ligo/transpiler/transpiler.ml

684 lines
28 KiB
OCaml
Raw Normal View History

2019-05-13 00:56:22 +04:00
open! Trace
open Mini_c
open Combinators
module AST = Ast_typed
module Append_tree = Tree.Append
open AST.Combinators
let temp_unwrap_loc = Location.unwrap
let temp_unwrap_loc_list = List.map Location.unwrap
let list_of_map m = List.rev @@ Map.String.fold (fun _ v prev -> v :: prev) m []
let kv_list_of_map m = List.rev @@ Map.String.fold (fun k v prev -> (k, v) :: prev) m []
let map_of_kv_list lst =
let open AST.SMap in
List.fold_left (fun prev (k, v) -> add k v prev) empty lst
let rec translate_type (t:AST.type_value) : type_value result =
match t.type_value' with
| T_constant ("bool", []) -> ok (T_base Base_bool)
| T_constant ("int", []) -> ok (T_base Base_int)
| T_constant ("nat", []) -> ok (T_base Base_nat)
| T_constant ("tez", []) -> ok (T_base Base_tez)
| T_constant ("string", []) -> ok (T_base Base_string)
| T_constant ("address", []) -> ok (T_base Base_address)
| T_constant ("unit", []) -> ok (T_base Base_unit)
| T_constant ("operation", []) -> ok (T_base Base_operation)
| T_constant ("contract", [x]) ->
let%bind x' = translate_type x in
ok (T_contract x')
| T_constant ("map", [key;value]) ->
let%bind kv' = bind_map_pair translate_type (key, value) in
ok (T_map kv')
| T_constant ("list", [t]) ->
let%bind t' = translate_type t in
ok (T_list t')
| T_constant ("option", [o]) ->
let%bind o' = translate_type o in
ok (T_option o')
| T_constant (name , lst) ->
let error =
let title () = "unrecognized type constant" in
let content () = Format.asprintf "%s (%d)" name (List.length lst) in
error title content in
fail error
| T_sum m ->
let node = Append_tree.of_list @@ list_of_map m in
let aux a b : type_value result =
let%bind a = a in
let%bind b = b in
ok (T_or (a, b))
in
Append_tree.fold_ne translate_type aux node
| T_record m ->
let node = Append_tree.of_list @@ list_of_map m in
let aux a b : type_value result =
let%bind a = a in
let%bind b = b in
ok (T_pair (a, b))
in
Append_tree.fold_ne translate_type aux node
| T_tuple lst ->
let node = Append_tree.of_list lst in
let aux a b : type_value result =
let%bind a = a in
let%bind b = b in
ok (T_pair (a, b))
in
Append_tree.fold_ne translate_type aux node
| T_function (param, result) ->
let%bind param' = translate_type param in
let%bind result' = translate_type result in
ok (T_function (param', result'))
let tuple_access_to_lr : type_value -> type_value list -> int -> (type_value * [`Left | `Right]) list result = fun ty tys ind ->
let node_tv = Append_tree.of_list @@ List.mapi (fun i a -> (i, a)) tys in
let%bind path =
let aux (i , _) = i = ind in
trace_option (simple_error "no leaf with given index") @@
Append_tree.exists_path aux node_tv in
let lr_path = List.map (fun b -> if b then `Right else `Left) path in
let%bind (_ , lst) =
let aux = fun (ty' , acc) cur ->
let%bind (a , b) =
let error =
let title () = "expected a pair" in
let content () = Format.asprintf "Big: %a.\tGot: %a\tFull path: %a\tSmall path: %a"
Mini_c.PP.type_ ty
Mini_c.PP.type_ ty'
PP_helpers.(list_sep bool (const ".")) path
PP_helpers.(list_sep lr (const ".")) (List.map snd acc)
in
error title content
in
trace_strong error @@
Mini_c.get_t_pair ty' in
match cur with
| `Left -> ok (a , acc @ [(a , `Left)])
| `Right -> ok (b , acc @ [(b , `Right)])
in
bind_fold_list aux (ty , []) lr_path in
ok lst
let record_access_to_lr : type_value -> type_value AST.type_name_map -> string -> (type_value * [`Left | `Right]) list result = fun ty tym ind ->
let tys = kv_list_of_map tym in
