2345 lines
69 KiB
ReStructuredText
2345 lines
69 KiB
ReStructuredText
|
Michelson: the language of Smart Contracts in Tezos
|
|||
|
===================================================
|
|||
|
|
|||
|
The language is stack based, with high level data types and primitives
|
|||
|
and strict static type checking. Its design cherry picks traits from
|
|||
|
several language families. Vigilant readers will notice direct
|
|||
|
references to Forth, Scheme, ML and Cat.
|
|||
|
|
|||
|
A Michelson program is a series of instructions that are run in
|
|||
|
sequence: each instruction receives as input the stack resulting of the
|
|||
|
previous instruction, and rewrites it for the next one. The stack
|
|||
|
contains both immediate values and heap allocated structures. All values
|
|||
|
are immutable and garbage collected.
|
|||
|
|
|||
|
A Michelson program receives as input a single element stack containing
|
|||
|
an input value and the contents of a storage space. It must return a
|
|||
|
single element stack containing an output value and the new contents of
|
|||
|
the storage space. Alternatively, a Michelson program can fail,
|
|||
|
explicitly using a specific opcode, or because something went wrong that
|
|||
|
could not be caught by the type system (e.g. division by zero, gas
|
|||
|
exhaustion).
|
|||
|
|
|||
|
The types of the input, output and storage are fixed and monomorphic,
|
|||
|
and the program is typechecked before being introduced into the system.
|
|||
|
No smart contract execution can fail because an instruction has been
|
|||
|
executed on a stack of unexpected length or contents.
|
|||
|
|
|||
|
This specification gives the complete instruction set, type system and
|
|||
|
semantics of the language. It is meant as a precise reference manual,
|
|||
|
not an easy introduction. Even though, some examples are provided at the
|
|||
|
end of the document and can be read first or at the same time as the
|
|||
|
specification.
|
|||
|
|
|||
|
Table of contents
|
|||
|
-----------------
|
|||
|
|
|||
|
- I - Semantics
|
|||
|
- II - Type system
|
|||
|
- III - Core data types
|
|||
|
- IV - Core instructions
|
|||
|
- V - Operations
|
|||
|
- VI - Domain specific data types
|
|||
|
- VII - Domain specific operations
|
|||
|
- VIII - Macros
|
|||
|
- IX - Concrete syntax
|
|||
|
- X - JSON syntax
|
|||
|
- XI - Examples
|
|||
|
- XII - Full grammar
|
|||
|
- XIII - Reference implementation
|
|||
|
|
|||
|
I - Semantics
|
|||
|
-------------
|
|||
|
|
|||
|
This specification gives a detailed formal semantics of the Michelson
|
|||
|
language. It explains in a symbolic way the computation performed by the
|
|||
|
Michelson interpreter on a given program and initial stack to produce
|
|||
|
the corresponding resulting stack. The Michelson interpreter is a pure
|
|||
|
function: it only builds a result stack from the elements of an initial
|
|||
|
one, without affecting its environment. This semantics is then naturally
|
|||
|
given in what is called a big step form: a symbolic definition of a
|
|||
|
recursive reference interpreter. This definition takes the form of a
|
|||
|
list of rules that cover all the possible inputs of the interpreter
|
|||
|
(program and stack), and describe the computation of the corresponding
|
|||
|
resulting stacks.
|
|||
|
|
|||
|
Rules form and selection
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
The rules have the main following form.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> (syntax pattern) / (initial stack pattern) => (result stack pattern)
|
|||
|
iff (conditions)
|
|||
|
where (recursions)
|
|||
|
|
|||
|
The left hand side of the ``=>`` sign is used for selecting the rule.
|
|||
|
Given a program and an initial stack, one (and only one) rule can be
|
|||
|
selected using the following process. First, the toplevel structure of
|
|||
|
the program must match the syntax pattern. This is quite simple since
|
|||
|
there is only a few non trivial patterns to deal with instruction
|
|||
|
sequences, and the rest is made of trivial pattern that match one
|
|||
|
specific instruction. Then, the initial stack must match the initial
|
|||
|
stack pattern. Finally, some rules add extra conditions over the values
|
|||
|
in the stack that follow the ``iff`` keyword. Sometimes, several rules
|
|||
|
may apply in a given context. In this case, the one that appears first
|
|||
|
in this specification is to be selected. If no rule applies, the result
|
|||
|
is equivalent to the one for the explicit ``FAIL`` instruction. This
|
|||
|
case does not happen on well-typed programs, as explained in the next
|
|||
|
section.
|
|||
|
|
|||
|
The right hand side describes the result of the interpreter if the rule
|
|||
|
applies. It consists in a stack pattern, whose part are either
|
|||
|
constants, or elements of the context (program and initial stack) that
|
|||
|
have been named on the left hand side of the ``=>`` sign.
|
|||
|
|
|||
|
Recursive rules (big step form)
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Sometimes, the result of interpreting a program is derived from the
|
|||
|
result of interpreting another one (as in conditionals or function
|
|||
|
calls). In these cases, the rule contains a clause of the following
|
|||
|
form.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
where (intermediate program) / (intermediate stack) => (partial result)
|
|||
|
|
|||
|
This means that this rules applies in case interpreting the intermediate
|
|||
|
state on the left gives the pattern on the right.
|
|||
|
|
|||
|
The left hand sign of the ``=>`` sign is constructed from elements of
|
|||
|
the initial state or other partial results, and the right hand side
|
|||
|
identify parts that can be used to build the result stack of the rule.
|
|||
|
|
|||
|
If the partial result pattern does not actually match the result of the
|
|||
|
interpretation, then the result of the whole rule is equivalent to the
|
|||
|
one for the explicit ``FAIL`` instruction. Again, this case does not
|
|||
|
happen on well-typed programs, as explained in the next section.
|
|||
|
|
|||
|
Format of patterns
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Code patterns are of one of the following syntactical forms.
|
|||
|
|
|||
|
- ``INSTR`` (an uppercase identifier) is a simple instruction (e.g.
|
|||
|
``DROP``);
|
|||
|
- ``INSTR (arg) ...`` is a compound instruction, whose arguments can be
|
|||
|
code, data or type patterns (e.g. ``PUSH nat 3``) ;
|
|||
|
- ``{ (instr) ; ... }`` is a possibly empty sequence of instructions,
|
|||
|
(e.g. ``IF { SWAP ; DROP } { DROP }``), nested sequences can drop the
|
|||
|
braces ;
|
|||
|
- ``name`` is a pattern that matches any program and names a part of
|
|||
|
the matched program that can be used to build the result ;
|
|||
|
- ``_`` is a pattern that matches any instruction.
|
|||
|
|
|||
|
Stack patterns are of one of the following syntactical forms.
|
|||
|
|
|||
|
- ``[FAIL]`` is the special failed state ;
|
|||
|
- ``[]`` is the empty stack ;
|
|||
|
- ``(top) : (rest)`` is a stack whose top element is matched by the
|
|||
|
data pattern ``(top)`` on the left, and whose remaining elements are
|
|||
|
matched by the stack pattern ``(rest)`` on the right (e.g.
|
|||
|
``x : y : rest``) ;
|
|||
|
- ``name`` is a pattern that matches any stack and names it in order to
|
|||
|
use it to build the result ;
|
|||
|
- ``_`` is a pattern that matches any stack.
|
|||
|
|
|||
|
Data patterns are of one of the following syntactical forms.
|
|||
|
|
|||
|
- integer/natural number literals, (e.g. ``3``) ;
|
|||
|
- string literals, (e.g. ``"contents"``) ;
|
|||
|
- ``Tag`` (capitalized) is a symbolic constant, (e.g. ``Unit``,
|
|||
|
``True``, ``False``) ;
|
|||
|
- ``(Tag (arg) ...)`` tagged constructed data, (e.g. ``(Pair 3 4)``) ;
|
|||
|
- a code pattern for first class code values ;
|
|||
|
- ``name`` to name a value in order to use it to build the result ;
|
|||
|
- ``_`` to match any value.
|
|||
|
|
|||
|
The domain of instruction names, symbolic constants and data
|
|||
|
constructors is fixed by this specification. Michelson does not let the
|
|||
|
programmer introduce its own types.
|
|||
|
|
|||
|
Be aware that the syntax used in the specification may differ a bit from
|
|||
|
the concrete syntax, which is presented in Section IX. In particular,
|
|||
|
some instructions are annotated with types that are not present in the
|
|||
|
concrete language because they are synthesized by the typechecker.
|
|||
|
|
|||
|
Shortcuts
|
|||
|
~~~~~~~~~
|
|||
|
|
|||
|
Sometimes, it is easier to think (and shorter to write) in terms of
|
|||
|
program rewriting than in terms of big step semantics. When it is the
|
|||
|
case, and when both are equivalents, we write rules of the form:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
p / S => S''
|
|||
|
where p' / S' => S''
|
|||
|
|
|||
|
using the following shortcut:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
p / S => p' / S'
|
|||
|
|
|||
|
The concrete language also has some syntax sugar to group some common
|
|||
|
sequences of operations as one. This is described in this specification
|
|||
|
using a simple regular expression style recursive instruction rewriting.
|
|||
|
|
|||
|
II - Introduction to the type system and notations
|
|||
|
--------------------------------------------------
|
|||
|
|
|||
|
This specification describes a type system for Michelson. To make things
|
|||
|
clear, in particular to readers that are not accustomed to reading
|
|||
|
formal programming language specifications, it does not give a
|
|||
|
typechecking or inference algorithm. It only gives an intentional
|
|||
|
definition of what we consider to be well-typed programs. For each
|
|||
|
syntactical form, it describes the stacks that are considered well-typed
|
|||
|
inputs, and the resulting outputs.
|
|||
|
|
|||
|
The type system is sound, meaning that if a program can be given a type,
|
|||
|
then if run on a well-typed input stack, the interpreter will never
|
|||
|
apply an interpretation rule on a stack of unexpected length or
|
|||
|
contents. Also, it will never reach a state where it cannot select an
|
|||
|
appropriate rule to continue the execution. Well-typed programs do not
|
|||
|
block, and do not go wrong.
|
|||
|
|
|||
|
Type notations
|
|||
|
~~~~~~~~~~~~~~
|
|||
|
|
|||
|
The specification introduces notations for the types of values, terms
|
|||
|
and stacks. Apart from a subset of value types that appear in the form
|
|||
|
of type annotations in some places throughout the language, it is
|
|||
|
important to understand that this type language only exists in the
|
|||
|
specification.
|
|||
|
|
|||
|
A stack type can be written:
|
|||
|
|
|||
|
- ``[]`` for the empty stack ;
|
|||
|
- ``(top) : (rest)`` for the stack whose first value has type ``(top)``
|
|||
|
and queue has stack type ``(rest)``.
|
|||
|
|
|||
|
Instructions, programs and primitives of the language are also typed,
|
|||
|
their types are written:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
(type of stack before) -> (type of stack after)
|
|||
|
|
|||
|
The types of values in the stack are written:
|
|||
|
|
|||
|
- ``identifier`` for a primitive data-type (e.g. ``bool``),
|
|||
|
- ``identifier (arg)`` for a parametric data-type with one parameter
|
|||
|
type ``(arg)`` (e.g. ``list nat``),
|
|||
|
- ``identifier (arg) ...`` for a parametric data-type with several
|
|||
|
parameters (e.g. ``map string int``),
|
|||
|
- ``[ (type of stack before) -> (type of stack after) ]`` for a code
|
|||
|
quotation, (e.g. ``[ int : int : [] -> int : [] ]``),
|
|||
|
- ``lambda (arg) (ret)`` is a shortcut for
|
|||
|
``[ (arg) : [] -> (ret) : [] ]``.
