from s i c] returns the index of the last occurrence of
byte [c] in [s] before position [i+1]. [rindex s c] is equivalent
to [rindex_from s (Bytes.length s - 1) c].
Raise [Invalid_argument] if [i+1] is not a valid position in [s].
Raise [Not_found] if [c] does not occur in [s] before position [i+1]. *)
val contains : bytes -> char -> bool
(** [contains s c] tests if byte [c] appears in [s]. *)
val contains_from : bytes -> int -> char -> bool
(** [contains_from s start c] tests if byte [c] appears in [s] after
position [start]. [contains s c] is equivalent to [contains_from
s 0 c].
Raise [Invalid_argument] if [start] is not a valid position in [s]. *)
val rcontains_from : bytes -> int -> char -> bool
(** [rcontains_from s stop c] tests if byte [c] appears in [s] before
position [stop+1].
Raise [Invalid_argument] if [stop < 0] or [stop+1] is not a valid
position in [s]. *)
val uppercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all lowercase letters
translated to uppercase, using the US-ASCII character set.
@since 4.03.0 *)
val lowercase_ascii : bytes -> bytes
(** Return a copy of the argument, with all uppercase letters
translated to lowercase, using the US-ASCII character set.
@since 4.03.0 *)
val capitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to uppercase,
using the US-ASCII character set.
@since 4.03.0 *)
val uncapitalize_ascii : bytes -> bytes
(** Return a copy of the argument, with the first character set to lowercase,
using the US-ASCII character set.
@since 4.03.0 *)
type t = bytes
(** An alias for the type of byte sequences. *)
val compare: t -> t -> int
(** The comparison function for byte sequences, with the same
specification as {!Pervasives.compare}. Along with the type [t],
this function [compare] allows the module [Bytes] to be passed as
argument to the functors {!Set.Make} and {!Map.Make}. *)
val equal: t -> t -> bool
(** The equality function for byte sequences.
@since 4.03.0 *)
(** {4 Unsafe conversions (for advanced users)}
This section describes unsafe, low-level conversion functions
between [bytes] and [string]. They do not copy the internal data;
used improperly, they can break the immutability invariant on
strings provided by the [-safe-string] option. They are available for
expert library authors, but for most purposes you should use the
always-correct {!Bytes.to_string} and {!Bytes.of_string} instead.
*)
(** Functions reading and writing bytes *)
2016-09-08 21:13:10 +04:00
val get_char: t -> int -> char
(** [get_char buff i] reads 1 byte at offset i as a char *)
2016-09-08 21:13:10 +04:00
val get_uint8: t -> int -> int
(** [get_uint8 buff i] reads 1 byte at offset i as an unsigned int of 8
bits. i.e. It returns a value between 0 and 2^8-1 *)
val get_int8: t -> int -> int
(** [get_int8 buff i] reads 1 byte at offset i as a signed int of 8
bits. i.e. It returns a value between -2^7 and 2^7-1 *)
val set_char: t -> int -> char -> unit
(** [set_char buff i v] writes [v] to [buff] at offset [i] *)
val set_int8: t -> int -> int -> unit
(** [set_int8 buff i v] writes the least significant 8 bits of [v]
to [buff] at offset [i] *)
(** Functions reading according to Big Endian byte order *)
val get_uint16: t -> int -> int
(** [get_uint16 buff i] reads 2 bytes at offset i as an unsigned int
of 16 bits. i.e. It returns a value between 0 and 2^16-1 *)
val get_int16: t -> int -> int
(** [get_int16 buff i] reads 2 byte at offset i as a signed int of
16 bits. i.e. It returns a value between -2^15 and 2^15-1 *)
val get_int32: t -> int -> int32
(** [get_int32 buff i] reads 4 bytes at offset i as an int32. *)
val get_int64: t -> int -> int64
(** [get_int64 buff i] reads 8 bytes at offset i as an int64. *)
val set_int16: t -> int -> int -> unit
(** [set_int16 buff i v] writes the least significant 16 bits of [v]
to [buff] at offset [i] *)
val set_int32: t -> int -> int32 -> unit
(** [set_int32 buff i v] writes [v] to [buff] at offset [i] *)
val set_int64: t -> int -> int64 -> unit
(** [set_int64 buff i v] writes [v] to [buff] at offset [i] *)
module LE: sig
(** Functions reading according to Little Endian byte order *)
val get_uint16: t -> int -> int
(** [get_uint16 buff i] reads 2 bytes at offset i as an unsigned int
of 16 bits. i.e. It returns a value between 0 and 2^16-1 *)
val get_int16: t -> int -> int
(** [get_int16 buff i] reads 2 byte at offset i as a signed int of
16 bits. i.e. It returns a value between -2^15 and 2^15-1 *)
val get_int32: t -> int -> int32
(** [get_int32 buff i] reads 4 bytes at offset i as an int32. *)
val get_int64: t -> int -> int64
(** [get_int64 buff i] reads 8 bytes at offset i as an int64. *)
val set_int16: t -> int -> int -> unit
(** [set_int16 buff i v] writes the least significant 16 bits of [v]
to [buff] at offset [i] *)
val set_int32: t -> int -> int32 -> unit
(** [set_int32 buff i v] writes [v] to [buff] at offset [i] *)
val set_int64: t -> int -> int64 -> unit
(** [set_int64 buff i v] writes [v] to [buff] at offset [i] *)
end