let node_tv = Append_tree.of_list tys in
let%bind path =
let aux (i , _) = i = ind in
trace_option (simple_error "no leaf with given index") @@
Append_tree.exists_path aux node_tv in
let lr_path = List.map (fun b -> if b then `Right else `Left) path in
let%bind (_ , lst) =
let aux = fun (ty , acc) cur ->
let%bind (a , b) = Mini_c.get_t_pair ty in
match cur with
| `Left -> ok (a , acc @ [(a , `Left)])
| `Right -> ok (b , acc @ [(b , `Right)] ) in
bind_fold_list aux (ty , []) lr_path in
ok lst
let rec translate_block env (b:AST.block) : block result =
let aux = fun (precs, env) instruction ->
let%bind lst = translate_instruction env instruction in
let env' = List.fold_left (fun _ i -> (snd i).post_environment) env lst in (* Get last environment *)
ok (precs @ lst, env') in
let%bind (instructions, env') = bind_fold_list aux ([], env) b in
ok (instructions, environment_wrap env env')
and translate_instruction (env:Environment.t) (i:AST.instruction) : statement list result =
let return ?(env' = env) x : statement list result = ok ([x, environment_wrap env env']) in
match i with
| I_declaration {name;annotated_expression} ->
let%bind expression = translate_annotated_expression env annotated_expression in
let env' = Environment.add (name, (Combinators.Expression.get_type expression)) env in
return ~env' (S_declaration (name, expression))
| I_assignment {name;annotated_expression} ->
let%bind expression = translate_annotated_expression env annotated_expression in
return (S_assignment (name, expression))
| I_patch (r, s, v) -> (
let ty = r.type_value in
let aux : ((AST.type_value * [`Left | `Right] list) as 'a) -> AST.access -> 'a result =
fun (prev, acc) cur ->
let%bind ty' = translate_type prev in
match cur with
| Access_tuple ind ->
let%bind ty_lst = AST.Combinators.get_t_tuple prev in
let%bind ty'_lst = bind_map_list translate_type ty_lst in
let%bind path = tuple_access_to_lr ty' ty'_lst ind in
let path' = List.map snd path in
ok (List.nth ty_lst ind, acc @ path')
| Access_record prop ->
let%bind ty_map =
let error =
let title () = "accessing property on not a record" in
let content () = Format.asprintf "%s on %a in %a"
prop Ast_typed.PP.type_value prev Ast_typed.PP.instruction i in
error title content
in
trace error @@
AST.Combinators.get_t_record prev in
let%bind ty'_map = bind_map_smap translate_type ty_map in
let%bind path = record_access_to_lr ty' ty'_map prop in
let path' = List.map snd path in
ok (Map.String.find prop ty_map, acc @ path')
| Access_map _k -> simple_fail "no patch for map yet"
in
let%bind (_, path) = bind_fold_right_list aux (ty, []) s in
let%bind v' = translate_annotated_expression env v in
return (S_patch (r.type_name, path, v'))
)
| I_matching (expr, m) -> (
let%bind expr' = translate_annotated_expression env expr in
let env' = env in
let return s =
ok [ (s, environment_wrap env env) ] in
match m with
| Match_bool {match_true ; match_false} -> (
let%bind true_branch = translate_block env' match_true in
let%bind false_branch = translate_block env' match_false in
return @@ S_cond (expr', true_branch, false_branch)
)
| Match_option {match_none ; match_some = ((name, t), sm)} -> (
let%bind none_branch = translate_block env' match_none in
let%bind t' = translate_type t in
let%bind some_branch =
let env'' = Environment.add (name, t') env' in
translate_block env'' sm
in
return @@ S_if_none (expr', none_branch, ((name, t'), some_branch))
)
| _ -> simple_fail "todo : match"
)
| I_loop (expr, body) ->
let%bind expr' = translate_annotated_expression env expr in
let%bind body' = translate_block env body in