|
|||
|
|
|||
|
Meta type variables
|
|||
|
~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
The typing rules introduce meta type variables. To be clear, this has
|
|||
|
nothing to do with polymorphism, which Michelson does not have. These
|
|||
|
variables only live at the specification level, and are used to express
|
|||
|
the consistency between the parts of the program. For instance, the
|
|||
|
typing rule for the ``IF`` construct introduces meta variables to
|
|||
|
express that both branches must have the same type.
|
|||
|
|
|||
|
Here are the notations for meta type variables:
|
|||
|
|
|||
|
- ``'a`` for a type variable,
|
|||
|
- ``'A`` for a stack type variable,
|
|||
|
- ``_`` for an anonymous type or stack type variable.
|
|||
|
|
|||
|
Typing rules
|
|||
|
~~~~~~~~~~~~
|
|||
|
|
|||
|
The system is syntax directed, which means here that it defines a single
|
|||
|
typing rule for each syntax construct. A typing rule restricts the type
|
|||
|
of input stacks that are authorized for this syntax construct, links the
|
|||
|
output type to the input type, and links both of them to the
|
|||
|
subexpressions when needed, using meta type variables.
|
|||
|
|
|||
|
Typing rules are of the form:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
(syntax pattern)
|
|||
|
:: (type of stack before) -> (type of stack after) [rule-name]
|
|||
|
iff (premises)
|
|||
|
|
|||
|
Where premises are typing requirements over subprograms or values in the
|
|||
|
stack, both of the form ``(x) :: (type)``, meaning that value ``(x)``
|
|||
|
must have type ``(type)``.
|
|||
|
|
|||
|
A program is shown well-typed if one can find an instance of a rule that
|
|||
|
applies to the toplevel program expression, with all meta type variables
|
|||
|
replaced by non variable type expressions, and of which all type
|
|||
|
requirements in the premises can be proven well-typed in the same
|
|||
|
manner. For the reader unfamiliar with formal type systems, this is
|
|||
|
called building a typing derivation.
|
|||
|
|
|||
|
Here is an example typing derivation on a small program that computes
|
|||
|
``(x+5)*10`` for a given input ``x``, obtained by instantiating the
|
|||
|
typing rules for instructions ``PUSH``, ``ADD`` and for the sequence, as
|
|||
|
found in the next sections. When instantiating, we replace the ``iff``
|
|||
|
with ``by``.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
{ PUSH nat 5 ; ADD ; PUSH nat 10 ; SWAP ; MUL }
|
|||
|
:: [ nat : [] -> nat : [] ]
|
|||
|
by { PUSH nat 5 ; ADD }
|
|||
|
:: [ nat : [] -> nat : [] ]
|
|||
|
by PUSH nat 5
|
|||
|
:: [ nat : [] -> nat : nat : [] ]
|
|||
|
by 5 :: nat
|
|||
|
and ADD
|
|||
|
:: [ nat : nat : [] -> nat : [] ]
|
|||
|
and { PUSH nat 10 ; SWAP ; MUL }
|
|||
|
:: [ nat : [] -> nat : [] ]
|
|||
|
by PUSH nat 10
|
|||
|
:: [ nat : [] -> nat : nat : [] ]
|
|||
|
by 10 :: nat
|
|||
|
and { SWAP ; MUL }
|
|||
|
:: [ nat : nat : [] -> nat : [] ]
|
|||
|
by SWAP
|
|||
|
:: [ nat : nat : [] -> nat : nat : [] ]
|
|||
|
and MUL
|
|||
|
:: [ nat : nat : [] -> nat : [] ]
|
|||
|
|
|||
|
Producing such a typing derivation can be done in a number of manners,
|
|||
|
such as unification or abstract interpretation. In the implementation of
|
|||
|
Michelson, this is done by performing a recursive symbolic evaluation of
|
|||
|
the program on an abstract stack representing the input type provided by
|
|||
|
the programmer, and checking that the resulting symbolic stack is
|
|||
|
consistent with the expected result, also provided by the programmer.
|
|||
|
|
|||
|
Annotations
|
|||
|
~~~~~~~~~~~
|
|||
|
|
|||
|
Most Instructions in the language can optionally take an annotation.
|
|||
|
Annotations allow you to better track data, on the stack and within
|
|||
|
pairs and unions.
|
|||
|
|
|||
|
If added on the components of a type, the annotation will be propagated
|
|||
|
by the typechecker througout access instructions.
|
|||
|
|
|||
|
Annotating an instruction that produces a value on the stack will
|
|||
|
rewrite the annotation an the toplevel of its type.
|
|||
|
|
|||
|
Trying to annotate an instruction that does not produce a value will
|
|||
|
result in a typechecking error.
|
|||
|
|
|||
|
At join points in the program (``IF``, ``IF_LEFT``, ``IF_CONS``,
|
|||
|
``IF_NONE``, ``LOOP``), annotations must be compatible. Annotations are
|
|||
|
compatible if both elements are annotated with the same annotation or if
|
|||
|
at least one of the values/types is unannotated.
|
|||
|
|
|||
|
Stack visualization tools like the Michelson’s Emacs mode print
|
|||
|
annotations associated with each type in the program, as propagated by
|
|||
|
the typechecker. This is useful as a debugging aid.
|
|||
|
|
|||
|
Side note
|
|||
|
~~~~~~~~~
|
|||
|
|
|||
|
As with most type systems, it is incomplete. There are programs that
|
|||
|
cannot be given a type in this type system, yet that would not go wrong
|
|||
|
if executed. This is a necessary compromise to make the type system
|
|||
|
usable. Also, it is important to remember that the implementation of
|
|||
|
Michelson does not accept as many programs as the type system describes
|
|||
|
as well-typed. This is because the implementation uses a simple single
|
|||
|
pass typechecking algorithm, and does not handle any form of
|
|||
|
polymorphism.
|
|||
|
|
|||
|
III - Core data types and notations
|
|||
|
-----------------------------------
|
|||
|
|
|||
|
- ``string``, ``nat``, ``int``: The core primitive constant types.
|
|||
|
|
|||
|
- ``bool``: The type for booleans whose values are ``True`` and
|
|||
|
``False``
|
|||
|
|
|||
|
- ``unit``: The type whose only value is ``Unit``, to use as a
|
|||
|
placeholder when some result or parameter is non necessary. For
|
|||
|
instance, when the only goal of a contract is to update its storage.
|
|||
|
|
|||
|
- ``list (t)``: A single, immutable, homogeneous linked list, whose
|
|||
|
elements are of type ``(t)``, and that we note ``{}`` for the empty
|
|||
|
list or ``{ first ; ... }``. In the semantics, we use chevrons to
|
|||
|
denote a subsequence of elements. For instance ``{ head ; <tail> }``.
|
|||
|
|
|||
|
- ``pair (l) (r)``: A pair of values ``a`` and ``b`` of types ``(l)``
|
|||
|
and ``(r)``, that we write ``(Pair a b)``.
|
|||
|
|
|||
|
- ``option (t)``: Optional value of type ``(t)`` that we note ``None``
|
|||
|
or ``(Some v)``.
|
|||
|
|
|||
|
- ``or (l) (r)``: A union of two types: a value holding either a value
|
|||
|
``a`` of type ``(l)`` or a value ``b`` of type ``(r)``, that we write
|
|||
|
``(Left a)`` or ``(Right b)``.
|
|||
|
|
|||
|
- ``set (t)``: Immutable sets of values of type ``(t)`` that we note as
|
|||
|
lists ``{ item ; ... }``, of course with their elements unique, and
|
|||
|
sorted.
|
|||
|
|
|||
|
- ``map (k) (t)``: Immutable maps from keys of type ``(k)`` of values
|
|||
|
of type ``(t)`` that we note ``{ Elt key value ; ... }``, with keys
|
|||
|
sorted.
|
|||
|
|
|||
|
IV - Core instructions
|
|||
|
----------------------
|
|||
|
|
|||
|
Control structures
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``FAIL``: Explicitly abort the current program.
|
|||
|
|
|||
|
:: \_ -> \_
|
|||
|
|
|||
|
This special instruction is callable in any context, since it does
|
|||
|
not use its input stack (first rule below), and makes the output
|
|||
|
useless since all subsequent instruction will simply ignore their
|
|||
|
usual semantics to propagate the failure up to the main result
|
|||
|
(second rule below). Its type is thus completely generic.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> FAIL / _ => [FAIL]
|
|||
|
> _ / [FAIL] => [FAIL]
|
|||
|
|
|||
|
- ``{ I ; C }``: Sequence.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'A -> 'C
|
|||
|
iff I :: [ 'A -> 'B ]
|
|||
|
C :: [ 'B -> 'C ]
|
|||
|
|
|||
|
> I ; C / SA => SC
|
|||
|
where I / SA => SB
|
|||
|
and C / SB => SC
|
|||
|
|
|||
|
- ``IF bt bf``: Conditional branching.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : 'A -> 'B
|
|||
|
iff bt :: [ 'A -> 'B ]
|
|||
|
bf :: [ 'A -> 'B ]
|
|||
|
|
|||
|
> IF bt bf / True : S => bt / S
|
|||
|
> IF bt bf / False : S => bf / S
|
|||
|
|
|||
|
- ``LOOP body``: A generic loop.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : 'A -> 'A
|
|||
|
iff body :: [ 'A -> bool : 'A ]
|
|||
|
|
|||
|
> LOOP body / True : S => body ; LOOP body / S
|
|||
|
> LOOP body / False : S => S
|
|||
|
|
|||
|
- ``LOOP_LEFT body``: A loop with an accumulator
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (or 'a 'b) : 'A -> 'A
|
|||
|
iff body :: [ 'a : 'A -> (or 'a 'b) : 'A ]
|
|||
|
|
|||
|
> LOOP body / (Left a) : S => body ; LOOP body / (or 'a 'b) : S
|
|||
|
> LOOP body / (Right b) : S => b : S
|
|||
|
|
|||
|
- ``DIP code``: Runs code protecting the top of the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'b : 'A -> 'b : 'C
|
|||
|
iff code :: [ 'A -> 'C ]
|
|||
|
|
|||
|
> DIP code / x : S => x : S'
|
|||
|
where code / S => S'
|
|||
|
|
|||
|
- ``EXEC``: Execute a function from the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : lambda 'a 'b : 'C -> 'b : 'C
|
|||
|
|
|||
|
> EXEC / a : f : S => r : S
|
|||
|
where f / a : [] => r : []
|
|||
|
|
|||
|
Stack operations
|
|||
|
~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``DROP``: Drop the top element of the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: _ : 'A -> 'A
|
|||
|
|
|||
|
> DROP / _ : S => S
|
|||
|
|
|||
|
- ``DUP``: Duplicate the top of the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'A -> 'a : 'a : 'A
|
|||
|
|
|||
|
> DUP / x : S => x : x : S
|
|||
|
|
|||
|
- ``SWAP``: Exchange the top two elements of the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'b : 'A -> 'b : 'a : 'A
|
|||
|
|
|||
|
> SWAP / x : y : S => y : x : S
|
|||
|
|
|||
|
- ``PUSH 'a x``: Push a constant value of a given type onto the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'A -> 'a : 'A
|
|||
|
iff x :: 'a
|
|||
|
|
|||
|
> PUSH 'a x / S => x : S
|
|||
|
|
|||
|
- ``UNIT``: Push a unit value onto the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'A -> unit : 'A
|
|||
|
|
|||
|
> UNIT / S => Unit : S
|
|||
|
|
|||
|
- ``LAMBDA 'a 'b code``: Push a lambda with given parameter and return
|
|||
|
types onto the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'A -> (lambda 'a 'b) : 'A
|
|||
|
|
|||
|
Generic comparison
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Comparison only works on a class of types that we call comparable. A
|
|||
|
``COMPARE`` operation is defined in an ad hoc way for each comparable
|
|||
|
type, but the result of compare is always an ``int``, which can in turn
|
|||
|
be checked in a generic manner using the following combinators. The
|
|||
|
result of ``COMPARE`` is ``0`` if the top two elements of the stack are
|
|||
|
equal, negative if the first element in the stack is less than the
|
|||
|
second, and positive otherwise.
