ligo/src/passes/operators/helpers.ml

252 lines
9.2 KiB
OCaml
Raw Normal View History

module Typer = struct
open Trace
open Ast_typed
module Errors = struct
let wrong_param_number = fun name expected got ->
let title () = "wrong number of params" in
let full () = Format.asprintf "constant name: %s\nexpected: %d\ngot: %d\n"
name expected (List.length got) in
error title full
2019-06-05 21:16:54 +04:00
let error_uncomparable_types a b () =
let title () = "these types are not comparable" in
let message () = "" in
let data = [
2019-12-04 21:30:52 +04:00
("a" , fun () -> Format.asprintf "%a" PP.type_expression a) ;
("b" , fun () -> Format.asprintf "%a" PP.type_expression b )
2019-06-05 21:16:54 +04:00
] in
error ~data title message ()
end
open Errors
2019-12-04 21:30:52 +04:00
type type_result = type_expression
type typer = type_expression list -> type_expression option -> type_result result
2019-12-04 21:30:52 +04:00
let typer_0 : string -> (type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
match lst with
| [] -> (
let%bind tv' = f tv_opt in
ok (tv')
)
2019-06-05 21:16:54 +04:00
| _ -> fail @@ wrong_param_number s 0 lst
2019-12-04 21:30:52 +04:00
let typer_1 : string -> (type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ] -> (
let%bind tv' = f a in
ok (tv')
)
2019-06-05 21:16:54 +04:00
| _ -> fail @@ wrong_param_number s 1 lst
2019-12-04 21:30:52 +04:00
let typer_1_opt : string -> (type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
match lst with
| [ a ] -> (
let%bind tv' = f a tv_opt in
ok (tv')
)
2019-06-05 21:16:54 +04:00
| _ -> fail @@ wrong_param_number s 1 lst
2019-12-04 21:30:52 +04:00
let typer_2 : string -> (type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ] -> (
let%bind tv' = f a b in
ok (tv')
)
2019-06-05 21:16:54 +04:00
| _ -> fail @@ wrong_param_number s 2 lst
2019-12-04 21:30:52 +04:00
let typer_2_opt : string -> (type_expression -> type_expression -> type_expression option -> type_expression result) -> typer = fun s f lst tv_opt ->
2019-11-09 11:27:30 +04:00
match lst with
| [ a ; b ] -> (
let%bind tv' = f a b tv_opt in
ok (tv')
2019-11-09 11:27:30 +04:00
)
| _ -> fail @@ wrong_param_number s 2 lst
2019-12-04 21:30:52 +04:00
let typer_3 : string -> (type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
match lst with
| [ a ; b ; c ] -> (
let%bind tv' = f a b c in
ok (tv')
)
2019-06-05 21:16:54 +04:00
| _ -> fail @@ wrong_param_number s 3 lst
2019-12-04 21:30:52 +04:00
let typer_4 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
2019-07-19 14:13:09 +04:00
match lst with
| [ a ; b ; c ; d ] -> (
let%bind tv' = f a b c d in
ok (tv')
2019-07-19 14:13:09 +04:00
)
| _ -> fail @@ wrong_param_number s 4 lst
2019-12-04 21:30:52 +04:00
let typer_5 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
2019-07-19 14:13:09 +04:00
match lst with
| [ a ; b ; c ; d ; e ] -> (
let%bind tv' = f a b c d e in
ok (tv')
2019-07-19 14:13:09 +04:00
)
| _ -> fail @@ wrong_param_number s 5 lst
2019-12-04 21:30:52 +04:00
let typer_6 : string -> (type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression -> type_expression result) -> typer = fun s f lst _ ->
2019-07-19 14:13:09 +04:00
match lst with
| [ a ; b ; c ; d ; e ; f_ ] -> (
let%bind tv' = f a b c d e f_ in
ok (tv')
2019-07-19 14:13:09 +04:00
)
| _ -> fail @@ wrong_param_number s 6 lst
2019-12-04 21:30:52 +04:00
let constant' name cst = typer_0 name (fun _ -> ok cst)
open Combinators
2019-12-04 21:30:52 +04:00
let eq_1 a cst = type_expression_eq (a , cst)
let eq_2 (a , b) cst = type_expression_eq (a , cst) && type_expression_eq (b , cst)
2019-09-24 01:33:25 +04:00
let assert_eq_1 ?msg a b = Assert.assert_true ?msg (eq_1 a b)
2019-07-19 14:13:09 +04:00
let comparator : string -> typer = fun s -> typer_2 s @@ fun a b ->
let%bind () =
2019-06-05 21:16:54 +04:00
trace_strong (error_uncomparable_types a b) @@
Assert.assert_true @@
List.exists (eq_2 (a , b)) [
t_int () ;
t_nat () ;
t_bool () ;
2019-10-09 08:51:29 +04:00
t_mutez () ;
t_string () ;
t_bytes () ;
t_address () ;
2019-06-11 02:06:00 +04:00
t_timestamp () ;
t_key_hash () ;
] in
ok @@ t_bool ()
let boolean_operator_2 : string -> typer = fun s -> typer_2 s @@ fun a b ->
let%bind () =
trace_strong (simple_error "A isn't of type bool") @@
Assert.assert_true @@
2019-12-04 21:30:52 +04:00
type_expression_eq (t_bool () , a) in
let%bind () =
trace_strong (simple_error "B isn't of type bool") @@
Assert.assert_true @@
2019-12-04 21:30:52 +04:00
type_expression_eq (t_bool () , b) in
ok @@ t_bool ()
2020-04-22 21:44:21 +04:00