return (S_while (expr', body'))
| I_skip -> ok []
| I_do ae -> (
let%bind ae' = translate_annotated_expression env ae in
return @@ S_do ae'
)
and translate_literal : AST.literal -> value = fun l -> match l with
| Literal_bool b -> D_bool b
| Literal_int n -> D_int n
| Literal_nat n -> D_nat n
| Literal_tez n -> D_tez n
| Literal_bytes s -> D_bytes s
| Literal_string s -> D_string s
| Literal_address s -> D_string s
| Literal_operation op -> D_operation op
| Literal_unit -> D_unit
and transpile_small_environment : AST.small_environment -> Environment.t result = fun x ->
let x' = AST.Environment.Small.get_environment x in
let aux prec (name , (ele : AST.environment_element)) =
let%bind tv' = translate_type ele.type_value in
ok @@ Environment.add (name , tv') prec
in
trace (simple_error "transpiling small environment") @@
bind_fold_right_list aux Environment.empty x'
and transpile_environment : AST.full_environment -> Environment.t result = fun x ->
let%bind nlst = bind_map_ne_list transpile_small_environment x in
ok @@ Environment.concat @@ List.Ne.to_list nlst
and tree_of_sum : AST.type_value -> (type_name * AST.type_value) Append_tree.t result = fun t ->
let%bind map_tv = get_t_sum t in
ok @@ Append_tree.of_list @@ kv_list_of_map map_tv
and translate_annotated_expression (env:Environment.t) (ae:AST.annotated_expression) : expression result =
let%bind tv = translate_type ae.type_annotation in
let return ?(tv = tv) ?(env = env) expr =
(* let%bind env' = transpile_environment ae.environment in *)
ok @@ Combinators.Expression.make_tpl (expr, tv, env) in
let f = translate_annotated_expression env in
match ae.expression with
| E_failwith ae -> (
let%bind ae' = translate_annotated_expression env ae in
return @@ E_constant ("FAILWITH" , [ae'])
)
| E_literal l -> return @@ E_literal (translate_literal l)
| E_variable name ->
let%bind tv =
trace_option (simple_error "transpiler: variable not in env") @@
Environment.get_opt name env in
return ~tv @@ E_variable name
| E_application (a, b) ->
let%bind a = translate_annotated_expression env a in
let%bind b = translate_annotated_expression env b in
return @@ E_application (a, b)
| E_constructor (m, param) ->
let%bind param' = translate_annotated_expression env param in
let (param'_expr , param'_tv) = Combinators.Expression.(get_content param' , get_type param') in
let%bind node_tv = tree_of_sum ae.type_annotation in
let leaf (k, tv) : (expression' option * type_value) result =
if k = m then (
let%bind _ =
trace (simple_error "constructor parameter doesn't have expected type (shouldn't happen here)")
@@ AST.assert_type_value_eq (tv, param.type_annotation) in
ok (Some (param'_expr), param'_tv)
) else (
let%bind tv = translate_type tv in
ok (None, tv)
) in
let node a b : (expression' option * type_value) result =
let%bind a = a in
let%bind b = b in
match (a, b) with
| (None, a), (None, b) -> ok (None, T_or (a, b))
| (Some _, _), (Some _, _) -> simple_fail "several identical constructors in the same variant (shouldn't happen here)"
| (Some v, a), (None, b) -> ok (Some (E_constant ("LEFT", [Combinators.Expression.make_tpl (v, a, env)])), T_or (a, b))
| (None, a), (Some v, b) -> ok (Some (E_constant ("RIGHT", [Combinators.Expression.make_tpl (v, b, env)])), T_or (a, b))
in
let%bind (ae_opt, tv) = Append_tree.fold_ne leaf node node_tv in
let%bind ae =
trace_option (simple_error "constructor doesn't exist in claimed type (shouldn't happen here)")
ae_opt in
return ~tv ae
| E_tuple lst ->
let node = Append_tree.of_list lst in