|
|||
|
|
|||
|
- ``EQ``: Checks that the top of the stack EQuals zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> EQ ; C / 0 : S => C / True : S
|
|||
|
> EQ ; C / _ : S => C / False : S
|
|||
|
|
|||
|
- ``NEQ``: Checks that the top of the stack does Not EQual zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> NEQ ; C / 0 : S => C / False : S
|
|||
|
> NEQ ; C / _ : S => C / True : S
|
|||
|
|
|||
|
- ``LT``: Checks that the top of the stack is Less Than zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> LT ; C / v : S => C / True : S iff v < 0
|
|||
|
> LT ; C / _ : S => C / False : S
|
|||
|
|
|||
|
- ``GT``: Checks that the top of the stack is Greater Than zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> GT ; C / v : S => C / True : S iff v > 0
|
|||
|
> GT ; C / _ : S => C / False : S
|
|||
|
|
|||
|
- ``LE``: Checks that the top of the stack is Less Than of Equal to
|
|||
|
zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> LE ; C / v : S => C / True : S iff v <= 0
|
|||
|
> LE ; C / _ : S => C / False : S
|
|||
|
|
|||
|
- ``GE``: Checks that the top of the stack is Greater Than of Equal to
|
|||
|
zero.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> bool : 'S
|
|||
|
|
|||
|
> GE ; C / v : S => C / True : S iff v >= 0
|
|||
|
> GE ; C / _ : S => C / False : S
|
|||
|
|
|||
|
V - Operations
|
|||
|
--------------
|
|||
|
|
|||
|
Operations on booleans
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``OR``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : bool : 'S -> bool : 'S
|
|||
|
|
|||
|
> OR ; C / x : y : S => C / (x | y) : S
|
|||
|
|
|||
|
- ``AND``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : bool : 'S -> bool : 'S
|
|||
|
|
|||
|
> AND ; C / x : y : S => C / (x & y) : S
|
|||
|
|
|||
|
- ``XOR``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : bool : 'S -> bool : 'S
|
|||
|
|
|||
|
> XOR ; C / x : y : S => C / (x ^ y) : S
|
|||
|
|
|||
|
- ``NOT``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: bool : 'S -> bool : 'S
|
|||
|
|
|||
|
> NOT ; C / x : S => C / ~x : S
|
|||
|
|
|||
|
Operations on integers and natural numbers
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Integers and naturals are arbitrary-precision, meaning the only size
|
|||
|
limit is fuel.
|
|||
|
|
|||
|
- ``NEG``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> int : 'S
|
|||
|
:: nat : 'S -> int : 'S
|
|||
|
|
|||
|
> NEG ; C / x : S => C / -x : S
|
|||
|
|
|||
|
- ``ABS``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : 'S -> nat : 'S
|
|||
|
|
|||
|
> ABS ; C / x : S => C / abs (x) : S
|
|||
|
|
|||
|
- ``ADD``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : int : 'S -> int : 'S
|
|||
|
:: int : nat : 'S -> int : 'S
|
|||
|
:: nat : int : 'S -> int : 'S
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> ADD ; C / x : y : S => C / (x + y) : S
|
|||
|
|
|||
|
- ``SUB``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : int : 'S -> int : 'S
|
|||
|
:: int : nat : 'S -> int : 'S
|
|||
|
:: nat : int : 'S -> int : 'S
|
|||
|
:: nat : nat : 'S -> int : 'S
|
|||
|
|
|||
|
> SUB ; C / x : y : S => C / (x - y) : S
|
|||
|
|
|||
|
- ``MUL``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : int : 'S -> int : 'S
|
|||
|
:: int : nat : 'S -> int : 'S
|
|||
|
:: nat : int : 'S -> int : 'S
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> MUL ; C / x : y : S => C / (x * y) : S
|
|||
|
|
|||
|
- ``EDIV`` Perform Euclidian division
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : int : 'S -> option (pair int nat) : 'S
|
|||
|
:: int : nat : 'S -> option (pair int nat) : 'S
|
|||
|
:: nat : int : 'S -> option (pair int nat) : 'S
|
|||
|
:: nat : nat : 'S -> option (pair nat nat) : 'S
|
|||
|
|
|||
|
> EDIV ; C / x : 0 : S => C / None
|
|||
|
> EDIV ; C / x : y : S => C / Some (Pair (x / y) (x % y)) : S
|
|||
|
|
|||
|
Bitwise logical operators are also available on unsigned integers.
|
|||
|
|
|||
|
- ``OR``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> OR ; C / x : y : S => C / (x | y) : S
|
|||
|
|
|||
|
- ``AND``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> AND ; C / x : y : S => C / (x & y) : S
|
|||
|
|
|||
|
- ``XOR``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> XOR ; C / x : y : S => C / (x ^ y) : S
|
|||
|
|
|||
|
- ``NOT`` The return type of ``NOT`` is an ``int`` and not a ``nat``.
|
|||
|
This is because the sign is also negated. The resulting integer is
|
|||
|
computed using two’s complement. For instance, the boolean negation
|
|||
|
of ``0`` is ``-1``.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : 'S -> int : 'S
|
|||
|
:: int : 'S -> int : 'S
|
|||
|
|
|||
|
> NOT ; C / x : S => C / ~x : S
|
|||
|
|
|||
|
- ``LSL``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> LSL ; C / x : s : S => C / (x << s) : S
|
|||
|
iff s <= 256
|
|||
|
> LSL ; C / x : s : S => [FAIL]
|
|||
|
|
|||
|
- ``LSR``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: nat : nat : 'S -> nat : 'S
|
|||
|
|
|||
|
> LSR ; C / x : s : S => C / (x >>> s) : S
|
|||
|
|
|||
|
- ``COMPARE``: Integer/natural comparison
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: int : int : 'S -> int : 'S
|
|||
|
:: nat : nat : 'S -> int : 'S
|
|||
|
|
|||
|
> COMPARE ; C / x : y : S => C / -1 : S iff x < y
|
|||
|
> COMPARE ; C / x : y : S => C / 0 : S iff x = y
|
|||
|
> COMPARE ; C / x : y : S => C / 1 : S iff x > y
|
|||
|
|
|||
|
Operations on strings
|
|||
|
~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Strings are mostly used for naming things without having to rely on
|
|||
|
external ID databases. So what can be done is basically use string
|
|||
|
constants as is, concatenate them and use them as keys.
|
|||
|
|
|||
|
- ``CONCAT``: String concatenation.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: string : string : 'S -> string : 'S
|
|||
|
|
|||
|
- ``COMPARE``: Lexicographic comparison.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: string : string : 'S -> int : 'S
|
|||
|
|
|||
|
Operations on pairs
|
|||
|
~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``PAIR``: Build a pair from the stack’s top two elements.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'b : 'S -> pair 'a 'b : 'S
|
|||
|
|
|||
|
> PAIR ; C / a : b : S => C / (Pair a b) : S
|
|||
|
|
|||
|
- ``CAR``: Access the left part of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: pair 'a _ : 'S -> 'a : 'S
|
|||
|
|
|||
|
> Car ; C / (Pair a _) : S => C / a : S
|
|||
|
|
|||
|
- ``CDR``: Access the right part of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: pair _ 'b : 'S -> 'b : 'S
|
|||
|
|
|||
|
> Car ; C / (Pair _ b) : S => C / b : S
|
|||
|
|
|||
|
Operations on sets
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``EMPTY_SET 'elt``: Build a new, empty set for elements of a given
|
|||
|
type.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> set 'elt : 'S
|
|||
|
|
|||
|
The `'elt` type must be comparable (the `COMPARE` primitive must
|
|||
|
be defined over it).
|
|||
|
|
|||
|
- ``MEM``: Check for the presence of an element in a set.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'elt : set 'elt : 'S -> bool : 'S
|
|||
|
|
|||
|
- ``UPDATE``: Inserts or removes an element in a set, replacing a
|
|||
|
previous value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'elt : bool : set 'elt : 'S -> set 'elt : 'S
|
|||
|
|
|||
|
- ``MAP``: Apply a function on a map and return the map of results
|
|||
|
under the same bindings.
|
|||
|
|
|||
|
The ``'b`` type must be comparable (the ``COMPARE`` primitive must be
|
|||
|
defined over it).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda 'elt 'b : set 'elt : 'S -> set 'b : 'S
|
|||
|
|
|||
|
- ``MAP body``: Apply the body expression to each element of the set.
|
|||
|
The body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (set 'elt) : 'A -> (set 'b) : 'A
|
|||
|
iff body :: [ 'elt : 'A -> 'b : 'A ]
|
|||
|
|
|||
|
- ``REDUCE``: Apply a function on a set passing the result of each
|
|||
|
application to the next one and return the last.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda (pair 'elt * 'b) 'b : set 'elt : 'b : 'S -> 'b : 'S
|
|||
|
|
|||
|
- ``ITER body``: Apply the body expression to each element of a set.
|
|||
|
The body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (set 'elt) : 'A -> 'A
|
|||
|
iff body :: [ 'elt : 'A -> 'A ]
|
|||
|
|
|||
|
- ``SIZE``: Get the cardinality of the set.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: set 'elt : 'S -> nat : 'S
|
|||
|
|
|||
|
Operations on maps
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``EMPTY_MAP 'key 'val``: Build a new, empty map.
|
|||
|
|
|||
|
The ``'key`` type must be comparable (the ``COMPARE`` primitive must
|
|||
|
be defined over it).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> map 'key 'val : 'S
|
|||
|
|
|||
|
- ``GET``: Access an element in a map, returns an optional value to be
|
|||
|
checked with ``IF_SOME``.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'key : map 'key 'val : 'S -> option 'val : 'S
|
|||
|
|
|||
|
- ``MEM``: Check for the presence of an element in a map.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'key : map 'key 'val : 'S -> bool : 'S
|
|||
|
|
|||
|
- ``UPDATE``: Assign or remove an element in a map.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'key : option 'val : map 'key 'val : 'S -> map 'key 'val : 'S
|
|||
|
|
|||
|
- ``MAP``: Apply a function on a map and return the map of results
|
|||
|
under the same bindings.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda (pair 'key 'val) 'b : map 'key 'val : 'S -> map 'key 'b : 'S
|
|||
|
|
|||
|
- ``MAP body``: Apply the body expression to each element of a map. The
|
|||
|
body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (map 'key 'val) : 'A -> (map 'key 'b) : 'A
|
|||
|
iff body :: [ (pair 'key 'val) : 'A -> 'b : 'A ]
|
|||
|
|
|||
|
- ``REDUCE``: Apply a function on a map passing the result of each
|
|||
|
application to the next one and return the last.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda (pair (pair 'key 'val) 'b) 'b : map 'key 'val : 'b : 'S -> 'b : 'S
|
|||
|
|
|||
|
- ``ITER body``: Apply the body expression to each element of a map.