module Converter = struct
open Ast_typed
2020-04-28 02:34:03 +04:00
open Trace
2020-04-22 21:44:21 +04:00
let record_checks kvl =
let%bind () = Assert.assert_true_err
(simple_error "converted record must have at least two elements")
(List.length kvl >=2) in
let all_undefined = List.for_all (fun (_,{decl_position;_}) -> decl_position = 0) kvl in
let%bind () = Assert.assert_true_err
(simple_error "can't retrieve declaration order in the converted record, you need to annotate it")
(not all_undefined) in
ok ()
let annotate_field (field:field_content) (ann:string) : field_content =
{field with michelson_annotation=Some ann}
let comb (t:type_content) : field_content =
let field_type = {
type_content = t ;
type_meta = None ;
location = Location.generated ; } in
{field_type ; michelson_annotation = Some "" ; decl_position = 0}
let rec to_right_comb_t l new_map =
match l with
| [] -> new_map
| [ (Label ann_l, field_content_l) ; (Label ann_r, field_content_r) ] ->
LMap.add_bindings [
(Label "0" , annotate_field field_content_l ann_l) ;
(Label "1" , annotate_field field_content_r ann_r) ] new_map
| (Label ann, field)::tl ->
let new_map' = LMap.add (Label "0") (annotate_field field ann) new_map in
LMap.add (Label "1") (comb (T_record (to_right_comb_t tl new_map'))) new_map'
2020-04-28 02:34:03 +04:00
let rec to_left_comb_t' first l new_map =
2020-04-22 21:44:21 +04:00
match l with
| [] -> new_map
| (Label ann_l, field_content_l) :: (Label ann_r, field_content_r) ::tl when first ->
let new_map' = LMap.add_bindings [
(Label "0" , annotate_field field_content_l ann_l) ;
(Label "1" , annotate_field field_content_r ann_r) ] LMap.empty in
2020-04-28 02:34:03 +04:00
to_left_comb_t' false tl new_map'
2020-04-22 21:44:21 +04:00
| (Label ann, field)::tl ->
let new_map' = LMap.add_bindings [
(Label "0" , comb (T_record new_map)) ;
(Label "1" , annotate_field field ann ) ;] LMap.empty in
2020-04-28 02:34:03 +04:00
to_left_comb_t' first tl new_map'
let to_left_comb_t = to_left_comb_t' true
2020-04-22 21:44:21 +04:00
let convert_type_to_right_comb l =
let l' = List.sort (fun (_,{decl_position=a;_}) (_,{decl_position=b;_}) -> Int.compare a b) l in
T_record (to_right_comb_t l' LMap.empty)
let convert_type_to_left_comb l =
let l' = List.sort (fun (_,{decl_position=a;_}) (_,{decl_position=b;_}) -> Int.compare a b) l in
T_record (to_left_comb_t l' LMap.empty)
2020-04-28 02:34:03 +04:00
let rec from_right_comb (l:field_content label_map) (size:int) : (field_content list) result =
let l' = List.rev @@ LMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,l) ; (_,{field_type=tr;_}) ], _ ->
let%bind comb_lmap = get_t_record tr in
let%bind next = from_right_comb comb_lmap (size-1) in
ok (l :: next)
| _ -> simple_fail "Could not convert michelson_right_comb pair to a record"
let rec from_left_comb (l:field_content label_map) (size:int) : (field_content list) result =
let l' = List.rev @@ LMap.to_kv_list l in
match l' , size with
| [ (_,l) ; (_,r) ] , 2 -> ok [ l ; r ]
| [ (_,{field_type=tl;_}) ; (_,r) ], _ ->
let%bind comb_lmap = get_t_record tl in
let%bind next = from_left_comb comb_lmap (size-1) in
ok (List.append next [r])
| _ -> simple_fail "Could not convert michelson_left_comb pair to a record"
let convert_from_right_comb (src: field_content label_map) (dst: field_content label_map) : type_content result =
let%bind fields = from_right_comb src (LMap.cardinal dst) in
let labels = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{decl_position=a;_}) (_,{decl_position=b;_}) -> Int.compare a b ) @@
LMap.to_kv_list dst in
ok @@ (T_record (LMap.of_list @@ List.combine labels fields))
let convert_from_left_comb (src: field_content label_map) (dst: field_content label_map) : type_content result =
let%bind fields = from_left_comb src (LMap.cardinal dst) in
let labels = List.map (fun (l,_) -> l) @@
List.sort (fun (_,{decl_position=a;_}) (_,{decl_position=b;_}) -> Int.compare a b ) @@
LMap.to_kv_list dst in
ok @@ (T_record (LMap.of_list @@ List.combine labels fields))
2020-04-22 21:44:21 +04:00
end
end
module Compiler = struct
open Tezos_utils.Michelson
type predicate =
| Constant of michelson
| Unary of michelson
| Binary of michelson
| Ternary of michelson
2019-07-19 14:13:09 +04:00
| Tetrary of michelson
| Pentary of michelson
| Hexary of michelson
let simple_constant c = Constant c
let simple_unary c = Unary c
let simple_binary c = Binary c
let simple_ternary c = Ternary c
2019-07-19 14:13:09 +04:00
let simple_tetrary c = Tetrary c
let simple_pentary c = Pentary c
let simple_hexary c = Hexary c
end