let aux (a:expression result) (b:expression result) : expression result =
let%bind a = a in
let%bind b = b in
let a_ty = Combinators.Expression.get_type a in
let b_ty = Combinators.Expression.get_type b in
let tv = T_pair (a_ty , b_ty) in
return ~tv @@ E_constant ("PAIR", [a; b])
in
Append_tree.fold_ne (translate_annotated_expression env) aux node
| E_tuple_accessor (tpl, ind) ->
let%bind ty' = translate_type tpl.type_annotation in
let%bind ty_lst = get_t_tuple tpl.type_annotation in
let%bind ty'_lst = bind_map_list translate_type ty_lst in
let%bind path = tuple_access_to_lr ty' ty'_lst ind in
let aux = fun pred (ty, lr) ->
let c = match lr with
| `Left -> "CAR"
| `Right -> "CDR" in
Combinators.Expression.make_tpl (E_constant (c, [pred]) , ty , env) in
let%bind tpl' = translate_annotated_expression env tpl in
let expr = List.fold_left aux tpl' path in
ok expr
| E_record m ->
let node = Append_tree.of_list @@ list_of_map m in
let aux a b : expression result =
let%bind a = a in
let%bind b = b in
let a_ty = Combinators.Expression.get_type a in
let b_ty = Combinators.Expression.get_type b in
let tv = T_pair (a_ty , b_ty) in
return ~tv @@ E_constant ("PAIR", [a; b])
in
Append_tree.fold_ne (translate_annotated_expression env) aux node
| E_record_accessor (record, property) ->
let%bind ty' = translate_type (get_type_annotation record) in
let%bind ty_smap = get_t_record (get_type_annotation record) in
let%bind ty'_smap = bind_map_smap translate_type ty_smap in
let%bind path = record_access_to_lr ty' ty'_smap property in
let aux = fun pred (ty, lr) ->
let c = match lr with
| `Left -> "CAR"
| `Right -> "CDR" in
Combinators.Expression.make_tpl (E_constant (c, [pred]) , ty , env) in
let%bind record' = translate_annotated_expression env record in
let expr = List.fold_left aux record' path in
ok expr
| E_constant (name, lst) ->
let%bind lst' = bind_list @@ List.map (translate_annotated_expression env) lst in (
match name, lst with
| "NONE", [] ->
let%bind o = Mini_c.Combinators.get_t_option tv in
return @@ E_make_none o
| _ -> return @@ E_constant (name, lst')
)
| E_lambda l -> translate_lambda env l
| E_list lst ->
let%bind t = Mini_c.Combinators.get_t_list tv in
let%bind lst' = bind_map_list (translate_annotated_expression env) lst in
let aux : expression -> expression -> expression result = fun prev cur ->
return @@ E_constant ("CONS", [cur ; prev]) in
let%bind (init : expression) = return @@ E_empty_list t in
bind_fold_list aux init lst'
| E_map m ->
let%bind (src, dst) = Mini_c.Combinators.get_t_map tv in
let aux : expression result -> (AST.ae * AST.ae) -> expression result = fun prev (k, v) ->
let%bind prev' = prev in
let%bind (k', v') =
let v' = e_a_some v ae.environment in
bind_map_pair (translate_annotated_expression env) (k, v') in
return @@ E_constant ("UPDATE", [k' ; v' ; prev'])
in
let init = return @@ E_empty_map (src, dst) in
List.fold_left aux init m
| E_look_up dsi ->
let%bind (ds', i') = bind_map_pair f dsi in
return @@ E_constant ("GET", [i' ; ds'])
| E_matching (expr, m) -> (
let%bind expr' = translate_annotated_expression env expr in
match m with
| Match_bool {match_true ; match_false} ->
let%bind (t , f) = bind_map_pair (translate_annotated_expression env) (match_true, match_false) in
return @@ E_Cond (expr', t, f)
| Match_option { match_none; match_some = ((name, tv), s) } ->
let%bind n = translate_annotated_expression env match_none in
let%bind (tv' , s') =
let%bind tv' = translate_type tv in
let env' = Environment.(add (name , tv') @@ env) in
let%bind s' = translate_annotated_expression env' s in
ok (tv' , s') in