|
|||
|
The body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (map 'elt 'val) : 'A -> 'A
|
|||
|
iff body :: [ (pair 'elt 'val) : 'A -> 'A ]
|
|||
|
|
|||
|
- ``SIZE``: Get the cardinality of the map.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: map 'key 'val : 'S -> nat : 'S
|
|||
|
|
|||
|
Operations on optional values
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``SOME``: Pack a present optional value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'S -> 'a? : 'S
|
|||
|
|
|||
|
> SOME ; C / v :: S => C / (Some v) :: S
|
|||
|
|
|||
|
- ``NONE 'a``: The absent optional value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> 'a? : 'S
|
|||
|
|
|||
|
> NONE ; C / v :: S => C / None :: S
|
|||
|
|
|||
|
- ``IF_NONE bt bf``: Inspect an optional value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a? : 'S -> 'b : 'S
|
|||
|
iff bt :: [ 'S -> 'b : 'S]
|
|||
|
bf :: [ 'a : 'S -> 'b : 'S]
|
|||
|
|
|||
|
> IF_NONE ; C / (None) : S => bt ; C / S
|
|||
|
> IF_NONE ; C / (Some a) : S => bf ; C / a : S
|
|||
|
|
|||
|
Operations on unions
|
|||
|
~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``LEFT 'b``: Pack a value in a union (left case).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'S -> or 'a 'b : 'S
|
|||
|
|
|||
|
> LEFT ; C / v :: S => C / (Left v) :: S
|
|||
|
|
|||
|
- ``RIGHT 'a``: Pack a value in a union (right case).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'b : 'S -> or 'a 'b : 'S
|
|||
|
|
|||
|
> RIGHT ; C / v :: S => C / (Right v) :: S
|
|||
|
|
|||
|
- ``IF_LEFT bt bf``: Inspect a value of a variant type.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: or 'a 'b : 'S -> 'c : 'S
|
|||
|
iff bt :: [ 'a : 'S -> 'c : 'S]
|
|||
|
bf :: [ 'b : 'S -> 'c : 'S]
|
|||
|
|
|||
|
> IF_LEFT ; C / (Left a) : S => bt ; C / a : S
|
|||
|
> IF_LEFT ; C / (Right b) : S => bf ; C / b : S
|
|||
|
|
|||
|
- ``IF_RIGHT bt bf``: Inspect a value of a variant type.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: or 'a 'b : 'S -> 'c : 'S
|
|||
|
iff bt :: [ 'b : 'S -> 'c : 'S]
|
|||
|
bf :: [ 'a : 'S -> 'c : 'S]
|
|||
|
|
|||
|
> IF_LEFT ; C / (Right b) : S => bt ; C / b : S
|
|||
|
> IF_RIGHT ; C / (Left a) : S => bf ; C / a : S
|
|||
|
|
|||
|
Operations on lists
|
|||
|
~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``CONS``: Prepend an element to a list.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : list 'a : 'S -> list 'a : 'S
|
|||
|
|
|||
|
> CONS ; C / a : { <l> } : S => C / { a ; <l> } : S
|
|||
|
|
|||
|
- ``NIL 'a``: The empty list.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> list 'a : 'S
|
|||
|
|
|||
|
> NIL ; C / S => C / {} : S
|
|||
|
|
|||
|
- ``IF_CONS bt bf``: Inspect an optional value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: list 'a : 'S -> 'b : 'S
|
|||
|
iff bt :: [ 'a : list 'a : 'S -> 'b : 'S]
|
|||
|
bf :: [ 'S -> 'b : 'S]
|
|||
|
|
|||
|
> IF_CONS ; C / { a ; <rest> } : S => bt ; C / a : { <rest> } : S
|
|||
|
> IF_CONS ; C / {} : S => bf ; C / S
|
|||
|
|
|||
|
- ``MAP``: Apply a function on a list from left to right and return the
|
|||
|
list of results in the same order.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda 'a 'b : list 'a : 'S -> list 'b : 'S
|
|||
|
|
|||
|
- ``MAP body``: Apply the body expression to each element of the list.
|
|||
|
The body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (list 'elt) : 'A -> (list 'b) : 'A
|
|||
|
iff body :: [ 'elt : 'A -> 'b : 'A ]
|
|||
|
|
|||
|
- ``REDUCE``: Apply a function on a list from left to right passing the
|
|||
|
result of each application to the next one and return the last.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: lambda (pair 'a 'b) 'b : list 'a : 'b : 'S -> 'b : 'S
|
|||
|
|
|||
|
- ``SIZE``: Get the number of elements in the list.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: list 'elt : 'S -> nat : 'S
|
|||
|
|
|||
|
- ``ITER body``: Apply the body expression to each element of a list.
|
|||
|
The body sequence has access to the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: (list 'elt) : 'A -> 'A
|
|||
|
iff body :: [ 'elt : 'A -> 'A ]
|
|||
|
|
|||
|
VI - Domain specific data types
|
|||
|
-------------------------------
|
|||
|
|
|||
|
- ``timestamp``: Dates in the real world.
|
|||
|
|
|||
|
- ``tez``: A specific type for manipulating tokens.
|
|||
|
|
|||
|
- ``contract 'param 'result``: A contract, with the type of its code.
|
|||
|
|
|||
|
- ``key``: A public cryptography key.
|
|||
|
|
|||
|
- ``key_hash``: The hash of a public cryptography key.
|
|||
|
|
|||
|
- ``signature``: A cryptographic signature.
|
|||
|
|
|||
|
VII - Domain specific operations
|
|||
|
--------------------------------
|
|||
|
|
|||
|
Operations on timestamps
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Current Timestamps can be obtained by the ``NOW`` operation, or
|
|||
|
retrieved from script parameters or globals.
|
|||
|
|
|||
|
- ``ADD`` Increment / decrement a timestamp of the given number of
|
|||
|
seconds.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: timestamp : int : 'S -> timestamp : 'S
|
|||
|
:: int : timestamp : 'S -> timestamp : 'S
|
|||
|
|
|||
|
> ADD ; C / seconds : nat (t) : S => C / (seconds + t) : S
|
|||
|
> ADD ; C / nat (t) : seconds : S => C / (t + seconds) : S
|
|||
|
|
|||
|
- ``SUB`` Subtract a number of seconds from a timestamp.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: timestamp : int : 'S -> timestamp : 'S
|
|||
|
|
|||
|
> SUB ; C / seconds : nat (t) : S => C / (seconds - t) : S
|
|||
|
|
|||
|
- ``SUB`` Subtract two timestamps.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: timestamp : timestamp : 'S -> int : 'S
|
|||
|
|
|||
|
> SUB ; C / seconds(t1) : seconds(t2) : S => C / (t1 - t2) : S
|
|||
|
|
|||
|
- ``COMPARE``: Timestamp comparison.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: timestamp : timestamp : 'S -> int : 'S
|
|||
|
|
|||
|
Operations on Tez
|
|||
|
~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Tez are internally represented by a 64 bit signed integer. There are
|
|||
|
restrictions to prevent creating a negative amount of tez. Operations
|
|||
|
are limited to prevent overflow and mixing them with other numerical
|
|||
|
types by mistake. They are also mandatory checked for under/overflows.
|
|||
|
|
|||
|
- ``ADD``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: tez : tez : 'S -> tez : 'S
|
|||
|
|
|||
|
> ADD ; C / x : y : S => [FAIL] on overflow
|
|||
|
> ADD ; C / x : y : S => C / (x + y) : S
|
|||
|
|
|||
|
- ``SUB``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: tez : tez : 'S -> tez : 'S
|
|||
|
|
|||
|
> SUB ; C / x : y : S => [FAIL] iff x < y
|
|||
|
> SUB ; C / x : y : S => C / (x - y) : S
|
|||
|
|
|||
|
- ``MUL``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: tez : nat : 'S -> tez : 'S
|
|||
|
:: nat : tez : 'S -> tez : 'S
|
|||
|
|
|||
|
> MUL ; C / x : y : S => [FAIL] on overflow
|
|||
|
> MUL ; C / x : y : S => C / (x * y) : S
|
|||
|
|
|||
|
- ``EDIV``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: tez : nat : 'S -> option (pair tez tez) : 'S
|
|||
|
:: tez : tez : 'S -> option (pair nat tez) : 'S
|
|||
|
|
|||
|
> EDIV ; C / x : 0 : S => C / None
|
|||
|
> EDIV ; C / x : y : S => C / Some (Pair (x / y) (x % y)) : S
|
|||
|
|
|||
|
- ``COMPARE``:
|
|||
|
|
|||
|
:: tez : tez : ’S -> int : ’S
|
|||
|
|
|||
|
Operations on contracts
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``MANAGER``: Access the manager of a contract.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: contract 'p 'r : 'S -> key_hash : 'S
|
|||
|
|
|||
|
- ``CREATE_CONTRACT``: Forge a new contract.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key_hash : key_hash? : bool : bool : tez : lambda (pair 'p 'g) (pair 'r 'g) : 'g : 'S
|
|||
|
-> contract 'p 'r : 'S
|
|||
|
|
|||
|
As with non code-emitted originations the contract code takes as
|
|||
|
argument the transferred amount plus an ad-hoc argument and returns an
|
|||
|
ad-hoc value. The code also takes the global data and returns it to be
|
|||
|
stored and retrieved on the next transaction. These data are initialized
|
|||
|
by another parameter. The calling convention for the code is as follows:
|
|||
|
``(Pair arg globals)) -> (Pair ret globals)``, as extrapolatable from
|
|||
|
the instruction type. The first parameters are the manager, optional
|
|||
|
delegate, then spendable and delegatable flags and finally the initial
|
|||
|
amount taken from the currently executed contract. The contract is
|
|||
|
returned as a first class value to be called immediately or stored.
|
|||
|
|
|||
|
- ``CREATE_CONTRACT { storage 'g ; parameter 'p ; return 'r ; code ... }``:
|
|||
|
Forge a new contract from a literal.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key_hash : key_hash? : bool : bool : tez : 'g : 'S
|
|||
|
-> contract 'p 'r : 'S
|
|||
|
|
|||
|
Originate a contract based on a literal. This is currently the only way
|
|||
|
to include transfers inside of an originated contract. The first
|
|||
|
parameters are the manager, optional delegate, then spendable and
|
|||
|
delegatable flags and finally the initial amount taken from the
|
|||
|
currently executed contract. The contract is returned as a first class
|
|||
|
value to be called immediately or stored.
|
|||
|
|
|||
|
- ``CREATE_ACCOUNT``: Forge an account (a contract without code).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key_hash : key_hash? : bool : tez : 'S -> contract unit unit : 'S
|
|||
|
|
|||
|
Take as argument the manager, optional delegate, the delegatable flag
|
|||
|
and finally the initial amount taken from the currently executed
|
|||
|
contract.