return @@ E_if_none (expr' , n , ((name , tv') , s'))
| Match_variant (lst , variant) -> (
let%bind tree = tree_of_sum variant in
let%bind tree' = match tree with
| Empty -> simple_fail "match empty variant"
| Full x -> ok x in
let%bind tree'' =
let rec aux t =
match (t : _ Append_tree.t') with
| Leaf (name , tv) ->
let%bind tv' = translate_type tv in
ok (`Leaf name , tv')
| Node {a ; b} ->
let%bind a' = aux a in
let%bind b' = aux b in
let tv' = Mini_c.t_union (snd a') (snd b') in
ok (`Node (a' , b') , tv')
in aux tree'
in
let rec aux (top , env) t =
match t with
| ((`Leaf constructor_name) , tv) -> (
let%bind ((_ , name) , body) =
trace_option (simple_error "not supposed to happen here: missing match clause") @@
List.find_opt (fun ((constructor_name' , _) , _) -> constructor_name' = constructor_name) lst in
let env' = Environment.(add (name , tv) env) in
let%bind body' = translate_annotated_expression env' body in
return ~env @@ E_let_in ((name , tv) , top , body')
)
| ((`Node (a , b)) , tv) ->
let%bind a' =
let%bind a_ty = get_t_left tv in
let a_var = "left" , a_ty in
let env' = Environment.(add a_var env) in
let%bind e = aux (((Expression.make (E_variable "left") a_ty env')) , env') a in
ok (a_var , e)
in
let%bind b' =
let%bind b_ty = get_t_right tv in
let b_var = "right" , b_ty in
let env' = Environment.(add b_var env) in
let%bind e = aux (((Expression.make (E_variable "right") b_ty env')) , env') b in
ok (b_var , e)
in
return ~env @@ E_if_left (top , a' , b')
in
aux (expr' , env) tree''
)
| AST.Match_list _ | AST.Match_tuple (_, _) ->
simple_fail "only match bool and option exprs are translated yet"
)
and translate_lambda_deep : Mini_c.Environment.t -> AST.lambda -> Mini_c.expression result = fun env l ->
let { binder ; input_type ; output_type ; body ; result } : AST.lambda = l in
(* Deep capture. Capture the relevant part of the environment. *)
let%bind (fv , c_env , c_tv) =
let free_variables = Ast_typed.Free_variables.lambda [] l in
let sub_env = Mini_c.Environment.select free_variables env in
let tv = Environment.closure_representation sub_env in
ok (free_variables , sub_env , tv) in
let%bind (f_expr , input_tv , output_tv) =
let%bind raw_input = translate_type input_type in
let init_env = Environment.(add (binder , raw_input) c_env) in
let input = Environment.closure_representation init_env in
let%bind output = translate_type output_type in
let%bind (statements , body_env) = translate_block init_env body in
let body =
let load_env = Environment.(add ("closure_arg" , input) empty) in
let load_expr = Expression.make_tpl (E_variable "closure_arg" , input , load_env) in
let load_st = Mini_c.statement (S_environment_load (load_expr , init_env)) load_env in
let statements' = load_st :: statements in
(statements' , body_env)
in
let%bind result = translate_annotated_expression body_env.post_environment result in
let tv = Mini_c.t_function input output in
let f_literal = D_function { binder ; input ; output ; body ; result } in
let expr = Expression.make_tpl (E_literal f_literal , tv , env) in
ok (expr , raw_input , output) in
let%bind c_expr =
ok @@ Expression.make_tpl (E_capture_environment fv , c_tv , env) in
let expr = Expression.pair f_expr c_expr in
let tv = Mini_c.t_deep_closure c_env input_tv output_tv in
ok @@ Expression.make_tpl (expr , tv , env)
and translate_lambda env l =
let { binder ; input_type ; output_type ; body ; result } : AST.lambda = l in
(* Try to translate it in an empty env, if it succeeds, transpiles it as a quote value, else, as a closure expression. *)