|
|||
|
|
|||
|
- ``TRANSFER_TOKENS``: Forge and evaluate a transaction.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'p : tez : contract 'p 'r : 'g : [] -> 'r : 'g : []
|
|||
|
|
|||
|
The parameter and return value must be consistent with the ones expected
|
|||
|
by the contract, unit for an account. To preserve the global consistency
|
|||
|
of the system, the current contract’s storage must be updated before
|
|||
|
passing the control to another script. For this, the script must put the
|
|||
|
partially updated storage on the stack (’g is the type of the contract’s
|
|||
|
storage). If a recursive call to the current contract happened, the
|
|||
|
updated storage is put on the stack next to the return value. Nothing
|
|||
|
else can remain on the stack during a nested call. If some local values
|
|||
|
have to be kept for after the nested call, they have to be stored
|
|||
|
explicitly in a transient part of the storage. A trivial example of that
|
|||
|
is to reserve a boolean in the storage, initialized to false, reset to
|
|||
|
false at the end of each contract execution, and set to true during a
|
|||
|
nested call. This thus gives an easy way for a contract to prevent
|
|||
|
recursive call (the contract just fails if the boolean is true).
|
|||
|
|
|||
|
- ``BALANCE``: Push the current amount of tez of the current contract.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> tez :: 'S
|
|||
|
|
|||
|
- ``SOURCE 'p 'r``: Push the source contract of the current
|
|||
|
transaction.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> contract 'p 'r :: 'S
|
|||
|
|
|||
|
- ``SELF``: Push the current contract.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> contract 'p 'r :: 'S
|
|||
|
where contract 'p 'r is the type of the current contract
|
|||
|
|
|||
|
- ``AMOUNT``: Push the amount of the current transaction.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> tez :: 'S
|
|||
|
|
|||
|
- ``DEFAULT_ACCOUNT``: Return a default contract with the given
|
|||
|
public/private key pair. Any funds deposited in this contract can
|
|||
|
immediately be spent by the holder of the private key. This contract
|
|||
|
cannot execute Michelson code and will always exist on the
|
|||
|
blockchain.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key_hash : 'S -> contract unit unit :: 'S
|
|||
|
|
|||
|
Special operations
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``STEPS_TO_QUOTA``: Push the remaining steps before the contract
|
|||
|
execution must terminate.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> nat :: 'S
|
|||
|
|
|||
|
- ``NOW``: Push the timestamp of the block whose validation triggered
|
|||
|
this execution (does not change during the execution of the
|
|||
|
contract).
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'S -> timestamp :: 'S
|
|||
|
|
|||
|
Cryptographic primitives
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
- ``HASH_KEY``: Compute the b58check of a public key.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key : 'S -> key_hash : 'S
|
|||
|
|
|||
|
- ``H``: Compute a cryptographic hash of the value contents using the
|
|||
|
Blake2B cryptographic hash function.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a : 'S -> string : 'S
|
|||
|
|
|||
|
- ``CHECK_SIGNATURE``: Check that a sequence of bytes has been signed
|
|||
|
with a given key.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key : pair signature string : 'S -> bool : 'S
|
|||
|
|
|||
|
- ``COMPARE``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: key_hash : key_hash : 'S -> int : 'S
|
|||
|
|
|||
|
VIII - Macros
|
|||
|
-------------
|
|||
|
|
|||
|
In addition to the operations above, several extensions have been added
|
|||
|
to the language’s concrete syntax. If you are interacting with the node
|
|||
|
via RPC, bypassing the client, which expands away these macros, you will
|
|||
|
need to de-surgar them yourself.
|
|||
|
|
|||
|
These macros are designed to be unambiguous and reversible, meaning that
|
|||
|
errors are reported in terms of de-sugared syntax. Below you’ll see
|
|||
|
these macros defined in terms of other syntactic forms. That is how
|
|||
|
these macros are seen by the node.
|
|||
|
|
|||
|
Compare
|
|||
|
~~~~~~~
|
|||
|
|
|||
|
Syntactic sugar exists for merging ``COMPARE`` and comparison
|
|||
|
combinators, and also for branching.
|
|||
|
|
|||
|
- ``CMP{EQ|NEQ|LT|GT|LE|GE}``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> CMP(\op) ; C / S => COMPARE ; (\op) ; C / S
|
|||
|
|
|||
|
- ``IF{EQ|NEQ|LT|GT|LE|GE} bt bf``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> IF(\op) ; C / S => (\op) ; IF bt bf ; C / S
|
|||
|
|
|||
|
- ``IFCMP{EQ|NEQ|LT|GT|LE|GE} bt bf``
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> IFCMP(\op) ; C / S => COMPARE ; (\op) ; IF bt bf ; C / S
|
|||
|
|
|||
|
Assertion Macros
|
|||
|
~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
All assertion operations are syntactic sugar for conditionals with a
|
|||
|
``FAIL`` instruction in the appropriate branch. When possible, use them
|
|||
|
to increase clarity about illegal states.
|
|||
|
|
|||
|
- ``ASSERT``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> IF {} {FAIL}
|
|||
|
|
|||
|
- ``ASSERT_{EQ|NEQ|LT|LE|GT|GE}``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_(\op) => IF(\op) {} {FAIL}
|
|||
|
|
|||
|
- ``ASSERT_CMP{EQ|NEQ|LT|LE|GT|GE}``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_CMP(\op) => IFCMP(\op) {} {FAIL}
|
|||
|
|
|||
|
- ``ASSERT_NONE``: Equivalent to \``.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_NONE => IF_NONE {} {FAIL}
|
|||
|
|
|||
|
- ``ASSERT_SOME``: Equivalent to ``IF_NONE {FAIL} {}``.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_NONE => IF_NONE {FAIL} {}
|
|||
|
|
|||
|
- ``ASSERT_LEFT``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_LEFT => IF_LEFT {} {FAIL}
|
|||
|
|
|||
|
- ``ASSERT_RIGHT``:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> ASSERT_RIGHT => IF_LEFT {FAIL} {}
|
|||
|
|
|||
|
Syntactic Conveniences
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
These are macros are simply more convenient syntax for various common
|
|||
|
operations.
|
|||
|
|
|||
|
- ``DII+P code``: A syntactic sugar for working deeper in the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> DII(\rest=I*)P code / S => DIP (DI(\rest)P code) / S
|
|||
|
|
|||
|
- ``DUU+P``: A syntactic sugar for duplicating the ``n``\ th element of
|
|||
|
the stack.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> DUU(\rest=U*)P / S => DIP (DU(\rest)P) ; SWAP / S
|
|||
|
|
|||
|
- ``P(A*AI)+R``: A syntactic sugar for building nested pairs in bulk.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> P(\fst=A*)AI(\rest=(A*AI)+)R ; C / S => P(\fst)AIR ; P(\rest)R ; C / S
|
|||
|
> PA(\rest=A*)AIR ; C / S => DIP (P(\rest)AIR) ; C / S
|
|||
|
|
|||
|
- ``C[AD]+R``: A syntactic sugar for accessing fields in nested pairs.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> CA(\rest=[AD]+)R ; C / S => CAR ; C(\rest)R ; C / S
|
|||
|
> CD(\rest=[AD]+)R ; C / S => CDR ; C(\rest)R ; C / S
|
|||
|
|
|||
|
- ``IF_SOME bt bf``: Inspect an optional value.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
:: 'a? : 'S -> 'b : 'S
|
|||
|
iff bt :: [ 'a : 'S -> 'b : 'S]
|
|||
|
bf :: [ 'S -> 'b : 'S]
|
|||
|
|
|||
|
> IF_SOME ; C / (Some a) : S => bt ; C / a : S
|
|||
|
> IF_SOME ; C / (None) : S => bf ; C / S
|
|||
|
|
|||
|
- ``SET_CAR``: Set the first value of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> SET_CAR => CDR ; SWAP ; PAIR
|
|||
|
|
|||
|
- ``SET_CDR``: Set the first value of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> SET_CDR => CAR ; PAIR
|
|||
|
|
|||
|
- ``SET_C[AD]+R``: A syntactic sugar for setting fields in nested
|
|||
|
pairs.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> SET_CA(\rest=[AD]+)R ; C / S =>
|
|||
|
{ DUP ; DIP { CAR ; SET_C(\rest)R } ; CDR ; SWAP ; PAIR } ; C / S
|
|||
|
> SET_CD(\rest=[AD]+)R ; C / S =>
|
|||
|
{ DUP ; DIP { CDR ; SET_C(\rest)R } ; CAR ; PAIR } ; C / S
|
|||
|
|
|||
|
- ``MAP_CAR`` code: Transform the first value of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> SET_CAR => DUP ; CDR ; SWAP ; code ; CAR ; PAIR
|
|||
|
|
|||
|
- ``MAP_CDR`` code: Transform the first value of a pair.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> SET_CDR => DUP ; CDR ; code ; SWAP ; CAR ; PAIR
|
|||
|
|
|||
|
- ``MAP_C[AD]+R`` code: A syntactic sugar for transforming fields in
|
|||
|
nested pairs.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
> MAP_CA(\rest=[AD]+)R ; C / S =>
|
|||
|
{ DUP ; DIP { CAR ; MAP_C(\rest)R code } ; CDR ; SWAP ; PAIR } ; C / S
|
|||
|
> MAP_CD(\rest=[AD]+)R ; C / S =>
|
|||
|
{ DUP ; DIP { CDR ; MAP_C(\rest)R code } ; CAR ; PAIR } ; C / S
|
|||
|
|
|||
|
IX - Concrete syntax
|
|||
|
--------------------
|
|||
|
|
|||
|
The concrete language is very close to the formal notation of the
|
|||
|
specification. Its structure is extremely simple: an expression in the
|
|||
|
language can only be one of the four following constructs.
|
|||
|
|
|||
|
1. An integer.
|
|||
|
2. A character string.
|
|||
|
3. The application of a primitive to a sequence of expressions.
|
|||
|
4. A sequence of expressions.
|
|||
|
|
|||
|
This simple four cases notation is called Micheline.
|
|||
|
|
|||
|
Constants
|
|||
|
~~~~~~~~~
|
|||
|
|
|||
|
There are two kinds of constants:
|
|||
|
|
|||
|
1. Integers or naturals in decimal (no prefix), hexadecimal (0x prefix),
|
|||
|
octal (0o prefix) or binary (0b prefix).
|
|||
|
2. Strings with usual escapes ``\n``, ``\t``, ``\b``, ``\r``, ``\\``,
|
|||
|
``\"``. The encoding of a Michelson source file must be UTF-8, and
|
|||
|
non-ASCII characters can only appear in comments. No line break can
|
|||
|
appear in a string. Any non-printable characters must be escaped
|
|||
|
using two hexadecimal characters, as in ``\xHH`` or the
|
|||
|
predefine escape sequences above..
|
|||
|
|
|||
|
Primitive applications
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
A primitive application is a name followed by arguments
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
prim arg1 arg2
|
|||
|
|
|||
|
When a primitive application is the argument to another primitive
|
|||
|
application, it must be wrapped with parentheses.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
prim (prim1 arg11 arg12) (prim2 arg21 arg22)
|
|||
|
|
|||
|
Sequences
|
|||
|
~~~~~~~~~
|
|||
|
|
|||
|
Successive expression can be grouped as a single sequence expression
|
|||
|
using curly braces as delimiters and semicolon as separators.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
{ expr1 ; expr2 ; expr3 ; expr4 }
|
|||
|
|
|||
|
A sequence can be passed as argument to a primitive.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
prim arg1 arg2 { arg3_expr1 ; arg3_expr2 }
|
|||
|
|
|||
|
Primitive applications right inside a sequence cannot be wrapped.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
{ (prim arg1 arg2) } # is not ok
|
|||
|
|
|||
|
Indentation
|
|||
|
~~~~~~~~~~~
|
|||
|
|
|||
|
To remove ambiguities for human readers, the parser enforces some
|
|||
|
indentation rules.
|
|||
|
|
|||
|
- For sequences:
|
|||
|
|
|||
|
- All expressions in a sequence must be aligned on the same column.
|
|||
|
- An exception is made when consecutive expressions fit on the same
|
|||
|
line, as long as the first of them is correctly aligned.
|
|||
|
- All expressions in a sequence must be indented to the right of the
|
|||
|
opening curly brace by at least one column.
|
|||
|
- The closing curly brace cannot be on the left of the opening one.
|
|||
|
|
|||
|
- For primitive applications:
|
|||
|
|
|||
|
- All arguments in an application must be aligned on the same
|
|||
|
column.
|
|||
|
- An exception is made when consecutive arguments fit on the same
|
|||
|
line, as long as the first of them is correctly aligned.
|
|||
|
- All arguments in a sequence must be indented to the right of the
|
|||
|
primitive name by at least one column.
|
|||
|
|
|||
|
.. _annotations-1:
|
|||
|
|
|||
|
Annotations
|
|||
|
~~~~~~~~~~~
|
|||
|
|
|||
|
Sequences and primitive applications can receive an annotation.
|
|||
|
|
|||
|
An annotation is a lowercase identifier that starts with an ``@`` sign.
|
|||
|
It comes after the opening curly brace for sequence, and after the
|
|||
|
primitive name for primitive applications.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
{ @annot
|
|||
|
expr ;
|
|||
|
expr ;
|
|||
|
... }
|
|||
|
|
|||
|
(prim @annot arg arg ...)
|
|||
|
|
|||
|
Differences with the formal notation
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
The concrete syntax follows the same lexical conventions as the
|
|||
|
specification: instructions are represented by uppercase identifiers,
|
|||
|
type constructors by lowercase identifiers, and constant constructors
|
|||
|
are Capitalized.
|
|||
|
|
|||
|
All domain specific constants are Micheline strings with specific
|
|||
|
formats:
|
|||
|
|
|||
|
- ``tez`` amounts are written using the same notation as JSON schemas
|
|||
|
and the command line client: thousands are optionally separated by
|
|||
|
commas, and so goes for mutez.
|
|||
|
|
|||
|
- in regexp form: ``([0-9]{1,3}(,[0-9]{3})+)|[0-9]+(\.[0.9]{2})?``
|
|||
|
- ``"1234567"`` means 1234567 tez
|
|||
|
- ``"1,234,567"`` means 1234567 tez
|
|||
|
- ``"1234567.89"`` means 1234567890000 mutez
|
|||
|
- ``"1,234,567.0"`` means 123456789 tez
|
|||
|
- ``"10,123.456,789"`` means 10123456789 mutez
|
|||
|
- ``"1234,567"`` is invalid
|
|||
|
- ``"1,234,567.123456"`` is invalid
|
|||
|
|
|||
|
- ``timestamp``\ s are written using ``RFC 339`` notation.
|
|||
|
- ``contract``\ s are the raw strings returned by JSON RPCs or the
|
|||
|
command line interface and cannot be forged by hand so their format
|
|||
|
is of no interest here.
|
|||
|
- ``key``\ s are ``Blake2B`` hashes of ``ed25519`` public keys encoded
|
|||
|
in ``base58`` format with the following custom alphabet:
|
|||
|
``"eXMNE9qvHPQDdcFx5J86rT7VRm2atAypGhgLfbS3CKjnksB4"``.
|
|||
|
- ``signature``\ s are ``ed25519`` signatures as a series of
|
|||
|
hex-encoded bytes.
|
|||
|
|
|||
|
To prevent errors, control flow primitives that take instructions as
|
|||
|
parameters require sequences in the concrete syntax.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
IF { instr1_true ; instr2_true ; ... }
|
|||
|
{ instr1_false ; instr2_false ; ... }
|
|||
|
|
|||
|
Main program structure
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
The toplevel of a smart contract file must be an un-delimited sequence
|
|||
|
of four primitive applications (in no particular order) that provide its
|
|||
|
``parameter``, ``return`` and ``storage`` types, as well as its
|
|||
|
``code``.
|
|||
|
|
|||
|
See the next section for a concrete example.
|
|||
|
|
|||
|
Comments
|
|||
|
~~~~~~~~
|
|||
|
|
|||
|
A hash sign (``#``) anywhere outside of a string literal will make the
|
|||
|
rest of the line (and itself) completely ignored, as in the following
|
|||
|
example.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
{ PUSH nat 1 ; # pushes 1
|
|||
|
PUSH nat 2 ; # pushes 2
|
|||
|
ADD } # computes 2 + 1
|
|||
|
|
|||
|
Comments that span on multiple lines or that stop before the end of the
|
|||
|
line can also be written, using C-like delimiters (``/* ... */``).
|
|||
|
|
|||
|
X - JSON syntax
|
|||
|
---------------
|
|||
|
|
|||
|
Micheline expressions are encoded in JSON like this:
|
|||
|
|
|||
|
- An integer ``N`` is an object with a single field ``"int"`` whose
|
|||
|
valus is the decimal representation as a string.
|
|||
|
|
|||
|
``{ "int": "N" }``
|
|||
|
|
|||
|
- A string ``"contents"`` is an object with a single field ``"string"``
|
|||
|
whose valus is the decimal representation as a string.
|
|||
|
|
|||
|
``{ "string": "contents" }``
|
|||
|
|
|||
|
- A sequence is a JSON array.
|
|||
|
|
|||
|
``[ expr, ... ]``
|
|||
|
|
|||
|
- A primitive application is an object with two fields ``"prim"`` for
|
|||
|
the primitive name and ``"args"`` for the arguments (that must
|
|||
|
contain an array). A third optionnal field ``"annot"`` may contains
|
|||
|
an annotation, including the ``@`` sign.
|
|||
|
|
|||
|
{ “prim”: “pair”, “args”: [ { “prim”: “nat”, args: [] }, { “prim”:
|
|||
|
“nat”, args: [] } ], “annot”: “@numbers” }\`
|
|||
|
|
|||
|
As in the concrete syntax, all domain specific constants are encoded as
|
|||
|
strings.
|
|||
|
|
|||
|
XI - Examples
|
|||
|
-------------
|
|||
|
|
|||
|
Contracts in the system are stored as a piece of code and a global data
|
|||
|
storage. The type of the global data of the storage is fixed for each
|
|||
|
contract at origination time. This is ensured statically by checking on
|
|||
|
origination that the code preserves the type of the global data. For
|
|||
|
this, the code of the contract is checked to be of the following type
|
|||
|
lambda (pair ’arg ’global) -> (pair ’ret ’global) where ’global is the
|
|||
|
type of the original global store given on origination. The contract
|
|||
|
also takes a parameter and returns a value, hence the complete calling
|
|||
|
convention above.
|
|||
|
|
|||
|
Empty contract
|
|||
|
~~~~~~~~~~~~~~
|
|||
|
|
|||
|
Any contract with the same ``parameter`` and ``return`` types may be
|
|||
|
written with an empty sequence in its ``code`` section. The simplest
|
|||
|
contract is the contract for which the ``parameter``, ``storage``, and
|
|||
|
``return`` are all of type ``unit``. This contract is as follows:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
code {};
|
|||
|
storage unit;
|
|||
|
parameter unit;
|
|||
|
return unit;
|
|||
|
|
|||
|
Reservoir contract
|
|||
|
~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
We want to create a contract that stores tez until a timestamp ``T`` or
|
|||
|
a maximum amount ``N`` is reached. Whenever ``N`` is reached before
|
|||
|
``T``, all tokens are reversed to an account ``B`` (and the contract is
|
|||
|
automatically deleted). Any call to the contract’s code performed after
|
|||
|
``T`` will otherwise transfer the tokens to another account ``A``.
|
|||
|
|
|||
|
We want to build this contract in a reusable manner, so we do not
|
|||
|
hard-code the parameters. Instead, we assume that the global data of the
|
|||
|
contract are ``(Pair (Pair T N) (Pair A B))``.
|
|||
|
|
|||
|
Hence, the global data of the contract has the following type
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
'g =
|
|||
|
pair
|
|||
|
(pair timestamp tez)
|
|||
|
(pair (contract unit unit) (contract unit unit))
|
|||
|
|
|||
|
Following the contract calling convention, the code is a lambda of type
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
lambda
|
|||
|
(pair unit 'g)
|
|||
|
(pair unit 'g)
|
|||
|
|
|||
|
written as
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
lambda
|
|||
|
(pair
|
|||
|
unit
|
|||
|
(pair
|
|||
|
(pair timestamp tez)
|
|||
|
(pair (contract unit unit) (contract unit unit))))
|
|||
|
(pair
|
|||
|
unit
|
|||
|
(pair
|
|||
|
(pair timestamp tez)
|
|||
|
(pair (contract unit unit) (contract unit unit))))
|
|||
|
|
|||
|
The complete source ``reservoir.tz`` is:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
parameter timestamp ;
|
|||
|
storage
|
|||
|
(pair
|
|||
|
(pair timestamp tez) # T N
|
|||
|
(pair (contract unit unit) (contract unit unit))) ; # A B
|
|||
|
return unit ;
|
|||
|
code
|
|||
|
{ DUP ; CDAAR ; # T
|
|||
|
NOW ;
|
|||
|
COMPARE ; LE ;
|
|||
|
IF { DUP ; CDADR ; # N
|
|||
|
BALANCE ;
|
|||
|
COMPARE ; LE ;
|
|||
|
IF { CDR ; UNIT ; PAIR }
|
|||
|
{ DUP ; CDDDR ; # B
|
|||
|
BALANCE ; UNIT ;
|
|||
|
DIIIP { CDR } ;
|
|||
|
TRANSFER_TOKENS ;
|
|||
|
PAIR } }
|
|||
|
{ DUP ; CDDAR ; # A
|
|||
|
BALANCE ;
|
|||
|
UNIT ;
|
|||
|
DIIIP { CDR } ;
|
|||
|
TRANSFER_TOKENS ;
|
|||
|
PAIR } }
|
|||
|
|
|||
|
Reservoir contract (variant with broker and status)
|
|||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
We basically want the same contract as the previous one, but instead of
|
|||
|
destroying it, we want to keep it alive, storing a flag ``S`` so that we
|
|||
|
can tell afterwards if the tokens have been transferred to ``A`` or
|
|||
|
``B``. We also want a broker ``X`` to get some fee ``P`` in any case.
|
|||
|
|
|||
|
We thus add variables ``P`` and ``S`` and ``X`` to the global data of
|
|||
|
the contract, now
|
|||
|
``(Pair (S, Pair (T, Pair (Pair P N) (Pair X (Pair A B)))))``. ``P`` is
|
|||
|
the fee for broker ``A``, ``S`` is the state, as a string ``"open"``,
|
|||
|
``"timeout"`` or ``"success"``.