let ((_body_bounds , body_fvs) , result_fvs) = AST.Free_variables.(
let bindings = singleton binder in
let ((body_bounds , _) as b) = block' bindings body in
b , annotated_expression body_bounds result
) in
match (body_fvs, result_fvs) with
| [] , [] -> (
let%bind empty_env =
let%bind input = translate_type input_type in
ok Environment.(add (binder, input) empty) in
let%bind ((_, e) as body') = translate_block empty_env body in
let%bind result' = translate_annotated_expression e.post_environment result in
trace (simple_error "translate quote") @@
let%bind input = translate_type input_type in
let%bind output = translate_type output_type in
let tv = Combinators.t_function input output in
let content = D_function {binder;input;output;body=body';result=result'} in
ok @@ Combinators.Expression.make_tpl (E_literal content, tv, env)
)
| _ -> (
trace (simple_error "translate lambda deep") @@
translate_lambda_deep env l
)
let translate_declaration env (d:AST.declaration) : toplevel_statement result =
match d with
| Declaration_constant ({name;annotated_expression} , _) ->
let%bind expression = translate_annotated_expression env annotated_expression in
let tv = Combinators.Expression.get_type expression in
let env' = Environment.add (name, tv) env in
ok @@ ((name, expression), environment_wrap env env')
let translate_program (lst:AST.program) : program result =
let aux (prev:(toplevel_statement list * Environment.t) result) cur =
let%bind (tl, env) = prev in
let%bind ((_, env') as cur') = translate_declaration env cur in
ok (cur' :: tl, env'.post_environment)
in
let%bind (statements, _) = List.fold_left aux (ok ([], Environment.empty)) (temp_unwrap_loc_list lst) in
ok statements
let translate_main (l:AST.lambda) : anon_function result =
let%bind expr = translate_lambda Environment.empty l in
match Combinators.Expression.get_content expr with
| E_literal (D_function f) -> ok f
| _ -> simple_fail "main is not a function"
(* From a non-functional expression [expr], build the functional expression [fun () -> expr] *)
let functionalize (e:AST.annotated_expression) : AST.lambda * AST.type_value =
let t = e.type_annotation in
let open! AST in
{
binder = "_" ;
input_type = Combinators.t_unit () ;
output_type = t ;
result = e ;
body = [I_skip]
}, Combinators.(t_function (t_unit ()) t ())
let translate_entry (lst:AST.program) (name:string) : anon_function result =
let%bind (lst', l, _) =
let rec aux acc (lst:AST.program) =
match lst with
| [] -> None
| hd :: tl -> (
let (AST.Declaration_constant (an , _)) = temp_unwrap_loc hd in
match an.name = name with
| true -> (
match an.annotated_expression.expression with
| E_lambda l -> Some (acc, l, an.annotated_expression.type_annotation)
| _ ->
let (a, b) = functionalize an.annotated_expression in
Some (acc, a, b)
)
| false -> aux (acc @ [AST.I_declaration an]) tl
)
in
let%bind (lst', l, tv) =
trace_option (simple_error "no entry-point with given name")
@@ aux [] lst in
ok (lst', l, tv) in
let l' = {l with body = lst' @ l.body} in
let r =
trace (simple_error "translating entry") @@
translate_main l' in
r
open Combinators
let rec exp x n =
if n = 0
then 1
else
let exp' = exp (x * x) (n / 2) in
let m = if n mod 2 = 0 then 1 else x in
m * exp'
let exp2 = exp 2
let extract_constructor (v : value) (tree : _ Append_tree.t') : (string * value * AST.type_value) result =
let open Append_tree in
let rec aux tv : (string * value * AST.type_value) result=
match tv with
| Leaf (k, t), v -> ok (k, v, t)
| Node {a}, D_left v -> aux (a, v)
| Node {b}, D_right v -> aux (b, v)
| _ -> simple_fail "bad constructor path"