|
|||
|
|
|||
|
At the beginning of the transaction:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
S is accessible via a CDAR
|
|||
|
T via a CDDAR
|
|||
|
P via a CDDDAAR
|
|||
|
N via a CDDDADR
|
|||
|
X via a CDDDDAR
|
|||
|
A via a CDDDDDAR
|
|||
|
B via a CDDDDDDR
|
|||
|
|
|||
|
For the contract to stay alive, we test that all least ``(Tez "1.00")``
|
|||
|
is still available after each transaction. This value is given as an
|
|||
|
example and must be updated according to the actual Tezos minimal value
|
|||
|
for contract balance.
|
|||
|
|
|||
|
The complete source ``scrutable_reservoir.tz`` is:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
parameter timestamp ;
|
|||
|
storage
|
|||
|
(pair
|
|||
|
string # S
|
|||
|
(pair
|
|||
|
timestamp # T
|
|||
|
(pair
|
|||
|
(pair tez tez) ; # P N
|
|||
|
(pair
|
|||
|
(contract unit unit) # X
|
|||
|
(pair (contract unit unit) (contract unit unit)))))) ; # A B
|
|||
|
return unit ;
|
|||
|
code
|
|||
|
{ DUP ; CDAR # S
|
|||
|
PUSH string "open" ;
|
|||
|
COMPARE ; NEQ ;
|
|||
|
IF { FAIL } # on "success", "timeout" or a bad init value
|
|||
|
{ DUP ; CDDAR ; # T
|
|||
|
NOW ;
|
|||
|
COMPARE ; LT ;
|
|||
|
IF { # Before timeout
|
|||
|
# We compute ((1 + P) + N) tez for keeping the contract alive
|
|||
|
PUSH tez "1.00" ;
|
|||
|
DIP { DUP ; CDDDAAR } ; ADD ; # P
|
|||
|
DIP { DUP ; CDDDADR } ; ADD ; # N
|
|||
|
# We compare to the cumulated amount
|
|||
|
BALANCE ;
|
|||
|
COMPARE; LT ;
|
|||
|
IF { # Not enough cash, we just accept the transaction
|
|||
|
# and leave the global untouched
|
|||
|
CDR }
|
|||
|
{ # Enough cash, successful ending
|
|||
|
# We update the global
|
|||
|
CDDR ; PUSH string "success" ; PAIR ;
|
|||
|
# We transfer the fee to the broker
|
|||
|
DUP ; CDDAAR ; # P
|
|||
|
DIP { DUP ; CDDDAR } # X
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP ;
|
|||
|
# We transfer the rest to A
|
|||
|
DUP ; CDDADR ; # N
|
|||
|
DIP { DUP ; CDDDDAR } # A
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP } }
|
|||
|
{ # After timeout, we refund
|
|||
|
# We update the global
|
|||
|
CDDR ; PUSH string "timeout" ; PAIR ;
|
|||
|
# We try to transfer the fee to the broker
|
|||
|
PUSH tez "1.00" ; BALANCE ; SUB ; # available
|
|||
|
DIP { DUP ; CDDAAR } ; # P
|
|||
|
COMPARE ; LT ; # available < P
|
|||
|
IF { PUSH tez "1.00" ; BALANCE ; SUB ; # available
|
|||
|
DIP { DUP ; CDDDAR } # X
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP }
|
|||
|
{ DUP ; CDDAAR ; # P
|
|||
|
DIP { DUP ; CDDDAR } # X
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP }
|
|||
|
# We transfer the rest to B
|
|||
|
PUSH tez "1.00" ; BALANCE ; SUB ; # available
|
|||
|
DIP { DUP ; CDDDDDR } # B
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP } }
|
|||
|
# return Unit
|
|||
|
UNIT ; PAIR }
|
|||
|
|
|||
|
Forward contract
|
|||
|
~~~~~~~~~~~~~~~~
|
|||
|
|
|||
|
We want to write a forward contract on dried peas. The contract takes as
|
|||
|
global data the tons of peas ``Q``, the expected delivery date ``T``,
|
|||
|
the contract agreement date ``Z``, a strike ``K``, a collateral ``C``
|
|||
|
per ton of dried peas, and the accounts of the buyer ``B``, the seller
|
|||
|
``S`` and the warehouse ``W``.
|
|||
|
|
|||
|
These parameters as grouped in the global storage as follows:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
Pair
|
|||
|
(Pair (Pair Q (Pair T Z)))
|
|||
|
(Pair
|
|||
|
(Pair K C)
|
|||
|
(Pair (Pair B S) W))
|
|||
|
|
|||
|
of type
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
pair
|
|||
|
(pair nat (pair timestamp timestamp))
|
|||
|
(pair
|
|||
|
(pair tez tez)
|
|||
|
(pair (pair account account) account))
|
|||
|
|
|||
|
The 24 hours after timestamp ``Z`` are for the buyer and seller to store
|
|||
|
their collateral ``(Q * C)``. For this, the contract takes a string as
|
|||
|
parameter, matching ``"buyer"`` or ``"seller"`` indicating the party for
|
|||
|
which the tokens are transferred. At the end of this day, each of them
|
|||
|
can send a transaction to send its tokens back. For this, we need to
|
|||
|
store who already paid and how much, as a ``(pair tez tez)`` where the
|
|||
|
left component is the buyer and the right one the seller.
|
|||
|
|
|||
|
After the first day, nothing cam happen until ``T``.
|
|||
|
|
|||
|
During the 24 hours after ``T``, the buyer must pay ``(Q * K)`` to the
|
|||
|
contract, minus the amount already sent.
|
|||
|
|
|||
|
After this day, if the buyer didn’t pay enough then any transaction will
|
|||
|
send all the tokens to the seller.
|
|||
|
|
|||
|
Otherwise, the seller must deliver at least ``Q`` tons of dried peas to
|
|||
|
the warehouse, in the next 24 hours. When the amount is equal to or
|
|||
|
exceeds ``Q``, all the tokens are transferred to the seller and the
|
|||
|
contract is destroyed. For storing the quantity of peas already
|
|||
|
delivered, we add a counter of type ``nat`` in the global storage. For
|
|||
|
knowing this quantity, we accept messages from W with a partial amount
|
|||
|
of delivered peas as argument.
|
|||
|
|
|||
|
After this day, any transaction will send all the tokens to the buyer
|
|||
|
(not enough peas have been delivered in time).
|
|||
|
|
|||
|
Hence, the global storage is a pair, with the counters on the left, and
|
|||
|
the constant parameters on the right, initially as follows.
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
Pair
|
|||
|
(Pair 0 (Pair 0_00 0_00))
|
|||
|
(Pair
|
|||
|
(Pair (Pair Q (Pair T Z)))
|
|||
|
(Pair
|
|||
|
(Pair K C)
|
|||
|
(Pair (Pair B S) W)))
|
|||
|
|
|||
|
of type
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
pair
|
|||
|
(pair nat (pair tez tez))
|
|||
|
(pair
|
|||
|
(pair nat (pair timestamp timestamp))
|
|||
|
(pair
|
|||
|
(pair tez tez)
|
|||
|
(pair (pair account account) account)))
|
|||
|
|
|||
|
The parameter of the transaction will be either a transfer from the
|
|||
|
buyer or the seller or a delivery notification from the warehouse of
|
|||
|
type ``(or string nat)``.
|
|||
|
|
|||
|
At the beginning of the transaction:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
Q is accessible via a CDDAAR
|
|||
|
T via a CDDADAR
|
|||
|
Z via a CDDADDR
|
|||
|
K via a CDDDAAR
|
|||
|
C via a CDDDADR
|
|||
|
B via a CDDDDAAR
|
|||
|
S via a CDDDDADR
|
|||
|
W via a CDDDDDR
|
|||
|
the delivery counter via a CDAAR
|
|||
|
the amount versed by the seller via a CDADDR
|
|||
|
the argument via a CAR
|
|||
|
|
|||
|
The contract returns a unit value, and we assume that it is created with
|
|||
|
the minimum amount, set to ``(Tez "1.00")``.
|
|||
|
|
|||
|
The complete source ``forward.tz`` is:
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
parameter (or string nat) ;
|
|||
|
return unit ;
|
|||
|
storage
|
|||
|
(pair
|
|||
|
(pair nat (pair tez tez)) # counter from_buyer from_seller
|
|||
|
(pair
|
|||
|
(pair nat (pair timestamp timestamp)) # Q T Z
|
|||
|
(pair
|
|||
|
(pair tez tez) # K C
|
|||
|
(pair
|
|||
|
(pair (contract unit unit) (contract unit unit)) # B S
|
|||
|
(contract unit unit))))) ; # W
|
|||
|
code
|
|||
|
{ DUP ; CDDADDR ; # Z
|
|||
|
PUSH nat 86400 ; SWAP ; ADD ; # one day in second
|
|||
|
NOW ; COMPARE ; LT ;
|
|||
|
IF { # Before Z + 24
|
|||
|
DUP ; CAR ; # we must receive (Left "buyer") or (Left "seller")
|
|||
|
IF_LEFT
|
|||
|
{ DUP ; PUSH string "buyer" ; COMPARE ; EQ ;
|
|||
|
IF { DROP ;
|
|||
|
DUP ; CDADAR ; # amount already versed by the buyer
|
|||
|
DIP { AMOUNT } ; ADD ; # transaction
|
|||
|
# then we rebuild the globals
|
|||
|
DIP { DUP ; CDADDR } ; PAIR ; # seller amount
|
|||
|
PUSH nat 0 ; PAIR ; # delivery counter at 0
|
|||
|
DIP { CDDR } ; PAIR ; # parameters
|
|||
|
# and return Unit
|
|||
|
UNIT ; PAIR }
|
|||
|
{ PUSH string "seller" ; COMPARE ; EQ ;
|
|||
|
IF { DUP ; CDADDR ; # amount already versed by the seller
|
|||
|
DIP { AMOUNT } ; ADD ; # transaction
|
|||
|
# then we rebuild the globals
|
|||
|
DIP { DUP ; CDADAR } ; SWAP ; PAIR ; # buyer amount
|
|||
|
PUSH nat 0 ; PAIR ; # delivery counter at 0
|
|||
|
DIP { CDDR } ; PAIR ; # parameters
|
|||
|
# and return Unit
|
|||
|
UNIT ; PAIR }
|
|||
|
{ FAIL } } } # (Left _)
|
|||
|
{ FAIL } } # (Right _)
|
|||
|
{ # After Z + 24
|
|||
|
# test if the required amount is reached
|
|||
|
DUP ; CDDAAR ; # Q
|
|||
|
DIP { DUP ; CDDDADR } ; MUL ; # C
|
|||
|
PUSH nat 2 ; MUL ;
|
|||
|
PUSH tez "1.00" ; ADD ;
|
|||
|
BALANCE ; COMPARE ; LT ; # balance < 2 * (Q * C) + 1
|
|||
|
IF { # refund the parties
|
|||
|
CDR ; DUP ; CADAR ; # amount versed by the buyer
|
|||
|
DIP { DUP ; CDDDAAR } # B
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP
|
|||
|
DUP ; CADDR ; # amount versed by the seller
|
|||
|
DIP { DUP ; CDDDADR } # S
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP
|
|||
|
BALANCE ; # bonus to the warehouse to destroy the account
|
|||
|
DIP { DUP ; CDDDDR } # W
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP
|
|||
|
# return unit, don't change the global
|
|||
|
# since the contract will be destroyed
|
|||
|
UNIT ; PAIR }
|
|||
|
{ # otherwise continue
|
|||
|
DUP ; CDDADAR # T
|
|||
|
NOW ; COMPARE ; LT
|
|||
|
IF { FAIL } # Between Z + 24 and T
|
|||
|
{ # after T
|
|||
|
DUP ; CDDADAR # T
|
|||
|
PUSH nat 86400 ; ADD # one day in second
|
|||
|
NOW ; COMPARE ; LT
|
|||
|
IF { # Between T and T + 24
|
|||
|
# we only accept transactions from the buyer
|
|||
|
DUP ; CAR ; # we must receive (Left "buyer")
|
|||
|
IF_LEFT
|
|||
|
{ PUSH string "buyer" ; COMPARE ; EQ ;
|
|||
|
IF { DUP ; CDADAR ; # amount already versed by the buyer
|
|||
|
DIP { AMOUNT } ; ADD ; # transaction
|
|||
|
# The amount must not exceed Q * K
|
|||
|
DUP ;
|
|||
|
DIIP { DUP ; CDDAAR ; # Q
|
|||
|
DIP { DUP ; CDDDAAR } ; MUL ; } ; # K
|
|||
|
DIP { COMPARE ; GT ; # new amount > Q * K
|
|||
|
IF { FAIL } { } } ; # abort or continue
|
|||
|
# then we rebuild the globals
|
|||
|
DIP { DUP ; CDADDR } ; PAIR ; # seller amount
|
|||
|
PUSH nat 0 ; PAIR ; # delivery counter at 0
|
|||
|
DIP { CDDR } ; PAIR ; # parameters
|
|||
|
# and return Unit
|
|||
|
UNIT ; PAIR }
|
|||
|
{ FAIL } } # (Left _)
|
|||
|
{ FAIL } } # (Right _)
|
|||
|
{ # After T + 24
|
|||
|
# test if the required payment is reached
|
|||
|
DUP ; CDDAAR ; # Q
|
|||
|
DIP { DUP ; CDDDAAR } ; MUL ; # K
|
|||
|
DIP { DUP ; CDADAR } ; # amount already versed by the buyer
|
|||
|
COMPARE ; NEQ ;
|
|||
|
IF { # not reached, pay the seller and destroy the contract
|
|||
|
BALANCE ;
|
|||
|
DIP { DUP ; CDDDDADR } # S
|
|||
|
DIIP { CDR } ;
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP ;
|
|||
|
# and return Unit
|
|||
|
UNIT ; PAIR }
|
|||
|
{ # otherwise continue
|
|||
|
DUP ; CDDADAR # T
|
|||
|
PUSH nat 86400 ; ADD ;
|
|||
|
PUSH nat 86400 ; ADD ; # two days in second
|
|||
|
NOW ; COMPARE ; LT
|
|||
|
IF { # Between T + 24 and T + 48
|
|||
|
# We accept only delivery notifications, from W
|
|||
|
DUP ; CDDDDDR ; MANAGER ; # W
|
|||
|
SOURCE unit unit ; MANAGER ;
|
|||
|
COMPARE ; NEQ ;
|
|||
|
IF { FAIL } {} # fail if not the warehouse
|
|||
|
DUP ; CAR ; # we must receive (Right amount)
|
|||
|
IF_LEFT
|
|||
|
{ FAIL } # (Left _)
|
|||
|
{ # We increment the counter
|
|||
|
DIP { DUP ; CDAAR } ; ADD ;
|
|||
|
# And rebuild the globals in advance
|
|||
|
DIP { DUP ; CDADR } ; PAIR ;
|
|||
|
DIP { CDDR } ; PAIR ;
|
|||
|
UNIT ; PAIR ;
|
|||
|
# We test if enough have been delivered
|
|||
|
DUP ; CDAAR ;
|
|||
|
DIP { DUP ; CDDAAR } ;
|
|||
|
COMPARE ; LT ; # counter < Q
|
|||
|
IF { CDR } # wait for more
|
|||
|
{ # Transfer all the money to the seller
|
|||
|
BALANCE ; # and destroy the contract
|
|||
|
DIP { DUP ; CDDDDADR } # S
|
|||
|
DIIP { CDR } ;
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP } } ;
|
|||
|
UNIT ; PAIR }
|
|||
|
{ # after T + 48, transfer everything to the buyer
|
|||
|
BALANCE ; # and destroy the contract
|
|||
|
DIP { DUP ; CDDDDAAR } # B
|
|||
|
DIIP { CDR } ;
|
|||
|
UNIT ; TRANSFER_TOKENS ; DROP ;
|
|||
|
# and return unit
|
|||
|
UNIT ; PAIR } } } } } } }
|
|||
|
|
|||
|
XII - Full grammar
|
|||
|
------------------
|
|||
|
|
|||
|
::
|
|||
|
|
|||
|
<data> ::=
|
|||
|
| <int constant>
|
|||
|
| <natural number constant>
|
|||
|
| <string constant>
|
|||
|
| <timestamp string constant>
|
|||
|
| <signature string constant>
|
|||
|
| <key string constant>
|
|||
|
| <key_hash string constant>
|
|||
|
| <tez string constant>
|
|||
|
| <contract string constant>
|
|||
|
| Unit
|
|||
|
| True
|
|||
|
| False
|
|||
|
| Pair <data> <data>
|
|||
|
| Left <data>
|
|||
|
| Right <data>
|
|||
|
| Some <data>
|
|||
|
| None
|
|||
|
| { <data> ; ... }
|
|||
|
| { Elt <data> <data> ; ... }
|
|||
|
| instruction
|
|||
|
<instruction> ::=
|
|||
|
| { <instruction> ... }
|
|||
|
| DROP
|
|||
|
| DUP
|
|||
|
| SWAP
|
|||
|
| PUSH <type> <data>
|
|||
|
| SOME
|
|||
|
| NONE <type>
|
|||
|
| UNIT
|
|||
|
| IF_NONE { <instruction> ... } { <instruction> ... }
|
|||
|
| PAIR
|
|||
|
| CAR
|
|||
|
| CDR
|
|||
|
| LEFT <type>
|
|||
|
| RIGHT <type>
|
|||
|
| IF_LEFT { <instruction> ... } { <instruction> ... }
|
|||
|
| NIL <type>
|
|||
|
| CONS
|
|||
|
| IF_CONS { <instruction> ... } { <instruction> ... }
|
|||
|
| EMPTY_SET <type>
|
|||
|
| EMPTY_MAP <comparable type> <type>
|
|||
|
| MAP
|
|||
|
| MAP { <instruction> ... }
|
|||
|
| REDUCE
|
|||
|
| ITER { <instruction> ... }
|
|||
|
| MEM
|
|||
|
| GET
|
|||
|
| UPDATE
|
|||
|
| IF { <instruction> ... } { <instruction> ... }
|
|||
|
| LOOP { <instruction> ... }
|
|||
|
| LOOP_LEFT { <instruction> ... }
|
|||
|
| LAMBDA <type> <type> { <instruction> ... }
|
|||
|
| EXEC
|
|||
|
| DIP { <instruction> ... }
|
|||
|
| FAIL
|
|||
|
| CONCAT
|
|||
|
| ADD
|
|||
|
| SUB
|
|||
|
| MUL
|
|||
|
| DIV
|
|||
|
| ABS
|
|||
|
| NEG
|
|||
|
| MOD
|
|||
|
| LSL
|
|||
|
| LSR
|
|||
|
| OR
|
|||
|
| AND
|
|||
|
| XOR
|
|||
|
| NOT
|
|||
|
| COMPARE
|
|||
|
| EQ
|
|||
|
| NEQ
|
|||
|
| LT
|
|||
|
| GT
|
|||
|
| LE
|
|||
|
| GE
|
|||
|
| INT
|
|||
|
| MANAGER
|
|||
|
| SELF
|
|||
|
| TRANSFER_TOKENS
|
|||
|
| CREATE_ACCOUNT
|
|||
|
| CREATE_CONTRACT
|
|||
|
| DEFAULT_ACCOUNT
|
|||
|
| NOW
|
|||
|
| AMOUNT
|
|||
|
| BALANCE
|
|||
|
| CHECK_SIGNATURE
|
|||
|
| H
|
|||
|
| HASH_KEY
|
|||
|
| STEPS_TO_QUOTA
|
|||
|
| SOURCE <type> <type>
|
|||
|
<type> ::=
|
|||
|
| <comparable type>
|
|||
|
| key
|
|||
|
| unit
|
|||
|
| signature
|
|||
|
| option <type>
|
|||
|
| list <type>
|
|||
|
| set <comparable type>
|
|||
|
| contract <type> <type>
|
|||
|
| pair <type> <type>
|
|||
|
| or <type> <type>
|
|||
|
| lambda <type> <type>
|
|||
|
| map <comparable type> <type>
|
|||
|
<comparable type> ::=
|
|||
|
| int
|
|||
|
| nat
|
|||
|
| string
|
|||
|
| tez
|
|||
|
| bool
|
|||
|
| key_hash
|
|||
|
| timestamp
|
|||
|
|
|||
|
XIII - Reference implementation
|
|||
|
-------------------------------
|
|||
|
|
|||
|
The language is implemented in OCaml as follows:
|
|||
|
|
|||
|
- The lower internal representation is written as a GADT whose type
|
|||
|
parameters encode exactly the typing rules given in this
|
|||
|
specification. In other words, if a program written in this
|
|||
|
representation is accepted by OCaml’s typechecker, it is mandatorily
|
|||
|
type-safe. This of course also valid for programs not handwritten but
|
|||
|
generated by OCaml code, so we are sure that any manipulated code is
|
|||
|
type-safe.
|
|||
|
|
|||
|
In the end, what remains to be checked is the encoding of the typing
|
|||
|
rules as OCaml types, which boils down to half a line of code for
|
|||
|
each instruction. Everything else is left to the venerable and well
|
|||
|
trusted OCaml.
|
|||
|
|
|||
|
- The interpreter is basically the direct transcription of the
|
|||
|
rewriting rules presented above. It takes an instruction, a stack and
|
|||
|
transforms it. OCaml’s typechecker ensures that the transformation
|
|||
|
respects the pre and post stack types declared by the GADT case for
|
|||
|
each instruction.
|
|||
|
|
|||
|
The only things that remain to we reviewed are value dependent
|
|||
|
choices, such as that we did not swap true and false when
|
|||
|
interpreting the If instruction.
|
|||
|
|
|||
|
- The input, untyped internal representation is an OCaml ADT with the
|
|||
|
only 5 grammar constructions: ``String``, ``Int``, ``Seq`` and
|
|||
|
``Prim``. It is the target language for the parser, since not all
|
|||
|
parsable programs are well typed, and thus could simply not be
|
|||
|
constructed using the GADT.
|
|||
|
|
|||
|
- The typechecker is a simple function that recognizes the abstract
|
|||
|
grammar described in section X by pattern matching, producing the
|
|||
|
well-typed, corresponding GADT expressions. It is mostly a checker,
|
|||
|
not a full inferer, and thus takes some annotations (basically the
|
|||
|
input and output of the program, of lambdas and of uninitialized maps
|
|||
|
and sets). It works by performing a symbolic evaluation of the
|
|||
|
program, transforming a symbolic stack. It only needs one pass over
|
|||
|
the whole program.
|
|||
|
|
|||
|
Here again, OCaml does most of the checking, the structure of the
|
|||
|
function is very simple, what we have to check is that we transform a
|
|||
|
``Prim ("If", ...)`` into an ``If``, a ``Prim ("Dup", ...)`` into a
|
|||
|
``Dup``, etc.
|