in
let%bind (s, v, t) = aux (tree, v) in
ok (s, v, t)
let extract_tuple (v : value) (tree : AST.type_value Append_tree.t') : ((value * AST.type_value) list) result =
let open Append_tree in
let rec aux tv : ((value * AST.type_value) list) result =
match tv with
| Leaf t, v -> ok @@ [v, t]
| Node {a;b}, D_pair (va, vb) ->
let%bind a' = aux (a, va) in
let%bind b' = aux (b, vb) in
ok (a' @ b')
| _ -> simple_fail "bad tuple path"
in
aux (tree, v)
let extract_record (v : value) (tree : _ Append_tree.t') : (_ list) result =
let open Append_tree in
let rec aux tv : ((string * (value * AST.type_value)) list) result =
match tv with
| Leaf (s, t), v -> ok @@ [s, (v, t)]
| Node {a;b}, D_pair (va, vb) ->
let%bind a' = aux (a, va) in
let%bind b' = aux (b, vb) in
ok (a' @ b')
| _ -> simple_fail "bad record path"
in
aux (tree, v)
let rec untranspile (v : value) (t : AST.type_value) : AST.annotated_expression result =
let open! AST in
let return e = ok (make_a_e_empty e t) in
match t.type_value' with
| T_constant ("unit", []) ->
let%bind () = get_unit v in
return (E_literal Literal_unit)
| T_constant ("bool", []) ->
let%bind b = get_bool v in
return (E_literal (Literal_bool b))
| T_constant ("int", []) ->
let%bind n = get_int v in
return (E_literal (Literal_int n))
| T_constant ("nat", []) ->
let%bind n = get_nat v in
return (E_literal (Literal_nat n))
| T_constant ("tez", []) ->
let%bind n = get_nat v in
return (E_literal (Literal_tez n))
| T_constant ("string", []) ->
let%bind n = get_string v in
return (E_literal (Literal_string n))
| T_constant ("address", []) ->
let%bind n = get_string v in
return (E_literal (Literal_address n))
| T_constant ("option", [o]) -> (
match%bind get_option v with
| None -> ok (e_a_empty_none o)
| Some s ->
let%bind s' = untranspile s o in
ok (e_a_empty_some s')
)
| T_constant ("map", [k_ty;v_ty]) -> (
let%bind lst = get_map v in
let%bind lst' =
let aux = fun (k, v) ->
let%bind k' = untranspile k k_ty in
let%bind v' = untranspile v v_ty in
ok (k', v') in
bind_map_list aux lst in
return (E_map lst')
)
| T_constant ("list", [ty]) -> (
let%bind lst = get_list v in
let%bind lst' =
let aux = fun e -> untranspile e ty in
bind_map_list aux lst in
return (E_list lst')
)
| T_constant ("contract" , [_ty]) ->
simple_fail "can't untranspile contract"
| T_constant ("operation" , []) ->
let%bind op = get_operation v in
return (E_literal (Literal_operation op))
| T_constant (name , lst) ->
let error =
let title () = "unknown type_constant" in
let content () = Format.asprintf "%s (%d)" name (List.length lst) in
error title content in
fail error
| T_sum m ->
let lst = kv_list_of_map m in
let%bind node = match Append_tree.of_list lst with
| Empty -> simple_fail "empty sum type"
| Full t -> ok t
in
let%bind (name, v, tv) = extract_constructor v node in
let%bind sub = untranspile v tv in
return (E_constructor (name, sub))
| T_tuple lst ->
let%bind node = match Append_tree.of_list lst with
| Empty -> simple_fail "empty tuple"
| Full t -> ok t in
let%bind tpl = extract_tuple v node in
let%bind tpl' = bind_list
@@ List.map (fun (x, y) -> untranspile x y) tpl in
return (E_tuple tpl')
| T_record m ->
let lst = kv_list_of_map m in
let%bind node = match Append_tree.of_list lst with
| Empty -> simple_fail "empty record"
| Full t -> ok t in
let%bind lst = extract_record v node in
let%bind lst = bind_list
@@ List.map (fun (x, (y, z)) -> let%bind yz = untranspile y z in ok (x, yz)) lst in
let m' = map_of_kv_list lst in
return (E_record m')
| T_function _ -> simple_fail "no untranspilation for functions yet"